CN114347986B - Intelligent energy-saving and safety control method for new energy vehicle - Google Patents

Intelligent energy-saving and safety control method for new energy vehicle Download PDF

Info

Publication number
CN114347986B
CN114347986B CN202210084625.5A CN202210084625A CN114347986B CN 114347986 B CN114347986 B CN 114347986B CN 202210084625 A CN202210084625 A CN 202210084625A CN 114347986 B CN114347986 B CN 114347986B
Authority
CN
China
Prior art keywords
vehicle
collision time
saving
lasts
distance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210084625.5A
Other languages
Chinese (zh)
Other versions
CN114347986A (en
Inventor
朱武喜
林海巧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xiamen King Long United Automotive Industry Co Ltd
Original Assignee
Xiamen King Long United Automotive Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xiamen King Long United Automotive Industry Co Ltd filed Critical Xiamen King Long United Automotive Industry Co Ltd
Priority to CN202210084625.5A priority Critical patent/CN114347986B/en
Publication of CN114347986A publication Critical patent/CN114347986A/en
Application granted granted Critical
Publication of CN114347986B publication Critical patent/CN114347986B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/08Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
    • B60W30/09Taking automatic action to avoid collision, e.g. braking and steering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/02Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to ambient conditions
    • B60W40/06Road conditions
    • B60W40/064Degree of grip
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/10Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to vehicle motion
    • B60W40/105Speed

Abstract

The invention relates to an intelligent energy-saving and safety control method for a new energy vehicle, which can effectively improve the driving safety of the vehicle and achieve a certain energy-saving effect by judging the operation of a driver on an accelerator pedal, a brake pedal, a steering wheel and the like, combining information such as relative speed, relative distance, distance collision time and the like identified by a sensing module and identifying the current state of the vehicle and a road adhesion coefficient, adopting a calculation method of a reserved distance collision time threshold value suitable for different vehicle speeds and different relative speeds, and a control method of limiting an accelerator, recovering smooth control and designing a safety threshold value, and combining other reliability safety conditions to carry out comprehensive judgment and driving torque self-adaptive control.

