CN114337378B - Control method and control system of magnetic suspension pump - Google Patents
Control method and control system of magnetic suspension pump Download PDFInfo
- Publication number
- CN114337378B CN114337378B CN202111633954.2A CN202111633954A CN114337378B CN 114337378 B CN114337378 B CN 114337378B CN 202111633954 A CN202111633954 A CN 202111633954A CN 114337378 B CN114337378 B CN 114337378B
- Authority
- CN
- China
- Prior art keywords
- rotor
- control module
- control
- module group
- speed
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 72
- 239000000725 suspension Substances 0.000 title claims abstract description 25
- 238000005339 levitation Methods 0.000 claims abstract description 98
- 230000005540 biological transmission Effects 0.000 claims description 23
- 238000001514 detection method Methods 0.000 claims description 18
- 238000006073 displacement reaction Methods 0.000 claims description 14
- 238000004364 calculation method Methods 0.000 claims description 9
- 230000008859 change Effects 0.000 claims description 9
- 230000008569 process Effects 0.000 claims description 8
- 230000004044 response Effects 0.000 abstract description 4
- 230000003993 interaction Effects 0.000 description 5
- 238000004804 winding Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000011897 real-time detection Methods 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
Landscapes
- Magnetic Bearings And Hydrostatic Bearings (AREA)
- Control Of Positive-Displacement Pumps (AREA)
Abstract
Description
技术领域Technical field
本发明属于磁悬浮控制技术领域,具体涉及一种磁悬浮泵的控制方法及控制系统。The invention belongs to the technical field of magnetic levitation control, and specifically relates to a control method and control system for a magnetic levitation pump.
背景技术Background technique
磁悬浮泵是一种采用磁轴承作为转子支承的泵,转子和定子之间无机械接触,转子依靠磁力实现悬浮,具有密封性好、无磨损、寿命高等优点,在真空、辐射和禁止润滑剂介质污染等应用场合,具有传统机械泵无法比拟的优越性能。The magnetic levitation pump is a pump that uses magnetic bearings as the rotor support. There is no mechanical contact between the rotor and the stator. The rotor relies on magnetic force to achieve levitation. It has the advantages of good sealing, no wear and long life. It can be used in vacuum, radiation and prohibited lubricant media. In pollution and other applications, it has superior performance that traditional mechanical pumps cannot match.
磁悬浮泵和机械泵的转矩控制都是通过电机转子带动泵轮旋转来工作的,磁悬浮泵通过磁轴承实现转子的转动,而机械泵则是借助机械轴承实现转子旋转,两者转矩的控制都是通过变化的电流产生的旋转磁场来实现,而磁悬浮泵的悬浮力控制是通过调节悬浮绕组中电流的幅值和方向而实现。转子的径向悬浮一直是磁悬浮泵技术的重点研究方向,径向悬浮力的大小决定了转子的径向偏移程度,径向稳定性的强弱又决定了转子抵抗外界干扰的能力。磁悬浮泵的概念虽然近些年已提出,但目前国内关于磁悬浮泵的研究多处于理论阶段,其控制方法也存在诸多不足之处。在传统的控制方案中转矩绕组和悬浮绕组间磁链信息的传递会导致转子的悬浮性能和转矩性能产生相互制约,增加了控制算法的复杂程度,且多采用PID控制,控制方案单一,不能满足磁悬浮泵实际运行的需要,降低了控制模块组的灵活度。此外,传统的PID控制属于线性控制,难以适应对磁悬浮系统多变量、非线性的控制环境,而由单边磁拉力引起的正反馈进一步增加了位移控制模块组的不稳定性。因此,目前急需一种能提高转子动态特性,具有高精度、高灵活性的控制方法,来提高磁悬浮泵的工作性能。The torque control of magnetic levitation pumps and mechanical pumps both work by using the motor rotor to drive the pump wheel to rotate. The magnetic levitation pump realizes the rotation of the rotor through magnetic bearings, while the mechanical pump realizes the rotation of the rotor with the help of mechanical bearings. The torque of both is controlled. They are all realized by the rotating magnetic field generated by the changing current, and the levitation force control of the magnetic levitation pump is achieved by adjusting the amplitude and direction of the current in the levitation winding. The radial suspension of the rotor has always been a key research direction in magnetic levitation pump technology. The size of the radial suspension force determines the radial deflection of the rotor, and the strength of the radial stability determines the rotor's ability to resist external interference. Although the concept of magnetic levitation pump has been proposed in recent years, domestic research on magnetic levitation pump is mostly in the theoretical stage, and its control method also has many shortcomings. In the traditional control scheme, the transmission of flux linkage information between the torque winding and the suspension winding will cause the suspension performance and torque performance of the rotor to mutually restrict each other, which increases the complexity of the control algorithm. PID control is often used, and the control scheme is single. It cannot meet the actual operation needs of the magnetic levitation pump and reduces the flexibility of the control module group. In addition, traditional PID control is linear control and is difficult to adapt to the multi-variable, nonlinear control environment of the magnetic levitation system. The positive feedback caused by the unilateral magnetic pull further increases the instability of the displacement control module group. Therefore, there is an urgent need for a control method that can improve the dynamic characteristics of the rotor and has high precision and flexibility to improve the working performance of the magnetic levitation pump.
发明内容Contents of the invention
针对现有技术的不足,本发明提出一种根据转子的运行工况分别采用两种不同控制方案对转子悬浮力进行控制的磁悬浮泵的控制方法及控制系统,以增强转子的动态性能,避免单一控制方案带来的控制算法复杂、响应慢、功耗高的缺陷。In view of the shortcomings of the existing technology, the present invention proposes a control method and control system for a magnetic levitation pump that uses two different control schemes to control the levitation force of the rotor according to the operating conditions of the rotor, so as to enhance the dynamic performance of the rotor and avoid a single The control scheme brings the disadvantages of complex control algorithm, slow response, and high power consumption.
本发明一种磁悬浮泵的控制方法,具体如下:A method for controlling a magnetic levitation pump of the present invention is as follows:
在磁悬浮泵工作前,通过控制模块组设置磁悬浮泵系统中转子的转速ns;控制模块组判断设置的转速ns为低转速或高转速;当判断转速为低转速时,控制模块组采用线性控制方法计算转子的径向偏移量;当目标转速为高转速时,控制模块组采用仿人智能积分控制方法计算转子的径向偏移量;接着,通过控制模块组启动磁悬浮泵系统中的悬浮装置,使转子保持悬浮状态;此时,检测系统对转子的径向偏移量进行检测,并通过数据传输系统将转子的径向偏移量传输至控制模块组;控制模块组判断转子的径向偏移量rc是否满足对应控制方法的要求值,若不满足要求值,则控制模块组根据转速ns设置为低转速或高转速计算出径向悬浮力对应的控制量u,并将控制量u传输至PLC,PLC通过控制变频器使磁悬浮泵系统改变转子所受的径向悬浮力;然后,启动磁悬浮泵中旋转装置,驱动转子旋转;检测系统对转子的径向偏移量rc进行实时检测,并通过数据传输系统反馈至控制模块组;控制模块组根据磁悬浮泵系统中转子的转速ns,选择对应的控制方法计算出径向悬浮力对应的控制量u,使磁悬浮泵系统改变转子所受的径向悬浮力,实时对转子的径向偏移量rc进行控制调节。Before the maglev pump works, the control module group sets the rotor speed n s in the maglev pump system; the control module group determines whether the set speed n s is low speed or high speed; when the speed is judged to be low speed, the control module group uses linear The control method calculates the radial offset of the rotor; when the target speed is a high speed, the control module group uses the human-like intelligent integral control method to calculate the radial offset of the rotor; then, the control module group starts the magnetic levitation pump system The suspension device keeps the rotor in a suspended state; at this time, the detection system detects the radial offset of the rotor and transmits the radial offset of the rotor to the control module group through the data transmission system; the control module group determines the radial offset of the rotor. Whether the radial offset r c meets the required value of the corresponding control method. If it does not meet the required value, the control module group calculates the control quantity u corresponding to the radial suspension force according to the speed n s set to low speed or high speed, and The control quantity u is transmitted to the PLC, and the PLC controls the frequency converter to make the magnetic levitation pump system change the radial levitation force on the rotor; then, it starts the rotating device in the magnetic levitation pump to drive the rotor to rotate; it detects the radial offset of the rotor by the system. r c is detected in real time and fed back to the control module group through the data transmission system; the control module group selects the corresponding control method according to the rotation speed n s of the rotor in the magnetic levitation pump system to calculate the control quantity u corresponding to the radial levitation force, so that the magnetic levitation The pump system changes the radial suspension force on the rotor and controls and adjusts the radial offset r c of the rotor in real time.
优选地,所述的控制模块组中线性控制方法和仿人智能积分控制方法的控制过程,具体如下:Preferably, the control processes of the linear control method and the human-like intelligent integral control method in the control module group are as follows:
转子的径向悬浮力F与磁悬浮泵系统中悬浮系统电流I满足如下关系式:The radial levitation force F of the rotor and the levitation system current I in the magnetic levitation pump system satisfy the following relationship:
F=k·IF=k·I
其中,k为线性常量;Among them, k is a linear constant;
当转子的转速ns为低转速时,控制模块组采用线性控制方法调节转子的径向偏移量rc;控制模块组根据转子的实际径向偏移量rc计算出调节转子所需的径向悬浮力F,并根据上述公式计算出径向悬浮力F对应的电流I,通过电流I计算出控制量u0,控制模块组将控制量u0作为总控制量un传输至PLC中,PLC通过变频器控制磁悬浮泵系统,使磁悬浮泵系统改变转子所受的径向悬浮力F,调整转子直至转子的径向偏移量rc满足要求值需求;When the rotor speed n s is a low speed, the control module group uses a linear control method to adjust the radial offset r c of the rotor; the control module group calculates the amount of time required to adjust the rotor based on the actual radial offset r c of the rotor. The radial suspension force F is calculated according to the above formula, and the current I corresponding to the radial suspension force F is calculated. The control quantity u 0 is calculated through the current I. The control module group transmits the control quantity u 0 to the PLC as the total control quantity u n . , PLC controls the magnetic levitation pump system through the frequency converter, so that the magnetic levitation pump system changes the radial levitation force F on the rotor, and adjusts the rotor until the radial offset r c of the rotor meets the required value;
当转子的转速ns为高转速时,控制模块组采用仿人智能积分控制方法调节转子的径向偏移量rc;检测系统检测转子的径向偏移量rc,并计算径向偏移量rc与径向偏移量极限要求值rs的差值e及差值变化率ec,再将e和ec传输至控制模块组;控制模块组根据仿人智能积分控制方法的控制规则计算获得控制量一u1;同时,控制模块组通过转子的径向偏移量rc计算出作用在转子上的单边磁拉力大小,再根据单边磁拉力大小计算调节所需的径向悬浮力F大小,获得调节单边磁拉力所需的控制量二u2;控制模块组将控制量一u1和控制量二u2的和作为总控制量un,将总控制量un传输至PLC中,PLC通过变频器控制磁悬浮泵系统对转子的径向偏移量rc进行调整,直至满足要求值。When the rotor's rotational speed n s is high, the control module group uses a human-like intelligent integral control method to adjust the radial offset r c of the rotor; the detection system detects the radial offset r c of the rotor and calculates the radial offset The difference e between the displacement r c and the radial offset limit requirement r s and the difference change rate ec are then transmitted to the control module group; the control module group is based on the control rules of the human-like intelligent integral control method The control quantity - u 1 is calculated and obtained; at the same time, the control module group calculates the unilateral magnetic pulling force acting on the rotor through the radial offset r c of the rotor, and then calculates the radial adjustment required based on the unilateral magnetic pulling force. The size of the suspension force F is used to obtain the control quantity two u 2 required to adjust the unilateral magnetic pulling force; the control module group takes the sum of the control quantity one u 1 and the control quantity two u 2 as the total control quantity u n , and the total control quantity u n Transmitted to the PLC, the PLC controls the magnetic levitation pump system through the frequency converter to adjust the radial offset r c of the rotor until it meets the required value.
更优选地,所述的磁悬浮泵系统中转子的径向偏移量rc与径向偏移量极限要求值rs之间的差值e范围为0~80um;转子的径向偏移量rc与径向偏移量极限要求值rs之间的差值变化率ec的范围为-5~5um/s。More preferably, the difference e between the radial offset r c of the rotor and the radial offset limit requirement r s in the magnetic levitation pump system ranges from 0 to 80um; the radial offset of the rotor The range of the difference change rate ec between r c and the radial offset limit requirement value r s is -5 ~ 5um/s.
优选地,所述的检测系统能对磁悬浮泵系统中转子转速的偏差值nc进行检测,并反馈至控制模块组,控制模块组根据转速控制方法计算调节转子转速所需的控制量u’,再将u’传输至PLC,PLC通过控制变频器调整转子转速直至其满足要求值。Preferably, the detection system can detect the deviation value n c of the rotor speed in the magnetic levitation pump system and feed it back to the control module group. The control module group calculates the control amount u' required to adjust the rotor speed according to the speed control method, Then u' is transmitted to the PLC, and the PLC controls the frequency converter to adjust the rotor speed until it meets the required value.
优选地,所述的数据传输系统由A/D转换器和D/A转换器两部分组成;所述的A/D转换器将检测系统中转速传感器和位移传感器所测得的模拟信号转变为数字信号,再将数字信号传递到控制模块组;所述控制模块组将计算获得的总控制量un的数字信号传递给D/A转换器,D/A转换器将数字信号转变为模拟信号传递给PLC。Preferably, the data transmission system is composed of an A/D converter and a D/A converter; the A/D converter converts the analog signals measured by the rotation speed sensor and the displacement sensor in the detection system into digital signal, and then transfer the digital signal to the control module group; the control module group transfers the calculated digital signal of the total control quantity u n to the D/A converter, and the D/A converter converts the digital signal into an analog signal passed to PLC.
优选地,当磁悬浮泵系统中转子的转速为低转速时,转子径向偏移量的要求值范围为0≤rc<50um;当磁悬浮泵系统中转子的转速为高转速时,转子径向偏移量的要求值范围为0≤rc<20um。Preferably, when the rotation speed of the rotor in the magnetic levitation pump system is a low rotation speed, the required value range of the rotor radial offset is 0 ≤ r c <50um; when the rotation speed of the rotor in the magnetic levitation pump system is a high rotation speed, the radial offset of the rotor The required value range of offset is 0≤r c <20um.
优选地,通过控制模块组控制磁悬浮泵停止工作的过程,具体如下:Preferably, the process of stopping the magnetic levitation pump is controlled through a control module group, as follows:
当控制模块组接收到停止指令时,控制模块组根据当前转子转速自动生成一个线性目标函数;其中,线性目标函数中的线性常量值小于1;将转子当前转速带入线性目标函数的自变量中,获得下一时刻的转子转速,再将下一时刻转子转速重复带入线性目标函数的自变量中,获得再下一时刻转子转速;控制模块组根据线性目标函数的计算结果对转子转速进行实时调整;重复计算若干次直至转子的转速接近于零;此时控制模块组输出为零的控制量,使得转子停止旋转。When the control module group receives the stop command, the control module group automatically generates a linear objective function based on the current rotor speed; where the linear constant value in the linear objective function is less than 1; the current rotor speed is brought into the independent variable of the linear objective function , obtain the rotor speed at the next moment, and then repeatedly bring the rotor speed at the next moment into the independent variable of the linear objective function to obtain the rotor speed at the next moment; the control module group performs real-time calculation of the rotor speed based on the calculation results of the linear objective function Adjustment; repeat the calculation several times until the rotor speed is close to zero; at this time, the control module group outputs a control value of zero, causing the rotor to stop rotating.
本发明一种磁悬浮泵控制系统,包括PLC、变频器、磁悬浮泵系统、检测系统、数据传输系统和控制模块组;所述的控制模块组与数据传输系统连接,进行数据与信号的相互传输;所述的数据传输系统将信号传输至PLC;所述的PLC将信号处理后传输至变频器;所述的变频器根据处理信号对磁悬浮泵系统执行控制;所述的检测系统对磁悬浮泵系统进行检测,并通过数据传输系统将信号传输至控制模块组;所述的检测系统包括位移传感器和转速传感器;所述的控制模块组包括位移控制模块、转速控制模块、信号处理模块和人机交互模块。A magnetic levitation pump control system of the present invention includes a PLC, a frequency converter, a magnetic levitation pump system, a detection system, a data transmission system and a control module group; the control module group is connected to the data transmission system for mutual transmission of data and signals; The data transmission system transmits the signal to the PLC; the PLC processes the signal and transmits it to the frequency converter; the frequency converter controls the magnetic levitation pump system according to the processed signal; the detection system controls the magnetic levitation pump system. Detect and transmit the signal to the control module group through the data transmission system; the detection system includes a displacement sensor and a rotational speed sensor; the control module group includes a displacement control module, a rotational speed control module, a signal processing module and a human-computer interaction module .
本发明具有的有益效果是:The beneficial effects of the present invention are:
本发明根据磁悬浮泵系统中转子的转速不同,对其实行不同控制方式以调节转子的径向偏移量;当转子的转速为低转速时,采用线性控制方法调节转子径向偏移量;当转子的转速为高转速时,采用仿人智能积分控制方法调节转子径向偏移量;在仿人智能积分控制方法中计算了转子所受单边磁拉力,并根据转子所受单边磁拉力计算出调整转子所需的径向悬浮力,提高了控制转子径向偏移量的控制精度;仿人智能积分控制方法提升了磁悬浮泵系统中转子在高转速下的稳态性能。本发明双重控制方法有效地提升了转子的动态性能,避免低转速时采用复杂控制方法带来的控制算法复杂、响应慢、功耗高的缺陷,又避免高转速时简单控制方法不准确的问题,因此,避免单一控制方法不能兼顾控制精度和响应的问题。According to the different rotational speeds of the rotor in the magnetic levitation pump system, the present invention implements different control methods to adjust the radial offset of the rotor; when the rotational speed of the rotor is low, a linear control method is used to adjust the radial offset of the rotor; when When the rotation speed of the rotor is high, the human-like intelligent integral control method is used to adjust the radial offset of the rotor; in the human-like intelligent integral control method, the unilateral magnetic pull force on the rotor is calculated, and the unilateral magnetic pull force on the rotor is calculated according to the unilateral magnetic pull force on the rotor. The radial levitation force required to adjust the rotor is calculated, which improves the control accuracy of controlling the radial offset of the rotor; the human-like intelligent integral control method improves the steady-state performance of the rotor at high speeds in the magnetic levitation pump system. The dual control method of the present invention effectively improves the dynamic performance of the rotor, avoids the defects of complex control algorithms, slow response, and high power consumption caused by using complex control methods at low rotational speeds, and avoids the problems of inaccurate simple control methods at high rotational speeds. , therefore, avoiding the problem that a single control method cannot take into account both control accuracy and response.
附图说明Description of drawings
图1为本发明的控制系统框图;Figure 1 is a block diagram of the control system of the present invention;
图2为本发明的控制原理图。Figure 2 is a control principle diagram of the present invention.
具体实施方式Detailed ways
以下结合附图对本发明作进一步说明。The present invention will be further described below in conjunction with the accompanying drawings.
本发明一种磁悬浮泵的控制方法,具体如下:A method for controlling a magnetic levitation pump of the present invention is as follows:
如图1所示,在磁悬浮泵工作前,通过控制模块组设置磁悬浮泵系统中转子的转速ns;控制模块组判断设置的转速ns为低转速(0≤ns<300rpm)或高转速(ns≥300rpm);当判断转速为低转速时,控制模块组采用线性控制方法计算转子的径向偏移量;当目标转速为高转速时,控制模块组采用仿人智能积分控制方法计算转子的径向偏移量;接着,通过控制模块组启动磁悬浮泵系统中的悬浮装置,使转子保持悬浮状态;此时,检测系统对转子的径向偏移量进行检测,并通过数据传输系统将转子的径向偏移量传输至控制模块组;控制模块组判断转子的径向偏移量rc是否满足对应控制方法的要求值,若不满足要求值,则控制模块组根据转速ns设置为低转速或高转速计算出径向悬浮力对应的控制量u(u为三相电流电压,单位:V),并将控制量u传输至PLC,PLC通过控制变频器使磁悬浮泵系统改变转子所受的径向悬浮力;然后,启动磁悬浮泵中旋转装置,驱动转子旋转;检测系统对转子的径向偏移量rc进行实时检测,并通过数据传输系统反馈至控制模块组;控制模块组根据磁悬浮泵系统中转子的转速ns,选择对应的控制方法计算出径向悬浮力对应的控制量u,使磁悬浮泵系统改变转子所受的径向悬浮力,实时对转子的径向偏移量rc进行控制调节;通过对转子径向偏移量rc进行实时检测和控制,使得磁悬浮泵系统保持稳定的运转。As shown in Figure 1, before the maglev pump works, the control module group sets the rotor speed n s in the maglev pump system; the control module group determines whether the set speed n s is low speed (0≤n s <300rpm) or high speed (n s ≥ 300rpm); when the speed is judged to be low speed, the control module group uses the linear control method to calculate the radial offset of the rotor; when the target speed is high speed, the control module group uses the human-like intelligent integral control method to calculate The radial offset of the rotor; then, the levitation device in the magnetic levitation pump system is started through the control module group to keep the rotor in a suspended state; at this time, the detection system detects the radial offset of the rotor and transmits it through the data transmission system The radial offset of the rotor is transmitted to the control module group; the control module group determines whether the radial offset r c of the rotor meets the required value of the corresponding control method. If it does not meet the required value, the control module group determines whether the rotor's radial offset r c meets the required value. Set to low speed or high speed, calculate the control quantity u corresponding to the radial levitation force (u is the three-phase current and voltage, unit: V), and transmit the control quantity u to the PLC. The PLC controls the frequency converter to change the magnetic levitation pump system. The radial suspension force experienced by the rotor; then, start the rotating device in the magnetic levitation pump to drive the rotor to rotate; the detection system detects the radial offset r c of the rotor in real time, and feeds it back to the control module group through the data transmission system; control According to the rotation speed n s of the rotor in the magnetic levitation pump system, the module group selects the corresponding control method to calculate the control quantity u corresponding to the radial levitation force, so that the maglev pump system changes the radial levitation force on the rotor and controls the radial direction of the rotor in real time. The offset r c is controlled and adjusted; through real-time detection and control of the rotor radial offset r c , the magnetic levitation pump system maintains stable operation.
作为一个优选实施例,控制模块组中线性控制方法和仿人智能积分控制方法的控制过程,具体如下:As a preferred embodiment, the control process of the linear control method and the human-like intelligent integral control method in the control module group is as follows:
转子的径向悬浮力F与磁悬浮泵系统中悬浮系统电流I满足如下关系式:The radial levitation force F of the rotor and the levitation system current I in the magnetic levitation pump system satisfy the following relationship:
F=k·IF=k·I
其中,k为线性常量;Among them, k is a linear constant;
如图2所示,当转子的转速ns为低转速时,控制模块组采用线性控制方法调节转子的径向偏移量rc;控制模块组根据转子的实际径向偏移量rc计算出调节转子所需的径向悬浮力F,并根据上述公式计算出径向悬浮力F对应的电流I,通过电流I计算出控制量u0(-5≤u0<5V),控制模块组将控制量u0作为总控制量un传输至PLC中,PLC通过变频器控制磁悬浮泵系统,使磁悬浮泵系统改变转子所受的径向悬浮力F,调整转子直至转子的径向偏移量rc满足要求值需求;As shown in Figure 2, when the rotor speed ns is a low speed, the control module group uses a linear control method to adjust the radial offset r c of the rotor; the control module group calculates based on the actual radial offset r c of the rotor Calculate the radial suspension force F required to adjust the rotor, and calculate the current I corresponding to the radial suspension force F according to the above formula. Calculate the control quantity u 0 (-5≤u 0 <5V) through the current I. The control module group The control quantity u 0 is transmitted to the PLC as the total control quantity u n . The PLC controls the magnetic levitation pump system through the frequency converter, so that the magnetic levitation pump system changes the radial levitation force F on the rotor and adjusts the rotor until the radial offset of the rotor. r c meets the required value requirements;
当转子的转速ns为高转速时,控制模块组采用仿人智能积分控制方法调节转子的径向偏移量rc;检测系统检测转子的径向偏移量rc,并计算径向偏移量rc与径向偏移量极限要求值rs的差值e及差值变化率ec,再将e和ec传输至控制模块组;控制模块组根据仿人智能积分控制方法的控制规则计算获得控制量一u1(-2V≤u1<2V);同时,控制模块组通过转子的径向偏移量rc计算出作用在转子上的单边磁拉力大小(单边磁拉力方向为转子偏转方向),再根据单边磁拉力大小计算调节所需的径向悬浮力F大小(径向悬浮力方向与单边磁拉力相反),获得调节单边磁拉力所需的控制量二u2(0V≤u2<2V);控制模块组将控制量一u1和控制量二u2的和作为总控制量un,将总控制量un传输至PLC中,PLC通过变频器控制磁悬浮泵系统对转子的径向偏移量rc进行调整,直至满足要求值。When the rotor's rotational speed n s is high, the control module group uses a human-like intelligent integral control method to adjust the radial offset r c of the rotor; the detection system detects the radial offset r c of the rotor and calculates the radial offset The difference e between the displacement r c and the radial offset limit requirement r s and the difference change rate ec are then transmitted to the control module group; the control module group is based on the control rules of the human-like intelligent integral control method The control quantity - u 1 (-2V≤u 1 <2V) is calculated and obtained; at the same time, the control module group calculates the size of the unilateral magnetic pull acting on the rotor (the direction of the unilateral magnetic pull) through the radial offset r c of the rotor. is the deflection direction of the rotor), and then calculate the radial suspension force F required for adjustment based on the size of the unilateral magnetic pull (the direction of the radial suspension force is opposite to the unilateral magnetic pull), and obtain the control amount 2 required to adjust the unilateral magnetic pull. u 2 (0V≤u 2 <2V); the control module group takes the sum of control quantity one u 1 and control quantity two u 2 as the total control quantity u n , and transmits the total control quantity u n to the PLC, and the PLC passes the frequency converter The magnetic levitation pump system is controlled to adjust the radial offset r c of the rotor until it meets the required value.
作为一个优选实施例,磁悬浮泵系统中转子的径向偏移量rc与径向偏移量极限要求值rs之间的差值e范围为0~80um;转子的径向偏移量rc与径向偏移量极限要求值rs之间的差值变化率ec的范围为-5~5um/s。As a preferred embodiment, the difference e between the radial offset r c of the rotor and the radial offset limit requirement r s in the magnetic levitation pump system ranges from 0 to 80um; the radial offset r of the rotor The range of the difference change rate ec between c and the radial offset limit requirement value rs is -5~5um/s.
作为一个优选实施例,检测系统能对磁悬浮泵系统中转子转速的偏差值nc进行检测,并反馈至控制模块组,控制模块组根据转速控制方法(常规的线性控制方法即可)计算调节转子转速所需的控制量u’,再将u’传输至PLC,PLC通过控制变频器调整转子转速直至其满足要求值;控制模块组中调节转子转速的转速控制方法与调节转子径向偏移量的线性控制方法或仿人智能积分控制方法相互独立,互不干涉。As a preferred embodiment, the detection system can detect the deviation value n c of the rotor speed in the magnetic levitation pump system and feed it back to the control module group. The control module group calculates and adjusts the rotor according to the speed control method (conventional linear control method is sufficient). The control quantity u' required for the rotation speed is then transmitted to the PLC. The PLC adjusts the rotor speed by controlling the frequency converter until it meets the required value; the speed control method for adjusting the rotor speed in the control module group and the adjustment of the rotor radial offset The linear control method or the human-like intelligent integral control method are independent of each other and do not interfere with each other.
作为一个优选实施例,数据传输系统由A/D转换器和D/A转换器两部分组成;A/D转换器将检测系统中转速传感器(用于检测转子的转速)和位移传感器(用于检测转子的径向偏移量)所测得的模拟信号转变为数字信号,再将数字信号传递到控制模块组;控制模块组将计算获得的总控制量un的数字信号传递给D/A转换器,D/A转换器将数字信号转变为模拟信号传递给PLC,由PLC向变频器传递信号指令实现对磁悬浮泵系统的控制。As a preferred embodiment, the data transmission system consists of an A/D converter and a D/A converter; the A/D converter will detect the rotational speed sensor (used to detect the rotational speed of the rotor) and the displacement sensor (used to detect the rotational speed of the rotor) in the system. The analog signal measured by detecting the radial offset of the rotor is converted into a digital signal, and then the digital signal is transmitted to the control module group; the control module group transmits the calculated digital signal of the total control amount u n to the D/A Converter, D/A converter converts digital signals into analog signals and transmits them to PLC, which transmits signal instructions to the frequency converter to control the magnetic levitation pump system.
作为一个优选实施例,当磁悬浮泵系统中转子的转速为低转速时,转子径向偏移量的要求值范围为0≤rc<50um;当磁悬浮泵系统中转子的转速为高转速时,转子径向偏移量的要求值范围为0≤rc<20um。As a preferred embodiment, when the rotation speed of the rotor in the magnetic levitation pump system is low, the required value range of the rotor radial offset is 0≤r c <50um; when the rotation speed of the rotor in the magnetic levitation pump system is high speed, The required value range of the rotor radial offset is 0≤r c <20um.
作为一个优选实施例,通过控制模块组控制磁悬浮泵停止工作的过程,具体如下:As a preferred embodiment, the process of stopping the magnetic levitation pump is controlled through the control module group, as follows:
当控制模块组接收到停止指令时,控制模块组根据当前转子转速自动生成一个线性目标函数;其中,线性目标函数中的线性常量值小于1;将转子当前转速带入线性目标函数的自变量中,获得下一时刻的转子转速,再将下一时刻转子转速重复带入线性目标函数的自变量中,获得再下一时刻转子转速;控制模块组根据线性目标函数的计算结果对转子转速进行实时调整;重复计算若干次直至转子的转速接近于零;此时控制模块组输出为零的控制量,使得转子停止旋转;转子转速的线性衰减方式能有效避免转子因急停受到较大的冲击磁悬浮泵系统损坏。When the control module group receives the stop command, the control module group automatically generates a linear objective function based on the current rotor speed; where the linear constant value in the linear objective function is less than 1; the current rotor speed is brought into the independent variable of the linear objective function , obtain the rotor speed at the next moment, and then repeatedly bring the rotor speed at the next moment into the independent variable of the linear objective function to obtain the rotor speed at the next moment; the control module group performs real-time calculation of the rotor speed based on the calculation results of the linear objective function Adjust; repeat the calculation several times until the rotor's speed is close to zero; at this time, the control module outputs a control value of zero, causing the rotor to stop rotating; the linear attenuation method of the rotor speed can effectively avoid the rotor from being greatly impacted due to emergency stop. Maglev The pump system is damaged.
本发明一种磁悬浮泵控制系统,包括PLC、变频器、磁悬浮泵系统、检测系统、数据传输系统和控制模块组;所述的控制模块组与数据传输系统连接,进行数据与信号的相互传输;所述的数据传输系统将信号传输至PLC;所述的PLC将信号处理后传输至变频器;所述的变频器根据处理信号对磁悬浮泵系统执行控制;所述的检测系统对磁悬浮泵系统进行检测,并通过数据传输系统将信号传输至控制模块组;所述的检测系统包括位移传感器和转速传感器;所述的控制模块组包括位移控制模块、转速控制模块、信号处理模块和人机交互模块;位移控制模块、转速控制模块和人机交互模块均与信号处理模块连接;信号处理模块与数据传输系统连接;位移控制模块用于控制转子的径向偏移量,转速控制模块用于控制转子的转速;信号处理模块用于接收数据传输系统和人机交互模块的信号,并给数据传输系统、人机交互模块、位移控制模块和转速控制模块发送信号。A magnetic levitation pump control system of the present invention includes a PLC, a frequency converter, a magnetic levitation pump system, a detection system, a data transmission system and a control module group; the control module group is connected to the data transmission system for mutual transmission of data and signals; The data transmission system transmits the signal to the PLC; the PLC processes the signal and transmits it to the frequency converter; the frequency converter controls the magnetic levitation pump system according to the processed signal; the detection system controls the magnetic levitation pump system. Detect and transmit the signal to the control module group through the data transmission system; the detection system includes a displacement sensor and a rotational speed sensor; the control module group includes a displacement control module, a rotational speed control module, a signal processing module and a human-computer interaction module ; The displacement control module, speed control module and human-computer interaction module are all connected to the signal processing module; the signal processing module is connected to the data transmission system; the displacement control module is used to control the radial offset of the rotor, and the speed control module is used to control the rotor The speed; the signal processing module is used to receive signals from the data transmission system and human-computer interaction module, and send signals to the data transmission system, human-computer interaction module, displacement control module and speed control module.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111633954.2A CN114337378B (en) | 2021-12-29 | 2021-12-29 | Control method and control system of magnetic suspension pump |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111633954.2A CN114337378B (en) | 2021-12-29 | 2021-12-29 | Control method and control system of magnetic suspension pump |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114337378A CN114337378A (en) | 2022-04-12 |
CN114337378B true CN114337378B (en) | 2023-12-19 |
Family
ID=81017537
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111633954.2A Active CN114337378B (en) | 2021-12-29 | 2021-12-29 | Control method and control system of magnetic suspension pump |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114337378B (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013083000A1 (en) * | 2011-12-05 | 2013-06-13 | 北京中科科仪股份有限公司 | Method of dynamic balance for magnetic levitation molecular pump (5) |
CN106958531A (en) * | 2017-04-20 | 2017-07-18 | 北京航空航天大学 | A kind of low-loss magnetic suspension turbine molecular pump |
-
2021
- 2021-12-29 CN CN202111633954.2A patent/CN114337378B/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013083000A1 (en) * | 2011-12-05 | 2013-06-13 | 北京中科科仪股份有限公司 | Method of dynamic balance for magnetic levitation molecular pump (5) |
CN106958531A (en) * | 2017-04-20 | 2017-07-18 | 北京航空航天大学 | A kind of low-loss magnetic suspension turbine molecular pump |
Also Published As
Publication number | Publication date |
---|---|
CN114337378A (en) | 2022-04-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN206626094U (en) | A kind of intelligent motorized spindle supported with AMB device | |
CN100459407C (en) | Bearingless switched reluctance motor error-tolerant operation control method | |
CN109927027B (en) | Closed-loop control method for hydraulic drive rotary joint of robot | |
CN111740559B (en) | Disc type asynchronous motor, flywheel energy storage device, rotor suspension control system and method | |
CN101046692A (en) | Split-ring high precision unbalance vibration control system of magnetic suspension reaction flywheel | |
CN103034127B (en) | A kind of axial magnetic bearing control system | |
CN101917112B (en) | Remote automatic control adjustable-speed disc magnetic coupling | |
CN112186976A (en) | A bearingless magnetic suspension motor rotor radial position detection device and control method | |
CN107061162A (en) | Magnetic suspension driftage Wind turbines Wind energy extraction | |
CN103303454A (en) | Electric helm gear based on speed ring reversing and control method of electric helm gear | |
CN103916062A (en) | Vector control type electric actuator based on DSP | |
CN103780185A (en) | Compressor torque control method and torque control device | |
CN114337378B (en) | Control method and control system of magnetic suspension pump | |
CN105974790A (en) | Flux-density-feedback-based magnetic-levitation micro vibration control system | |
CN113067523A (en) | Magnetic suspension motor vibration suppression method based on angular domain notch filtering | |
CN109787519A (en) | A kind of DC motor drive and method | |
CN102691583A (en) | Constant speed and constant frequence double-closed-loop control system and method for small-power diesel generator | |
CN202321747U (en) | Paper scroll tension automatic control system of paperboard coating machine | |
CN202550933U (en) | Magnetic suspension system based on force control using quasi suspension motor and axial magnetic bearing | |
CN113271050B (en) | Quasi-synchronous power supply control method for long-stator double-fed linear motor | |
CN112695842B (en) | Constant-pressure water supply control method without pressure tank | |
CN103792889B (en) | Electric driven fin stabilizer electric servo control system | |
CN110071664B (en) | DC motor braking device and method with controllable constant current and falling speed | |
CN217692959U (en) | A variable torque cord calender | |
CN201490952U (en) | Constant-speed electric tool |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |