CN114349343B - Nitrate-free environment-friendly cast iron matt glaze and preparation method thereof - Google Patents

Nitrate-free environment-friendly cast iron matt glaze and preparation method thereof Download PDF

Info

Publication number
CN114349343B
CN114349343B CN202210104451.4A CN202210104451A CN114349343B CN 114349343 B CN114349343 B CN 114349343B CN 202210104451 A CN202210104451 A CN 202210104451A CN 114349343 B CN114349343 B CN 114349343B
Authority
CN
China
Prior art keywords
parts
nitrate
cast iron
matt glaze
carbonate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210104451.4A
Other languages
Chinese (zh)
Other versions
CN114349343A (en
Inventor
汤上
李金铭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hunan Xinnuo Technology Co ltd
Original Assignee
Hunan Xinnuo Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hunan Xinnuo Technology Co ltd filed Critical Hunan Xinnuo Technology Co ltd
Priority to CN202210104451.4A priority Critical patent/CN114349343B/en
Publication of CN114349343A publication Critical patent/CN114349343A/en
Application granted granted Critical
Publication of CN114349343B publication Critical patent/CN114349343B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

The invention discloses a nitrate-free environment-friendly cast iron matt glaze and a preparation method thereof. The enamel comprises the following components in parts by mass: 10-13 parts of quartz, 5-7 parts of borax zero water, 1-3 parts of titanium dioxide, 12-15 parts of magnesium carbonate, 6-8 parts of lithium carbonate, 11-14 parts of aluminum hydroxide and 9-12 parts of calcium carbonate. The raw materials are uniformly mixed according to the proportion, and are melted at 1230+/-10 ℃ and pure oxygen, and the sintering temperature of the finished product is 740-780 ℃. The formula of the invention does not contain nitrate, thus fundamentally solving the problem that the existing cast iron matt glaze generates Nitrogen Oxides (NO) in the production process x ) The gas discharge pollutes the environment.

Description

Nitrate-free environment-friendly cast iron matt glaze and preparation method thereof
Technical Field
The invention belongs to the technical field of enamel, and particularly relates to nitrate-free environment-friendly cast iron matt glaze and a preparation method thereof.
Background
The enamel glaze is prepared with refractory feldspar, quartz and other material, borax, sodium nitrate, potassium nitrate, sodium carbonate and other fusible chemical material, non-ferrous metal oxide and other characteristic material, and through compounding in certain proportion, high temperature smelting, and rapid cooling into granular or sheet borosilicate glass.
The introduction of nitrate (sodium nitrate, potassium nitrate, etc.) as an oxidizing agent and a fluxing agent into enamel has been a common knowledge for the industry and is an indispensable raw material for enamel in the traditional enamel theory. Up to now, no safe, colorless, reasonably priced raw material with both oxidizing and fluxing properties has been available to replace nitrate. Production practices have long proven that nitrates (especially alkali metal nitrates) are indeed indispensable raw materials in enamel glazes.
In the high-temperature melting process of enamel glaze, a series of complex physical and chemical reactions are carried out between the raw materials. Nitrate has good effect in enamel glaze, but can decompose to generate a large amount of nitrogen oxides at high temperature, so as to pollute the atmosphere. The nitrogen oxide exceeds the national emission standard by more than 40 times, and if the converter is adopted for production, the instantaneous release concentration of the nitrogen oxide exceeds the national standard by hundreds of thousands times. It is known that nitrogen oxides are a main factor of acid rain generated in air, and as environmental awareness of people is enhanced, the harm of nitrogen oxides released by nitrate in enamel production to the environment is increasingly attracting high attention from all parties.
Therefore, the standard emission of the nitrogen oxides and the improvement of the environment are the indistinct social responsibility and the necessary trend of the social and economic development of enterprises, and are the necessary choice for the survival of the enterprises. The applicant starts to research the nitrate removal amount in the enamel glaze from 2018, ensures that nitrate is not used or is less used as much as possible on the premise of not affecting the product performance, and ensures that the waste gas in the enamel glaze production process reaches the standard and is discharged by other measures.
The reduction of the emission of nitrogen oxides in the enamel production process mainly comprises three technical routes: firstly, nitrate is removed or reduced from the source, secondly, nitrogen oxides generated by air in the high-temperature state in the melting process are removed, and thirdly, the emission of the nitrogen oxides is reduced from treatment facilities, so that the national emission standard is achieved.
Prior art has also been developed to date for the simple removal of nitrate in enamel formulations, but if nitrate is removed purely for the purpose of nitrate removal, the immediate face is the need to sacrifice to some extent the quality of the product, since the fluxing and oxidizing properties of the corresponding nitrate are not correspondingly complemented, namely: on one hand, the fluxing agent in the porcelain glaze formula is reduced, and the flatness, leveling property and expansion coefficient of the porcelain surface of the porcelain glaze product are directly affected; on the other hand, since nitrate is oxidative, removal of nitrate during enamel melting results in reduction of part of the metal oxides in the enamel formulation, and thus enamel color development and adhesion properties are affected.
From the perspective of fluxing agent, the compound salt is used for replacing nitrate to be used as a raw material formula of the porcelain glaze, and the traditional melting process is used for melting, so that the fluxing effect is hopefully replaced. However, the use of nitrate removal results in a reduction of the oxidizing atmosphere during the melting of the enamel, which results in a reduction of the corresponding metal oxide fraction, which has an effect on both the hue and the adhesion of the enamel product. Therefore, after nitrate is removed, the original performance of the enamel product is maintained, and the fluxing effect and the oxidation effect are supplemented simultaneously.
The specific application of nitrate in enamel is mainly sodium nitrate and potassium nitrate, and under the condition of high temperature, the nitrate has good oxidation effect, so that the oxide can be ensured not to be reduced into simple substance in the melting process, and meanwhile, common nitrate sodium nitrate and potassium nitrate are decomposed at high temperature to obtain product Na 2 O and K 2 O has good fluxing action.
Taking sodium nitrate commonly used in the traditional nitrate-containing cast iron enamel glaze as an example, the chemical reaction of nitrate in the enamel glaze production is as follows:
the nitrate is decomposed to generate nitrite when heating and releases oxygen, thus preventing the metal oxide from generating reduction reaction when melting, leading the metal oxide to be converted into low valence state and even reduced into simple substance metal, thereby changing the components, physical and chemical properties and technological properties of the enamel glaze.
There have been studies and studies on partial nitrate removal. Chinese invention CN201810677390.4 provides a preparation technique of phosphosilicate enamel, chinese invention CN201010608133.9 discloses a high toughness enamel glaze, which is represented by them, and all are obtained by directly mixing various oxides and melting, so as to avoid nitrate use. This may be feasible for theoretical studies. However, under the prior art conditions, na 2 O and K 2 O has no industrial product, and has extremely active activity, poor stability and difficult storage stability. Therefore, the use of oxides such as sodium oxide and potassium oxide as raw materials is not practical because industrial production is not currently possible. Chinese invention CN201310166353.4 discloses a high and low temperature resistant enamel for enamel, the formulation of which does not involve nitrate, but introduces heavy metal lead for improving the quality of the product and reducing sintering points, which completely breaks the safety of daily applicationThe requirement is also industry forbidden, and meanwhile, the method also relates to the use of a large amount of sulfate, and even if the sulfate content is low, the existence of the sulfate is extremely likely to cause explosion of a quenching link, so that the basic requirement of safe production is violated. In addition, the borate content in the formula is low, and the basic requirements of the enamel industry are not met. That is, the invention claims to be applicable to enamels, and in practice, the conditions of enamels are not reached even if the aforementioned drawbacks are not considered. The invention CN201711361365.7 discloses a matte sand-lined enamel core glaze and a production method thereof, wherein the core glaze does not seem to involve the use of nitrate, but is essentially a matting agent, and the matting purpose of the glaze is achieved by combining with the real glaze, so that the core glaze is not an independent glaze and cannot be used independently. Furthermore, in the "preliminary practice of nitrate-free enamel glaze" (Xie Xuexin, glass and enamel 2007.35 (1)) this document uses a method of increasing the air flow rate for the purpose of enhancing the oxidation, although the use of nitrate is not involved, the starting point is not to reduce nitrogen oxides but to solve the problem of sufficient oxidation of Ti-containing overglazes, for which purpose it is achieved by means of a technique of increasing the air flow rate. However, the air flow rate is increased, so that the melting furnace has obvious cooling effect, the reaction temperature of the melting furnace needs to be increased by increasing energy consumption in order to meet the requirement of the melting furnace, and a large amount of nitrogen is contained in the air, so that more nitrogen oxides can be generated by introducing a large amount of air under the high-temperature effect. Research practice shows that the empty firing melting furnace can cause the content of nitrogen oxides to exceed the national emission standard by more than 2 times. The result is even more conceivable if a large flow of air is introduced. Therefore, this document, although avoiding the use of nitrates, eventually aggravates the production of nitrogen oxides, contrary to the aim of reducing or eliminating them.
In summary, in enamel research, nitrate is removed to improve environmental benefit, and meanwhile, the excellent quality of enamel products can be maintained, so that the method is significant and difficult in task.
Disclosure of Invention
The first aim of the invention is to provide the nitrate-free environment-friendly cast iron matt glaze without reducing various performance indexes of the product aiming at the environmental protection problem existing in the traditional nitrate-containing cast iron enamel glaze.
The invention relates to a nitrate-free environment-friendly cast iron overglaze, which comprises the following components in percentage by weight: quartz, borax zero water, titanium dioxide, magnesium carbonate, lithium carbonate, aluminum hydroxide and calcium carbonate; wherein, the mass parts of each component are respectively: 10-13 parts of quartz, 5-7 parts of borax zero water, 1-3 parts of titanium dioxide, 12-15 parts of magnesium carbonate, 6-8 parts of lithium carbonate, 11-14 parts of aluminum hydroxide and 9-12 parts of calcium carbonate.
Preferably, the mass parts of the components are as follows: 12.8 parts of quartz, 6 parts of borax zero water, 2.5 parts of titanium dioxide, 14.8 parts of magnesium carbonate, 7 parts of lithium carbonate, 13.8 parts of aluminum hydroxide and 11.5 parts of calcium carbonate.
Specifically, in the quartz, sio 2 Comprises the following components in percentage by mass: sio (Sio) 2 ≥99%。
Specifically, the magnesium carbonate raw material is required to be prepared from magnesium oxide generated after pyrolysis by the following mass percent: mgO is more than or equal to 47.8 percent.
The second object of the invention is to provide a method for preparing the nitrate-free environment-friendly cast iron matt glaze.
The preparation method of the nitrate-free environment-friendly cast iron matt glaze comprises the following steps:
(1) Weighing the following raw materials in parts by mass;
10-13 parts of quartz, 5-7 parts of borax zero water, 1-3 parts of titanium dioxide, 12-15 parts of magnesium carbonate, 6-8 parts of lithium carbonate, 11-14 parts of aluminum hydroxide and 9-12 parts of calcium carbonate;
(2) Stirring and mixing the raw materials in the step (1) uniformly;
(3) Adding the uniformly mixed materials into a melting furnace, melting under the pure oxygen condition, and controlling the melting temperature at 1230+/-10 ℃;
(4) Obtaining borosilicate glass body after the materials in the step (3) are completely melted, drilling the melted borosilicate glass body, and rapidly drawing glass filaments with the length of 1.2-1.5 m for detection, wherein the detection requirements are as follows: the melting is completed within 1 meter of the glass fiber without knots;
(5) And (5) quenching the melted borosilicate glass body to obtain the product.
Specifically, the quenching in the step (5) is a water quenching or tabletting process method.
The third object of the invention is to provide the application of the nitrate-free environment-friendly cast iron matt glaze, namely the application to a blank taking cast iron as a matrix, wherein the sintering temperature of a finished product is 740-780 ℃.
The invention has the beneficial effects that:
at high temperature or by discharge, nitrogen and oxygen can be combined into NO x . Regarding NO x The generation mechanism of (2) is N in air at high temperature 2 NO is formed by oxidation, and the rate of formation is greatly dependent on the gas concentration and combustion temperature. Practice shows that the temperature reaches above 1000 ℃, and the empty firing melting furnace can also lead to the generation of nitrogen oxides with higher content. Therefore, pure oxygen is adopted to replace air, so that on one hand, the oxidizing atmosphere in the melting process can be increased, and on the other hand, the nitrogen oxide generated in the combustion process is emitted in a zero way.
In addition, other fluxing agents which do not contain nitrate are added in the formula, or the dosage of other fluxing agent components is adjusted, so that even if the fluxing agent which does not contain nitrate is used in enamel glaze, the melting can be completed according to the requirement. The method is a key technical innovation point in the invention, namely, after nitrate is removed, fluxing property in the enamel can still be ensured.
The nitrate-free environment-friendly cast iron matt glaze and the preparation method thereof, provided by the invention, can be used for removing nitrate from enamel glaze, and can realize industrialization, so that the problem that the environment is polluted by nitric oxide discharged in the production process of the enamel glaze is solved, and the original physicochemical properties of the enamel glaze can be kept unchanged. Experimental practice proves that when 80% of the products in the series of enamel glaze manufacturers of the applicant do not contain nitrate, the residual approximately 20% of the products can not completely remove nitrate, but the use amount of nitrate can be reduced by more than 50%. The nitrate consumption is reduced to about 100 tons from 1000 tons in the original year, and the reduction rate is close to 85 percent. Only nitrate removal directly reduces 500 tons of nitrogen oxide discharge per year, and does not include the discharge of nitrogen in air converted into nitrogen oxide. And the performance (porcelain surface, luster, firing temperature) of the product after nitrate removal is unchanged, and the quality detection requirement of the national enamel product is met. Therefore, the technical scheme of the invention has extremely important environmental benefit, social benefit and popularization and application significance.
Drawings
FIG. 1 is a photograph of the cast iron matt glaze prepared in example 1 of the present invention applied to cast iron enamel glazing panels.
Fig. 2, 3 and 4 show the first, second and third pages of the test report for the cast iron matte glaze application prepared in example 2 of the present invention.
Detailed Description
The present invention will be described in further detail with reference to specific experimental examples.
The equipment used in the embodiment of the invention is as follows:
and (3) batching: a full-automatic batching and mixing system is adopted. The system is fully-automatic computer control and has the characteristics of accurate weighing, uniform mixing and high batching efficiency.
Melting: an automatic feeding system, a pure oxygen combustion system and an automatic discharging system are adopted. Since the effect of the oxidizing agent is removed after the nitrate is removed, the combustion condition of the furnace is improved, and pure oxygen combustion is changed, so that the effect of the oxidizing agent meets the requirement even though the nitrate is removed. This is also a key point in the present invention, namely the removal of nitrate, but the performance of the oxidizing agent is not altered.
And (3) packaging: an automatic packaging system is employed.
In the raw materials used in the embodiment of the invention, sio in quartz 2 Comprises the following components in percentage by mass: sio (Sio) 2 99% or more; the magnesium carbonate raw material is required to be prepared by the following steps of: mgO is more than or equal to 47.8 percent. OthersThe purity of the raw materials meets the requirements of industrial grade.
Example 1:
(1) Weighing the following raw materials in parts by mass:
quartz 12.8KG, borax zero water 5KG, titanium dioxide 2.5KG, magnesium carbonate 14.8KG, lithium carbonate 8KG, aluminum hydroxide 13.8KG and calcium carbonate 11.5KG.
(2) The raw materials are stirred and mixed uniformly.
(3) And adding the uniformly mixed materials into a melting furnace, and melting under the pure oxygen condition, wherein the melting temperature is controlled to be 1230+/-10 ℃.
(4) Obtaining borosilicate glass body after the materials are completely melted, drilling the melted borosilicate glass body, and rapidly drawing the borosilicate glass body into glass filaments of 1.2-1.5 meters for detection, wherein the detection requirements are as follows: the melting is completed within 1 meter of the glass fiber without knots.
(5) And (3) quenching the melted borosilicate glass body (water quenching) to obtain the product.
Example 2:
the procedure of this example was essentially the same as that of example 1, except that:
the mass parts of the components in the step (1) are as follows: 12.8KG of quartz, 6KG of borax zero water, 2.5KG of titanium dioxide, 14.8KG of magnesium carbonate, 7KG of lithium carbonate, 13.8KG of aluminum hydroxide and 11.5KG of calcium carbonate.
In the step (5), the molten borosilicate glass body is quenched by adopting a water quenching process.
Example 3:
the procedure of this example was essentially the same as that of example 1, except that:
the mass parts of the components in the step (1) are as follows: quartz 12.8KG, borax zero water 7KG, titanium dioxide 2.5KG, magnesium carbonate 14.8KG, lithium carbonate 6.5KG, aluminum hydroxide 13.8KG, and calcium carbonate 11.5KG.
Example 4:
the procedure of this example was essentially the same as that of example 1, except that:
the mass parts of the components in the step (1) are as follows: quartz 10KG, borax zero water 5KG, titanium dioxide 1KG, magnesium carbonate 12KG, lithium carbonate 6KG, aluminum hydroxide 11KG and calcium carbonate 9KG.
Example 5:
the procedure of this example was essentially the same as that of example 1, except that:
the mass parts of the components in the step (1) are as follows: quartz 13KG, borax zero water 7KG, titanium dioxide 3KG, magnesium carbonate 15KG, lithium carbonate 8KG, aluminum hydroxide 14KG and calcium carbonate 12KG.
The product prepared by the invention is applied to a blank taking cast iron as a matrix, and the sintering temperature of the finished product is 740-780 ℃.
Referring to fig. 1, the cast iron matt glaze prepared in the embodiment 1 of the invention has smooth and fine porcelain surface, uniform and beautiful color and fully meets the requirements of users.
Referring to FIG. 2, a test report for the matte application of cast iron prepared in example 2 of the present invention is shown. The detection unit is national glasses and glass detection center.
Experiments and detection results prove that the nitrate-free environment-friendly cast iron matt glaze produced by the method has NO nitrogen oxide in the preparation process, various properties (porcelain surface, gloss, firing temperature) and the like of the obtained product all meet the requirements of the cast iron matt glaze, the purpose of removing nitrate from the cast iron matt glaze is realized, and the problem that the Nitrogen Oxide (NO) is generated in the production and processing processes of the existing cast iron matt glaze is fundamentally solved x ) The technical problem of environmental pollution caused by gas discharge.

Claims (7)

1. The nitrate-free environment-friendly cast iron matt glaze is characterized by comprising the following components in percentage by weight: quartz, borax zero water, titanium dioxide, magnesium carbonate, lithium carbonate, aluminum hydroxide and calcium carbonate; wherein, the mass parts of each component are respectively: 10-13 parts of quartz, 5-7 parts of borax zero water, 1-3 parts of titanium dioxide, 12-15 parts of magnesium carbonate, 6-8 parts of lithium carbonate, 11-14 parts of aluminum hydroxide and 9-12 parts of calcium carbonate.
2. The nitrate-free green cast iron matt glaze according to claim 1, characterized in that: the weight portions of the components are as follows: 12.8 parts of quartz, 6 parts of borax zero water, 2.5 parts of titanium dioxide, 14.8 parts of magnesium carbonate, 7 parts of lithium carbonate, 13.8 parts of aluminum hydroxide and 11.5 parts of calcium carbonate.
3. The nitrate-free green cast iron matt glaze according to claim 1, characterized in that: in the quartz, sio 2 Comprises the following components in percentage by mass: sio (Sio) 2 ≥99%。
4. The nitrate-free green cast iron matt glaze according to claim 1, characterized in that: the magnesium carbonate raw material is required to be prepared by the following steps of: mgO is more than or equal to 47.8 percent.
5. A method for preparing the nitrate-free environment-friendly cast iron matt glaze according to claim 1, which is characterized by comprising the following steps:
(1) Weighing the following raw materials in parts by mass;
10-13 parts of quartz, 5-7 parts of borax zero water, 1-3 parts of titanium dioxide, 12-15 parts of magnesium carbonate, 6-8 parts of lithium carbonate, 11-14 parts of aluminum hydroxide and 9-12 parts of calcium carbonate;
(2) Stirring and mixing the raw materials in the step (1) uniformly;
(3) Adding the uniformly mixed materials into a melting furnace, melting under the pure oxygen condition, and controlling the melting temperature at 1230+/-10 ℃;
(4) Obtaining borosilicate glass body after the materials in the step (3) are completely melted, drilling the melted borosilicate glass body, and rapidly drawing glass filaments with the length of 1.2-1.5 m for detection, wherein the detection requirements are as follows: the melting is completed within 1 meter of the glass fiber without knots;
(5) And (5) quenching the melted borosilicate glass body to obtain the product.
6. The method for preparing nitrate-free environment-friendly cast iron matt glaze according to claim 5, which is characterized in that: the quenching in the step (5) is a water quenching or tabletting process method.
7. Use of a nitrate-free green cast iron matt glaze according to claim 1, characterized in that: the method is applied to blanks taking cast iron as a matrix, and the sintering temperature of the finished product is 740-780 ℃.
CN202210104451.4A 2022-01-28 2022-01-28 Nitrate-free environment-friendly cast iron matt glaze and preparation method thereof Active CN114349343B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210104451.4A CN114349343B (en) 2022-01-28 2022-01-28 Nitrate-free environment-friendly cast iron matt glaze and preparation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210104451.4A CN114349343B (en) 2022-01-28 2022-01-28 Nitrate-free environment-friendly cast iron matt glaze and preparation method thereof

Publications (2)

Publication Number Publication Date
CN114349343A CN114349343A (en) 2022-04-15
CN114349343B true CN114349343B (en) 2024-03-01

Family

ID=81094276

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210104451.4A Active CN114349343B (en) 2022-01-28 2022-01-28 Nitrate-free environment-friendly cast iron matt glaze and preparation method thereof

Country Status (1)

Country Link
CN (1) CN114349343B (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101921063A (en) * 2010-08-05 2010-12-22 奇瑞汽车股份有限公司 Enamel and preparation method thereof
CN101967042A (en) * 2010-06-29 2011-02-09 蔡文仁 Electrostatic enamel powder and preparation method thereof
CN102659318A (en) * 2012-04-20 2012-09-12 湖南信诺颜料科技有限公司 Cracking preventing porcelain glaze of enamel and preparation of cracking preventing porcelain glaze
CN103693850A (en) * 2013-12-09 2014-04-02 常熟市永达化工设备厂 Preparation technology of nanocrystalline enamel
CN107892479A (en) * 2017-12-18 2018-04-10 娄底湘信新材料科技有限公司 A kind of matt sand streak vitreous enamel core glaze and production method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101967042A (en) * 2010-06-29 2011-02-09 蔡文仁 Electrostatic enamel powder and preparation method thereof
CN101921063A (en) * 2010-08-05 2010-12-22 奇瑞汽车股份有限公司 Enamel and preparation method thereof
CN102659318A (en) * 2012-04-20 2012-09-12 湖南信诺颜料科技有限公司 Cracking preventing porcelain glaze of enamel and preparation of cracking preventing porcelain glaze
CN103693850A (en) * 2013-12-09 2014-04-02 常熟市永达化工设备厂 Preparation technology of nanocrystalline enamel
CN107892479A (en) * 2017-12-18 2018-04-10 娄底湘信新材料科技有限公司 A kind of matt sand streak vitreous enamel core glaze and production method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
无焰纯氧燃烧技术在搪瓷釉料窑炉中的应用;刘继雄 等;玻璃与搪瓷;第43卷(第5期);第25-29、33页 *

Also Published As

Publication number Publication date
CN114349343A (en) 2022-04-15

Similar Documents

Publication Publication Date Title
CN114409257B (en) Nitrate-free environment-friendly steel plate enamel medium-temperature titanium creamy yellow overglaze and preparation method thereof
CN114368911B (en) Nitrate-free environment-friendly steel plate enamel low-temperature pearlescent glaze and preparation method thereof
CN114292024A (en) Nitrate-free environment-friendly steel plate enamel high-temperature titanium dioxide overglaze and preparation method thereof
CN114349343B (en) Nitrate-free environment-friendly cast iron matt glaze and preparation method thereof
CN114213014B (en) Nitrate-free environment-friendly steel plate enamel matt glaze and preparation method thereof
CN114315144B (en) Nitrate-free environment-friendly cast iron enamel titanium white overglaze and preparation method thereof
CN114368908B (en) Environment-friendly steel plate enamel Wen Timu primer without nitrate and preparation method thereof
CN114409256B (en) Nitrate-free environment-friendly cast iron enamel high-temperature ground glaze and preparation method thereof
CN114315150B (en) Nitrate-free environment-friendly steel plate enamel low-temperature acid-resistant transparent glaze and preparation method thereof
CN114394749B (en) Nitrate-free environment-friendly steel plate enamel low-temperature titanium cream-colored overglaze and preparation method thereof
CN114368906B (en) Nitrate-free environment-friendly cast iron enamel low-temperature ground coat and preparation method thereof
CN114368913B (en) Nitrate-free environment-friendly steel plate enamel high-temperature transparent glaze and preparation method thereof
CN114315149B (en) Nitrate-free environment-friendly steel plate enamel low Wen Taibai overglaze and preparation method thereof
CN114368912B (en) Nitrate-free environment-friendly steel plate enamel medium-temperature acid-resistant transparent glaze and preparation method thereof
CN114368905B (en) Nitrate-free environment-friendly steel plate enamel Gao Wenti molybdenum primer and preparation method thereof
CN114368907B (en) Nitrate-free environment-friendly steel plate enamel low Wen Timu primer and preparation method thereof
CN114315145B (en) Nitrate-free environment-friendly steel plate enamel titanium lake blue overglaze and preparation method thereof
CN114368909B (en) Wen Deyou in nitrate-free environment-friendly cast iron enamel and preparation method thereof
CN114538778B (en) Nitrate-free environment-friendly steel plate enamel sapphire blue overglaze and preparation method thereof
CN114213015B (en) Nitrate-free environment-friendly steel plate enamel high-temperature acid-resistant transparent glaze and preparation method thereof
CN114368904B (en) Nitrate-free environment-friendly cast iron enamel moderate-temperature acid-resistant ground coat and preparation method thereof
CN114394747B (en) Nitrate-free environment-friendly cast iron enamel low-temperature acid-resistant ground coat and preparation method thereof
CN114368910B (en) Nitrate-free environment-friendly steel plate enamel medium-temperature transparent glaze and preparation method thereof
CN114349347B (en) Nitrate-free environment-friendly steel plate enamel high-temperature titanium cream-colored overglaze and preparation method thereof
CN114315151B (en) Nitrate-free environment-friendly cast iron enamel transparent glaze and preparation method thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information
CB02 Change of applicant information

Address after: 411228 No. 1, Danfeng South Road, wujiaxiang Industrial Park, Xiangtan County, Xiangtan City, Hunan Province

Applicant after: Hunan Xinnuo Technology Co.,Ltd.

Address before: 411228 No. 1, Danfeng South Road, wujiaxiang Industrial Park, Xiangtan County, Xiangtan City, Hunan Province

Applicant before: SINOPIGMENT & ENAMEL CHEMICALS Ltd.

GR01 Patent grant
GR01 Patent grant