Description

Intelligent energy-saving and safety control method for new energy vehicle
Technical Field
The invention relates to the technical field of new energy vehicle drive control, in particular to an intelligent energy-saving and safety control method for a new energy vehicle.
Background
The driving torque control of the new energy vehicle is directly related to the energy saving and the safety of the vehicle, and due to the large difference of the driving technologies of drivers, the running energy consumption of the vehicle is high and certain driving safety hazards exist in individual vehicles due to the fact that the following distance is too close, and the working conditions of rapid acceleration and rapid deceleration may exist in the actual driving process.
In order to solve the problems, the invention patent of the china with the application number of 201710787432.5 provides a vehicle energy-saving control method, a system and a vehicle, and the method and the system judge the current working condition area of the vehicle by acquiring the speed and position information of the vehicle, wherein the working condition area comprises an uphill road section and a downhill road section, and also acquires the throttle opening, the engine torque percentage, the battery health degree, the battery charge state and the like of the vehicle, if the set values corresponding to the uphill road section are respectively met, the generator is controlled to reduce the output voltage, and if the current vehicle is judged to be in the downhill road section, the generator is controlled to improve the output voltage. The invention mainly combines the current working condition area of the whole vehicle to intelligently control the generator to work as required, thereby achieving the effect of energy conservation. If the invention patent in china with the application number of 201810435004.0 provides a vehicle energy-saving system and an energy-saving method, driving data is acquired in real time through a data acquisition module, an energy-saving controller determines an energy-saving type corresponding to driving information according to a preset energy-saving type judgment rule, and human-computer interaction is used for reminding a driver of driving according to an energy-saving driving prompt. Further, as the invention patent of china with application number 202110492306.3, it provides a method and apparatus for controlling vehicle energy consumption, and an electric vehicle, by detecting the current road condition information of the vehicle, determining the energy saving level corresponding to the road condition information based on the road condition information, and then adjusting the torque of the vehicle based on the energy saving level.
The invention mainly controls the output voltage of the generator or adjusts the torque based on different road condition information so as to achieve the purpose of energy saving. However, the distance to the front vehicle cannot be detected in real time, and the influence of the road adhesion coefficient and the like cannot be considered, so that the driving safety of the vehicle cannot be improved, and a certain energy-saving effect cannot be achieved.
Disclosure of Invention
The invention provides an intelligent energy-saving and safety control method for a new energy vehicle, which aims to overcome the defects that the existing new energy vehicle is insufficient in comprehensive control on driving torque, cannot improve the driving safety of the vehicle and achieve a certain energy-saving effect and the like.
The invention adopts the following technical scheme:
an intelligent energy-saving and safety control method for a new energy vehicle comprises the following steps:
(1) The VCU receives the sensing module identification signal and the steering wheel turning angle signal through the CAN bus, detects a brake signal, an accelerator signal and a gear signal through a hard wire signal and acquires other state information of the vehicle;
(2) Identifying the road adhesion coefficient, and determining a reserved distance collision time threshold T1 adjusted by the road adhesion coefficient;
(3) Judging the effective condition of the function, which specifically comprises the following steps: the distance collision time is less than a reserved distance collision time threshold value T1 and lasts for a plurality of times, a driver does not step on a large accelerator and the opening of the accelerator is less than a set threshold value and lasts for a plurality of times, a sensing module signal does not have a sudden change, the vehicle speed is greater than the set threshold value and lasts for a plurality of times, the function quits for a plurality of times, the vehicle is in a normal driving mode, and the whole vehicle has no fault and no turning working condition;
(4) If the vehicle meets all the conditions in the step (3), the function is effective, the VCU of the vehicle controller controls the virtual accelerator opening limiting value to continuously reduce from the current actual accelerator opening value at a set change rate and sets a lower limit threshold, and the virtual accelerator opening limiting value and the current actual accelerator opening are reduced;
(5) Judging the function exit condition, specifically comprising: the distance collision time is greater than a reserved distance collision time threshold T2 and lasts for a plurality of times, a driver deeply steps on an accelerator for a plurality of times or a driver deeply steps on a brake pedal for a plurality of times, the sensing module signals suddenly change, the vehicle speed is less than the set threshold and lasts for a plurality of times, the vehicle is in an abnormal driving mode or has a whole vehicle fault, and the vehicle is in a turning working condition;
(6) And (5) if the vehicle meets any condition in the step (5), the function is quitted, and the vehicle control unit VCU controls the virtual accelerator opening limit to quickly recover the set change rate to the current actual accelerator opening value.
In a preferred embodiment, the sensing module identification signal includes a relative speed, a relative distance and a distance collision time between the vehicle and the preceding vehicle, and the other state information includes a vehicle speed and a driving mode of the vehicle.
In a preferred embodiment, the method for calculating the reserved time to collision threshold is to divide the difference between the estimated braking distance of the vehicle and the estimated braking distance of the preceding vehicle by the relative speed of the vehicle and the preceding vehicle, and reserve a certain time margin.
In a preferred embodiment, the road surface adhesion coefficient in the step (2) is identified according to a vehicle tire dynamic model and a non-linear estimation method; the reserved distance collision time threshold value needs to be properly adjusted according to different road adhesion coefficients; and multiplying the reserved distance collision time threshold by the road adhesion coefficient divided by the normal road adhesion coefficient calibration value to obtain a final reserved distance collision time threshold T1.
In a preferred embodiment, the reserved collision time threshold T2 is the sum of the reserved collision time threshold T1 and the set time margin.
In a preferred embodiment, the sensing module signal is not changed suddenly, which means that the relative distance change rate between the vehicle and the preceding vehicle is less than a set threshold value and lasts for a plurality of times, the direction is close, and the relative speed change rate is less than the set threshold value and lasts for a plurality of times.
In a preferred embodiment, the sudden change of the sensing module signal means that the relative distance change rate between the vehicle and the preceding vehicle is greater than a set threshold and lasts for a plurality of times, or the relative vehicle speed change rate is greater than a set threshold and lasts for a plurality of times.
As can be seen from the above description of the present invention, compared with the prior art, the present invention has the following advantages:
the invention judges the operation of a driver on an accelerator pedal, a brake pedal, a steering wheel and the like, combines the information of relative speed, relative distance, distance collision time and the like identified by a sensing module and the identification of the current state of the vehicle and road adhesion coefficient, adopts a calculation method of the threshold value of the reserved distance collision time suitable for different vehicle speeds and different relative speeds of the vehicle, and a control method of throttle limitation, smoothness recovery control and safety threshold value design, combines other reliability and safety conditions to carry out comprehensive judgment and driving torque self-adaptive control, and can effectively improve the driving safety of the vehicle and achieve certain energy-saving effect.
Drawings
FIG. 1 is a flow chart of an embodiment of the present invention.
FIG. 2 is a functional exit condition block diagram of the present invention.
Detailed Description
The following describes embodiments of the present invention with reference to the drawings. Numerous details are set forth below in order to provide a thorough understanding of the present invention, but it will be apparent to those skilled in the art that the present invention may be practiced without these details. Well-known components, methods and processes are not described in detail below.
The invention relates to an intelligent energy-saving and safety control method for a new energy vehicle, which carries out comprehensive judgment and driving torque self-adaptive control by judging the operation of a driver on an accelerator pedal, a brake pedal and a steering wheel and combining information such as relative speed, relative distance, distance collision time and the like identified by a sensing module and the identification of the current state of the vehicle and road adhesion coefficient, and comprises the following specific steps:
1. the VCU of the vehicle controller receives the relative speed, the relative distance and the distance collision time of the vehicle and the front vehicle, which are identified by the sensing module, through the CAN bus, receives a steering wheel corner signal sent by the steering wheel corner sensor, and detects a brake switch signal, a brake pedal opening signal, an accelerator pedal opening signal and a gear signal through hard wire signals to acquire state information of the vehicle, the driving mode and the like.
2. And (4) carrying out pavement adhesion coefficient identification, and determining a reserved distance collision time threshold T1 adjusted by the pavement adhesion coefficient.
The above-described identification of road adhesion coefficients is based on vehicle tire dynamics models and non-linear estimation methods. The method for calculating the reserved distance collision time threshold is to divide the difference between the estimated braking distance value of the vehicle and the estimated braking distance value of the front vehicle by the relative speed of the vehicle and the front vehicle and reserve a certain time margin.
The reserved distance collision time threshold value needs to be properly adjusted according to different road surface adhesion coefficients. Specifically, the reserved distance collision time threshold T1 in the embodiment of the present invention is calculated by multiplying the reserved distance collision time threshold by the road adhesion coefficient and dividing the road adhesion coefficient by the normal road adhesion coefficient calibration value.
3. And judging the effective condition of the function. The function validation conditions specifically include:
(1) And the distance collision time is less than a reserved distance collision time threshold value T1 and lasts for a certain time, and the distance collision time is the relative distance between the vehicle and the front vehicle divided by the relative speed between the vehicle and the front vehicle.
(2) The driver does not step on the brake pedal, and simultaneously the driver does not step on the accelerator greatly, and the opening degree of the accelerator is smaller than a set threshold value and lasts for a certain time.
(3) The signal of the sensing module does not change suddenly, the relative distance change rate is smaller than a set threshold value and lasts for a certain time, the direction is close, and the relative speed change rate is smaller than the set threshold value and lasts for a certain time.
(4) The vehicle speed is greater than a set threshold value and lasts for a certain time.
(5) In order to avoid frequent triggering, the function can be delayed for a certain time to enter again after exiting.
(6) The vehicle is in a normal driving mode and the whole vehicle has no fault.
(7) In order to avoid function unexpected effectiveness caused by false identification of the sensing module under a turning working condition, the sensing module can be effective under a set non-turning working condition; meanwhile, the vehicle is in a normal driving mode, and the whole vehicle has no fault.
4. And if the vehicle meets all the conditions in the third step, the function is effective, the vehicle control unit VCU controls the virtual accelerator opening limiting value to continuously reduce from the current actual accelerator opening value at a set change rate, and sets a lower limit threshold value, and the virtual accelerator opening limiting value and the current actual accelerator opening value are reduced.
And if the vehicle cannot meet all the conditions of the step three, repeating the step two and the step three.
5. And judging a function quit condition. The function exit condition specifically includes:
(1) The distance collision time is greater than a reserved distance collision time threshold T2 and lasts for a certain time, and the reserved distance collision time threshold T2 is the sum of the reserved distance collision time threshold T1 and the set time margin.
(2) The driver deeply steps on the accelerator for a certain time longer than a set threshold value, or the driver deeply steps on the brake pedal for a certain time longer than a set threshold value.
(3) The signal of the sensing module changes suddenly, and the relative distance change rate is greater than a set threshold value and lasts for a certain time, or the relative speed change rate is greater than the set threshold value and lasts for a certain time.
(4) The vehicle speed is less than the set threshold value and lasts for a certain time.
(5) The vehicle is in an abnormal driving mode or has a fault of the whole vehicle.
(6) The vehicle is in a turning condition.
6. And (5) if the vehicle meets any condition in the step (5), the function is quitted, and the VCU of the vehicle control unit controls the virtual accelerator opening limit to quickly recover to the current actual accelerator opening value at the set change rate. And if all the conditions are not met, continuing to keep the function in effect.
The certain time mentioned in the above steps can be set according to actual conditions, for example: when the reserved distance collision time threshold is calculated, a certain time margin is reserved, and the certain time can be 0.5-1s. And the other duration may be set to 0.5-2s, etc.
The above description is only an embodiment of the present invention, but the design concept of the present invention is not limited thereto, and any insubstantial modifications made by using the design concept should fall within the scope of infringing the present invention.

Claims (7)

1. The intelligent energy-saving and safety control method for the new energy vehicle is characterized by comprising the following steps of:
(1) The VCU receives the recognition signal of the sensing module and the steering wheel corner signal through the CAN bus, detects a brake signal, an accelerator signal and a gear signal through a hard wire signal and acquires other state information of the vehicle;
(2) Identifying the road adhesion coefficient, and determining a reserved distance collision time threshold T1 adjusted by the road adhesion coefficient;
(3) Judging the effective condition of the function, which specifically comprises the following steps: the distance collision time is less than a reserved distance collision time threshold value T1 and lasts for a plurality of times, a driver does not step on a large accelerator and the opening of the accelerator is less than a set threshold value and lasts for a plurality of times, a sensing module signal does not suddenly change, the vehicle speed is greater than the set threshold value and lasts for a plurality of times, the function quits for a plurality of times, the vehicle is in a normal driving mode, and the whole vehicle has no fault and is not in a turning working condition;
(4) If the vehicle meets all the conditions in the step (3), the function is effective, the VCU of the vehicle controller controls the virtual accelerator opening limiting value to continuously reduce from the current actual accelerator opening value at a set change rate and sets a lower limit threshold, and the virtual accelerator opening limiting value and the current actual accelerator opening are reduced;
(5) Judging a function exit condition, specifically comprising: the distance collision time is greater than a reserved distance collision time threshold T2 and lasts for a plurality of times, a driver deeply steps on an accelerator for a plurality of times or a driver deeply steps on a brake pedal for a plurality of times, the sensing module signals suddenly change, the vehicle speed is less than the set threshold and lasts for a plurality of times, the vehicle is in an abnormal driving mode or has a whole vehicle fault, and the vehicle is in a turning working condition;
(6) And (5) if the vehicle meets any condition in the step (5), the function is quitted, and the vehicle control unit VCU controls the virtual accelerator opening limit to quickly recover the set change rate to the current actual accelerator opening value.
2. The intelligent energy-saving and safety control method for the new energy vehicle as claimed in claim 1, wherein: the sensing module identification signal comprises the relative speed, the relative distance and the distance collision time of the vehicle and the front vehicle, and other state information comprises the vehicle speed and the driving mode of the vehicle.
3. The intelligent energy-saving and safety control method for the new energy vehicle as claimed in claim 1, wherein: the calculation method of the reserved distance collision time threshold is to divide the difference between the estimated value of the braking distance of the vehicle and the estimated value of the braking distance of the front vehicle by the relative speed of the vehicle and the front vehicle, and reserve a certain time margin at the same time.
4. The intelligent energy-saving and safety control method for the new energy vehicle as claimed in claim 3, wherein: the road adhesion coefficient in the step (2) is identified according to a vehicle tire dynamic model and a nonlinear estimation method; the reserved distance collision time threshold value needs to be properly adjusted according to different road adhesion coefficients; and multiplying the reserved distance collision time threshold by the road adhesion coefficient divided by the normal road adhesion coefficient calibration value to obtain a final reserved distance collision time threshold T1.
5. The intelligent energy-saving and safety control method for the new energy vehicle as claimed in claim 3, wherein: and the reserved distance collision time threshold T2 is the sum of the reserved distance collision time threshold T1 and a set time margin.
6. The intelligent energy-saving and safety control method for the new energy vehicle as claimed in claim 1, wherein: the sensing module signal has no sudden change, namely the relative distance change rate of the vehicle and the front vehicle is less than a set threshold value and lasts for a plurality of time, the direction of the vehicle is close to the direction of the front vehicle, and the relative speed change rate of the vehicle is less than the set threshold value and lasts for a plurality of time.
7. The intelligent energy-saving and safety control method for the new energy vehicle as claimed in claim 1, wherein: the sudden change of the sensing module signal means that the change rate of the relative distance between the vehicle and the front vehicle is greater than a set threshold value and lasts for a plurality of times, or the change rate of the relative vehicle speed is greater than the set threshold value and lasts for a plurality of times.
CN202210084625.5A 2022-01-25 2022-01-25 Intelligent energy-saving and safety control method for new energy vehicle Active CN114347986B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210084625.5A CN114347986B (en) 2022-01-25 2022-01-25 Intelligent energy-saving and safety control method for new energy vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210084625.5A CN114347986B (en) 2022-01-25 2022-01-25 Intelligent energy-saving and safety control method for new energy vehicle

Publications (2)

Publication Number Publication Date
CN114347986A CN114347986A (en) 2022-04-15
CN114347986B true CN114347986B (en) 2023-03-31

Family

ID=81094133

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210084625.5A Active CN114347986B (en) 2022-01-25 2022-01-25 Intelligent energy-saving and safety control method for new energy vehicle

Country Status (1)

Country Link
CN (1) CN114347986B (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06111200A (en) * 1992-09-30 1994-04-22 Mitsubishi Motors Corp Inter-vehicle distance alarm device
CN102069800A (en) * 2010-12-28 2011-05-25 奇瑞汽车股份有限公司 Vehicle running control method and control device
KR20150051548A (en) * 2013-11-04 2015-05-13 현대오트론 주식회사 Driver assistance systems and controlling method for the same corresponding to dirver's predisposition
CN105235681A (en) * 2015-11-11 2016-01-13 吉林大学 Vehicle rear-end collision preventing system and method based on road surface conditions
CN107264524A (en) * 2017-05-17 2017-10-20 吉利汽车研究院(宁波)有限公司 Intelligent lane change accessory system and intelligent lane change householder method based on data fusion
CN110979326A (en) * 2019-12-24 2020-04-10 武汉理工大学 Intelligent network-connected electric vehicle output torque calculation method
JP2020147142A (en) * 2019-03-13 2020-09-17 トヨタ自動車株式会社 Vehicular travel control apparatus
CN112078573A (en) * 2019-06-14 2020-12-15 比亚迪股份有限公司 Vehicle and anti-collision method and device of vehicle

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06111200A (en) * 1992-09-30 1994-04-22 Mitsubishi Motors Corp Inter-vehicle distance alarm device
CN102069800A (en) * 2010-12-28 2011-05-25 奇瑞汽车股份有限公司 Vehicle running control method and control device
KR20150051548A (en) * 2013-11-04 2015-05-13 현대오트론 주식회사 Driver assistance systems and controlling method for the same corresponding to dirver's predisposition
CN105235681A (en) * 2015-11-11 2016-01-13 吉林大学 Vehicle rear-end collision preventing system and method based on road surface conditions
CN107264524A (en) * 2017-05-17 2017-10-20 吉利汽车研究院(宁波)有限公司 Intelligent lane change accessory system and intelligent lane change householder method based on data fusion
JP2020147142A (en) * 2019-03-13 2020-09-17 トヨタ自動車株式会社 Vehicular travel control apparatus
CN112078573A (en) * 2019-06-14 2020-12-15 比亚迪股份有限公司 Vehicle and anti-collision method and device of vehicle
CN110979326A (en) * 2019-12-24 2020-04-10 武汉理工大学 Intelligent network-connected electric vehicle output torque calculation method

Also Published As

Publication number Publication date
CN114347986A (en) 2022-04-15

Similar Documents

Publication Publication Date Title
CN110155046B (en) Automatic emergency braking hierarchical control method and system
CN104627180B (en) A kind of half cruise active control system and its method
CN111196312B (en) Electric automobile steering control method and device, automobile and controller
CN107067753B (en) Automatic following driving method based on driving safety distance
CN107600070B (en) Control method and device of automatic emergency braking system, controller and automobile
US20110040467A1 (en) Adaptive cruise control system
CN105235681A (en) Vehicle rear-end collision preventing system and method based on road surface conditions
CN107161128A (en) A kind of control method of automobile abrupt slope slow-descending system
CN204506886U (en) A kind of half cruise active control system
CN111959294A (en) Energy recovery torque quitting control method and system, vehicle and storage medium
CN108859778B (en) New energy automobile regenerative braking control method and device
CN112078576A (en) Adaptive cruise control method for simulating driver characteristics based on fuzzy control
CN109017441A (en) A kind of adaptive ramp way control method of new-energy automobile
CN109808502B (en) Energy feedback quit control method suitable for pure electric vehicle
CN114056126B (en) Method and device for controlling longitudinal motion of electric vehicle based on deceleration strip detection
CN111516661A (en) Distributed anti-skid control method and device for railway vehicle
CN117131955B (en) Short-time vehicle speed prediction method considering multiple constraint conditions
CN114347986B (en) Intelligent energy-saving and safety control method for new energy vehicle
CN111661050A (en) Vehicle and braking torque control method thereof
CN114258365B (en) In-vehicle actuator control method and in-vehicle actuator control device
CN116853009A (en) Torque control method, torque control device, torque control equipment and vehicle
CN113442723B (en) Control method and device for preventing mistaken stepping on accelerator of vehicle and vehicle
JP5169539B2 (en) Downhill road speed control device
CN114475276A (en) Control method and system for torque of driving motor
CN111483444B (en) Vehicle, brake control method and device

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant