CN114349521A - High-strength nano heat insulation plate and preparation method thereof - Google Patents
High-strength nano heat insulation plate and preparation method thereof Download PDFInfo
- Publication number
- CN114349521A CN114349521A CN202111487458.0A CN202111487458A CN114349521A CN 114349521 A CN114349521 A CN 114349521A CN 202111487458 A CN202111487458 A CN 202111487458A CN 114349521 A CN114349521 A CN 114349521A
- Authority
- CN
- China
- Prior art keywords
- nano
- heat insulation
- strength
- heat
- less
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/66—Monolithic refractories or refractory mortars, including those whether or not containing clay
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/71—Ceramic products containing macroscopic reinforcing agents
- C04B35/78—Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
- C04B35/80—Fibres, filaments, whiskers, platelets, or the like
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B80/00—Architectural or constructional elements improving the thermal performance of buildings
- Y02B80/10—Insulation, e.g. vacuum or aerogel insulation
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Compositions Of Oxide Ceramics (AREA)
- Ceramic Products (AREA)
Abstract
The invention discloses a high-strength nano heat-insulating plate, which comprises the following components in percentage by weight: 43-75% of heat insulation filler; 7-15% of an opacifier; 10-20% of a binder; 2-6% of reinforcing fibers; 0.5-2% of a plasticizer; 1-5% of performance additive; 3-10% of water; the nano plate prepared by the invention has the characteristics of low cost, high normal-temperature compressive strength and low heat conductivity coefficient. The invention introduces alkali or alkali metal salt, and utilizes the characteristics of low melting point, easy volatilization and reaction with aluminum-silicon material, so that the heat-insulating plate can form new structure reinforcing phase in situ under service state, and generate larger volume expansion, thereby avoiding the phenomena of burning strength or pulverization of the traditional heat-insulating plate material in the long-term use process. The high-strength nano heat insulation plate has good heat insulation performance, can maintain enough strength at normal temperature and high temperature to avoid losing effect, and has outstanding innovation and economic value.
Description
Technical Field
The invention belongs to the field of materials, and particularly relates to a high-strength nano heat-insulating plate and a preparation method thereof.
Background
The energy consumption of the steel industry in China is generally high, energy conservation and consumption reduction become important targets of enterprises, the reasonable and effective reduction of the temperature drop of molten steel in metallurgical containers such as steel ladles and the like is an important link of a metallurgical process, and an important factor for determining the temperature drop of the molten steel is the heat insulation property of furnace lining materials of the metallurgical containers such as the steel ladles and the like. At present, the heat insulation material of the furnace lining of the metallurgical container mainly adopts light castable, fiber heat insulation plates, nano heat insulation plates and the like for heat insulation, wherein the heat insulation effect of the nano heat insulation plates is the best.
The nanometer heat insulating board is a plate-shaped heat insulating product formed by mixing and pressing superfine SiO2 powder serving as a main component. Chinese patent No. CN 105541313B discloses a method for preparing a nano heat insulating material and a nano plate, wherein the nano plate has a compressive strength at normal temperature of 1.2-1.4 MPa, and a thermal conductivity of 0.02-0.029W/m, and is further processed to K (600 ℃); chinese patent No. CN 102853211a discloses a high-efficiency nano insulation board for thermal equipment and a manufacturing method thereof, wherein the product has a compressive strength at normal temperature of 3Mpa and a thermal conductivity coefficient at normal temperature of 0.021W/m £ K.
At present, the heat preservation effect of a ladle is fully considered by the structural design of the metallurgical containers such as the ladle and the like, so that a nano heat insulation plate material with low heat conductivity coefficient is adopted, but in the using process, particularly in the later life stage of the ladle, the ladle lining expands a ladle working lining and a permanent lining brick body through the heating of high-temperature molten steel, and in addition, the static pressure of the molten steel and the heating deformation of a cladding can extrude the nano heat insulation plate, meanwhile, the nano heat insulation plate contains more organic matters, the high temperature is easy to lose efficacy, and the material is further sintered and pulverized, so that the good heat preservation effect is lost.
Disclosure of Invention
The purpose of the invention is as follows: the invention aims to provide a nano heat insulation plate which is prepared from solid waste brown and has high strength and low heat conductivity coefficient, and the reliability of the nano heat insulation plate in the using process of metallurgical containers such as steel ladles and the like is improved.
The technical scheme is as follows: the invention relates to a high-strength nano heat insulation plate, which comprises the following components in percentage by weight:
wherein the heat insulation filler is one or more of brown corundum smoke dust, white carbon black and floating beads, and the particle size of the heat insulation filler is less than or equal to 0.2 mm; the performance additive is alkali or alkali metal salt, and has chemical formula of ROH and R2CO3R is Li, Na or K, and the granularity of the R is less than 0.044 mm.
Further, the opacifier is one or two of nano silicon carbide and nano zircon, and the particle size is less than 200 nm.
Further, the binder is magnesium aluminum silicate, and the particle size is less than 0.044 mm.
Further, the reinforcing fiber is one or two of alumina fiber, zirconia fiber or aluminum silicate fiber, and the fiber length is less than 5 mm.
Further, the plasticizer is magnesium stearate with the granularity of less than 0.044 mm.
The invention relates to a preparation method of a high-strength nano heat-insulating plate, which comprises the following steps:
(1) preparing raw materials according to a ratio, mixing the reinforced fibers and the plasticizer, and dispersing by using a mechanical stirring or ultrasonic dispersing instrument;
(2) mixing the mixture with heat insulating filler, opacifier, adhesive, plasticizer and performance additive in a stirrer, and adding water for mixing to obtain pug;
(3) the pug is prepared into plates with different sizes by a compression molding process, and the plates are dried and vacuum-packaged by using films or tinfoil.
Further, the mixing time is 1-3 h.
Further, the mixing time is 20-60 min.
Further, the drying temperature is 100-150 ℃.
Has the advantages that: compared with the prior art, the invention has the following remarkable advantages:
(1) the nano plate prepared by the invention has the advantages of low cost, high normal temperature compressive strength and low heat conductivity coefficientThe characteristics of (1). The selected heat insulation filler is a raw material with low heat conductivity coefficient and light weight, the nano silicon carbide and the nano zircon are used as opacifiers to obviously inhibit the radiation heat transfer of the heat insulation plate in a service state, the magnesium stearate is used as a plasticizer, the lubricating and plasticizing effects are good, the density is light, the fibers are easy to disperse, the pug obtained by mixing has good fluidity and compressibility, the pug volatilizes at the temperature of 200 ℃, the porosity is increased, and the heat insulation is facilitated. Magnesium aluminum silicate is used as a binder, is particularly suitable for bonding powder, and is different from other organic binders, and cannot move to the surface of the heat insulation plate in the drying process. This non-moving property is essential to ensure the structural uniformity of the product. The invention introduces alkali or alkali metal salt at the same time, and utilizes the characteristics of low melting point, easy volatilization and reaction with aluminum-silicon material: r (OH) + SiO2/Al2O3→R2SiO3/RAlO2+H2O;R2CO3+SiO2/Al2O3→R2SiO3/RAlO2+CO2. The reaction enables the heat insulation plate to form a new structural reinforcing phase in situ in a service state, and simultaneously generates larger volume expansion, thereby avoiding the phenomenon of burning or powdering of the traditional heat insulation plate material in the long-term use process. From the above, it can be seen that the high-strength nano heat insulation plate has good heat insulation performance, can maintain sufficient strength at both normal temperature and high temperature to avoid losing effect, and has outstanding innovativeness and economic value, and the high-strength nano heat insulation plate has the following characteristics:
(2) the preparation method disclosed by the invention is simple, efficient, green and environment-friendly, and is suitable for large-scale production.
Detailed Description
The technical solution of the present invention is further explained below.
Example 1
Selecting the weight fraction ratio, wherein the heat insulation filler is 20 percent of brown corundum smoke dust, 20 percent of white carbon black and 35 percent of floating bead, and the particle size is less than or equal to 0.2 mm; the selected opacifier is 3 percent of nano silicon carbide and 4 percent of nano zirconite, and the granularity is less than 200 nm; the adhesive used firstly is 10 percent of magnesium aluminum silicate, and the granularity is less than 0.044 mm; the selected reinforced fibers are 1 percent of alumina fibers and 1 percent of aluminum silicate fibers, and the length of the fibers is less than 5 mm; the selected plasticizer is magnesium stearate 2%, and the granularity is less than 0.044 mm; the selected performance additive is LiOH1 percent and is less than 0.044 mm; and 3% of water.
Preparing the raw materials according to the proportion, firstly mixing the reinforcing fiber and the magnesium stearate, dispersing by using a mechanical stirring or ultrasonic dispersion instrument, then mixing the raw materials with the heat insulation filler, the opacifier, the binder, the plasticizer and the performance additive in a stirrer for 1h, adding a proper amount of water, mixing for 20min to obtain pug, preparing the pug into plates with different sizes by using a compression molding process, drying at 100 ℃, and carrying out vacuum packaging by using a film.
Example 2
Selecting the weight fraction ratio, wherein the heat insulation filler is 20 percent of brown corundum smoke dust and 23 percent of white carbon black, and the particle size of the selected heat insulation filler is less than or equal to 0.2 mm; the selected opacifier is 15% of nano zircon, and the granularity is less than 200 nm; the binder is 20 percent of magnesium aluminum silicate, and the granularity is less than 0.044 mm; the selected reinforced fiber is zirconia fiber 6%, and the fiber length is less than 5 mm; the selected plasticizer is magnesium stearate 1%, and the granularity is less than 0.044 mm; the selected performance additive is Na2CO 35%, and the granularity is less than 0.044 mm; 10 percent of water.
Preparing the raw materials according to the proportion, firstly mixing the reinforcing fiber and the magnesium stearate, dispersing by using a mechanical stirring or ultrasonic dispersion instrument, then mixing the raw materials with the heat insulation filler, the opacifier, the binder, the plasticizer and the performance additive in a stirrer for 3h, adding a proper amount of water, mixing for 60min to obtain pug, preparing the pug into plates with different sizes by using a compression molding process, drying at 150 ℃, and carrying out vacuum packaging by using a film or tinfoil.
Example 3
Selecting the weight fraction ratio, wherein the heat insulation filler is 20 percent of white carbon black and 36 percent of floating beads, and the particle size of the selected heat insulation filler is less than or equal to 0.1 mm; the selected opacifier is 12 percent of nano silicon carbide, and the granularity is less than 150 nm; the binder is 15% of magnesium aluminum silicate, and the granularity is less than 0.030 mm; the selected reinforced fibers are 2 percent of alumina fibers and 3 percent of zirconia fibers, and the length of the fibers is less than 5 mm; the selected plasticizer is magnesium stearate 0.5%, and the granularity is less than 0.044 mm; the selected performance additive is Li2CO 34%, and the granularity is less than 0.044 mm; and 7.5% of water.
The raw materials are prepared according to the proportion, the reinforcing fiber and the magnesium stearate are mixed firstly, the mixture is dispersed by a mechanical stirring or ultrasonic dispersion instrument, then the mixture is mixed with the heat insulation filler, the opacifier, the binder, the plasticizer and the performance additive in a stirrer for 2 hours, a proper amount of water is added for mixing for 40min to obtain pug, the pug is prepared into plates with different sizes by a compression molding process, the plates are dried at 120 ℃, and the plates are packed by tinfoil in vacuum.
Example 4
Selecting the weight fraction ratio, wherein the heat insulation filler is floating bead 63%, and the particle size of the selected heat insulation filler is less than or equal to 0.2 mm; the selected opacifier is 6 percent of nano silicon carbide and 6 percent of nano zirconite, and the granularity is less than 150 nm; the binder is 12 percent of magnesium aluminum silicate, and the granularity is less than 0.030 mm; the selected reinforced fiber is 3 percent of aluminum silicate fiber, and the length of the fiber is less than 5 mm; the selected plasticizer is magnesium stearate 1.5%, and the granularity is less than 0.044 mm; the selected performance additive is KOH 2 percent, and the granularity is less than 0.044 mm; 6.5 percent of water.
The raw materials are prepared according to the proportion, the reinforcing fiber and the magnesium stearate are mixed firstly, the mixture is dispersed by a mechanical stirring or ultrasonic dispersion instrument, then the mixture is mixed with the heat insulation filler, the opacifier, the binder, the plasticizer and the performance additive in a stirrer for 1.5h, then a proper amount of water is added for mixing for 30min to obtain pug, the pug is prepared into plates with different sizes by a compression molding process, the plates are dried at 110 ℃, and the plates are packed by films in vacuum.
Claims (9)
1. A high-strength nano heat insulation plate is characterized by comprising the following components in percentage by weight:
wherein the heat insulation filler is one or more of brown corundum smoke dust, white carbon black and floating beads, and the particle size of the heat insulation filler is less than or equal to 0.2 mm; the performance additive is alkali or alkali metal salt, and has chemical formula of ROH and R2CO3R is Li, Na or K, and the granularity of the R is less than 0.044 mm.
2. A high strength nanoscopic insulation panel as claimed in claim 1 wherein said opacifier is one or both of nano silicon carbide and nano zircon and has a particle size of less than 200 nm.
3. A high strength nanoscopic insulation panel as recited in claim 1 wherein said binder is magnesium aluminum silicate with a particle size of < 0.044 mm.
4. The high strength nanoscopic insulation panel of claim 1 wherein said reinforcing fibers are one or both of alumina fibers, zirconia fibers or alumina silicate fibers, and the fiber length is < 5 mm.
5. A high strength nanoscopic insulation panel as recited in claim 1 wherein said plasticizer is magnesium stearate having a particle size of < 0.044 mm.
6. A method for preparing a high strength nano insulation board according to claim 1, comprising the steps of:
(1) preparing raw materials according to a ratio, mixing the reinforced fibers and the plasticizer, and dispersing by using a mechanical stirring or ultrasonic dispersing instrument;
(2) mixing the mixture with heat insulating filler, opacifier, adhesive, plasticizer and performance additive in a stirrer, and adding water for mixing to obtain pug;
(3) the pug is prepared into plates with different sizes by a compression molding process, and the plates are dried and vacuum-packaged by using films or tinfoil.
7. The method for preparing a high-strength nano insulation board according to claim 6, wherein the mixing time is 1-3 h.
8. The method for preparing a high-strength nano insulation board according to claim 6, wherein the mixing time is 20-60 min.
9. The method for preparing a high-strength nano insulation board according to claim 6, wherein the drying temperature is 100-150 ℃.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111487458.0A CN114349521B (en) | 2021-12-07 | 2021-12-07 | High-strength nano heat-insulating plate and preparation method thereof |
PCT/CN2022/119193 WO2023103510A1 (en) | 2021-12-07 | 2022-09-16 | High-strength nano heat insulation plate and preparation method therefor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111487458.0A CN114349521B (en) | 2021-12-07 | 2021-12-07 | High-strength nano heat-insulating plate and preparation method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114349521A true CN114349521A (en) | 2022-04-15 |
CN114349521B CN114349521B (en) | 2023-04-11 |
Family
ID=81096824
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111487458.0A Active CN114349521B (en) | 2021-12-07 | 2021-12-07 | High-strength nano heat-insulating plate and preparation method thereof |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN114349521B (en) |
WO (1) | WO2023103510A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023103510A1 (en) * | 2021-12-07 | 2023-06-15 | 南京钢铁股份有限公司 | High-strength nano heat insulation plate and preparation method therefor |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4363738A (en) * | 1979-10-18 | 1982-12-14 | Grunzweig + Hartmann Und Glasfaser Ag | Process for making a thermal insulating body |
US6180927B1 (en) * | 1996-10-24 | 2001-01-30 | Wacker-Chemie Gmbh | Heat insulating moulded body and process for producing the same |
CN101671158A (en) * | 2008-09-10 | 2010-03-17 | 上海船舶工艺研究所 | Silicon dioxide heat insulator and preparation method thereof |
CN104973868A (en) * | 2014-04-14 | 2015-10-14 | 郑州东方炉衬材料有限公司 | High-strength and high-aluminum light heat-insulation and fire-resistant brick and production method thereof |
WO2019222793A1 (en) * | 2018-05-19 | 2019-11-28 | Cbg Systems International Pty Ltd | A thermal and/or fire resistant panel, a mounting assembly, and a kit |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114349521B (en) * | 2021-12-07 | 2023-04-11 | 南京钢铁股份有限公司 | High-strength nano heat-insulating plate and preparation method thereof |
-
2021
- 2021-12-07 CN CN202111487458.0A patent/CN114349521B/en active Active
-
2022
- 2022-09-16 WO PCT/CN2022/119193 patent/WO2023103510A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4363738A (en) * | 1979-10-18 | 1982-12-14 | Grunzweig + Hartmann Und Glasfaser Ag | Process for making a thermal insulating body |
US6180927B1 (en) * | 1996-10-24 | 2001-01-30 | Wacker-Chemie Gmbh | Heat insulating moulded body and process for producing the same |
CN101671158A (en) * | 2008-09-10 | 2010-03-17 | 上海船舶工艺研究所 | Silicon dioxide heat insulator and preparation method thereof |
CN104973868A (en) * | 2014-04-14 | 2015-10-14 | 郑州东方炉衬材料有限公司 | High-strength and high-aluminum light heat-insulation and fire-resistant brick and production method thereof |
WO2019222793A1 (en) * | 2018-05-19 | 2019-11-28 | Cbg Systems International Pty Ltd | A thermal and/or fire resistant panel, a mounting assembly, and a kit |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023103510A1 (en) * | 2021-12-07 | 2023-06-15 | 南京钢铁股份有限公司 | High-strength nano heat insulation plate and preparation method therefor |
Also Published As
Publication number | Publication date |
---|---|
WO2023103510A1 (en) | 2023-06-15 |
CN114349521B (en) | 2023-04-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107698266B (en) | Hot-blast stove pipeline sealing material and preparation method thereof | |
CN107573098B (en) | light castable for sintering ignition furnace | |
CN111704466B (en) | Silicon carbide-magnesium aluminate spinel-aluminum composite refractory material | |
CN108516845A (en) | A kind of oxidation chromium composite spinelle brick and preparation method thereof | |
CN106145976B (en) | Andalusite-mullite-silicon carbide brick for cement kiln and preparation method thereof | |
CN113087504A (en) | High-thermal-conductivity compact silica brick and preparation method thereof | |
CN115321956B (en) | High-temperature liquid phase toughened magnesia carbon brick and preparation method thereof | |
CN104311040A (en) | Powder for preparing magnesium-silicon hard insulation board, magnesium-silicon hard insulation board and preparation method thereof | |
CN103030413A (en) | Method for preparing corundum mullite crucible | |
CN114349521B (en) | High-strength nano heat-insulating plate and preparation method thereof | |
CN115417661A (en) | Tundish dry material, tundish working lining and preparation method thereof | |
CN110183213B (en) | Tundish dry-type working lining added with waste refractory material and preparation method thereof | |
CN113968724B (en) | Metal modified magnesia, low-carbon converter magnesium sliding plate and preparation method thereof | |
CN113896563A (en) | Method for preparing high-strength foamed ceramic material by using boric sludge and foamed ceramic material | |
CN102807380B (en) | Magnesia-carbon castable and preparation method thereof | |
CN103159449A (en) | Heat-resistant concrete prepared by blast furnace dry slag | |
CN102261845A (en) | Heat insulation integral composite brick with corundum-mullite structure and preparation method | |
CN113087538B (en) | Steel ladle working lining prefabricated brick containing microporous aggregate | |
JP2024540490A (en) | High strength nano insulation board and its manufacturing method | |
CN115093238B (en) | Refractory castable for tapping channel of submerged arc furnace and preparation method thereof | |
CN118084519B (en) | Refractory and heat-insulating aluminum silicate ceramic fiber coating and preparation method thereof | |
CN117401989B (en) | Aluminum silicate light refractory brick and preparation method thereof | |
CN116041068B (en) | Antioxidant silicon oxynitride combined silicon carbide brick for low-oxygen copper rod smelting furnace | |
CN117209259B (en) | Aluminum-silicon composite prefabricated member and preparation method thereof | |
CN112225536B (en) | Anhydrous stemming for ferrosilicon ore heating furnace |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |