CN114334124A - A pathological myopia detection system based on deep neural network - Google Patents
A pathological myopia detection system based on deep neural network Download PDFInfo
- Publication number
- CN114334124A CN114334124A CN202111391392.5A CN202111391392A CN114334124A CN 114334124 A CN114334124 A CN 114334124A CN 202111391392 A CN202111391392 A CN 202111391392A CN 114334124 A CN114334124 A CN 114334124A
- Authority
- CN
- China
- Prior art keywords
- lesion
- pathological myopia
- network
- fundus
- fundus image
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 208000001309 degenerative myopia Diseases 0.000 title claims abstract description 99
- 230000004340 degenerative myopia Effects 0.000 title claims abstract description 99
- 238000001514 detection method Methods 0.000 title claims abstract description 67
- 238000013528 artificial neural network Methods 0.000 title claims abstract description 18
- 230000003902 lesion Effects 0.000 claims abstract description 139
- 230000002159 abnormal effect Effects 0.000 claims abstract description 6
- 238000000034 method Methods 0.000 claims description 17
- 206010003694 Atrophy Diseases 0.000 claims description 9
- 230000037444 atrophy Effects 0.000 claims description 9
- 241000282485 Vulpes vulpes Species 0.000 claims description 4
- 238000000137 annealing Methods 0.000 claims description 3
- 238000011176 pooling Methods 0.000 claims description 3
- 238000002372 labelling Methods 0.000 claims description 2
- 239000004922 lacquer Substances 0.000 claims description 2
- 230000001575 pathological effect Effects 0.000 abstract description 4
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 7
- 201000010099 disease Diseases 0.000 description 6
- 208000005590 Choroidal Neovascularization Diseases 0.000 description 4
- 206010060823 Choroidal neovascularisation Diseases 0.000 description 4
- 238000013135 deep learning Methods 0.000 description 3
- 238000010801 machine learning Methods 0.000 description 3
- 238000003745 diagnosis Methods 0.000 description 2
- 238000003384 imaging method Methods 0.000 description 2
- 239000003973 paint Substances 0.000 description 2
- 201000004569 Blindness Diseases 0.000 description 1
- 208000024080 Myopic macular degeneration Diseases 0.000 description 1
- 241000282373 Panthera pardus Species 0.000 description 1
- 206010041951 Staphyloma Diseases 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000003759 clinical diagnosis Methods 0.000 description 1
- 238000013527 convolutional neural network Methods 0.000 description 1
- 230000004438 eyesight Effects 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 238000010191 image analysis Methods 0.000 description 1
- 238000003703 image analysis method Methods 0.000 description 1
- 230000004807 localization Effects 0.000 description 1
- 208000015122 neurodegenerative disease Diseases 0.000 description 1
- 230000011218 segmentation Effects 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Landscapes
- Eye Examination Apparatus (AREA)
Abstract
Description
【技术领域】【Technical field】
本发明涉及眼科影像学的技术领域,特别是一种基于深度神经网络的病理性近视检测系统。The invention relates to the technical field of ophthalmic imaging, in particular to a pathological myopia detection system based on a deep neural network.
【背景技术】【Background technique】
病理性近视一般是指屈光度数大于-6D和(或)眼轴大于26.5mm,并可伴有巩膜后葡萄肿等退行性病变的疾病。全世界约有3%的人口患有病理性近视,是世界三大致盲疾病之一,尤其多见于亚洲人,多发生于中青年人群。病理性近视一般有较为特征性的眼底病变表现,综合以往的研究将病理性近视性眼底病变分为5个等级:正常、豹纹状眼底、弥漫性脉络膜萎缩、斑片脉络膜萎缩、黄斑萎缩。病理性近视一般伴随着并发症的产生,其中对视力影响较大的有脉络膜新生血管(CNV)、漆裂纹(lacquer cracks)、Fuchs斑(Fuchs spot)。在临床诊断中,这些病灶的存在是判断患者病理性近视等级的重要因素。Pathological myopia generally refers to a disease with a diopter greater than -6D and/or an eye axis greater than 26.5mm, and may be accompanied by degenerative diseases such as retroscleral staphyloma. About 3% of the world's population suffers from pathological myopia, which is one of the three major blindness diseases in the world, especially in Asians, and mostly occurs in young and middle-aged people. Pathological myopia generally has more characteristic fundus lesions. Based on previous studies, pathological myopic fundus lesions are divided into five grades: normal, leopard-striped fundus, diffuse choroidal atrophy, patchy choroidal atrophy, and macular atrophy. Pathological myopia is generally accompanied by complications, including choroidal neovascularization (CNV), lacquer cracks, and Fuchs spots, which have a greater impact on vision. In clinical diagnosis, the existence of these lesions is an important factor in judging the grade of pathological myopia.
现阶段,眼底相机成像是应用最为普遍的眼科临床检查手段,但医生面对眼底图像进行诊断时存在着重复性差、判断标准因人而异等不足。因此,有许多研究致力于使用深度学习等机器学习方法处理眼底图像辅助医生进行诊断。At this stage, fundus camera imaging is the most commonly used ophthalmology clinical examination method, but there are shortcomings such as poor repeatability and different judgment standards for doctors when diagnosing fundus images. Therefore, there are many studies devoted to processing fundus images using machine learning methods such as deep learning to assist doctors in diagnosis.
如公开号为CN111046835A的中国专利文献公开了一种基于区域特征集合神经网络的眼底照多病种检测系统,该系统包括一个语义分割子网络和多个分类器。系统运行步骤如下:获取待测的原始眼底照片输入多眼底病检测网络模型,网络模型针对多种眼底病变分别进行二分类判断其是否患病。公开号为CN110163839A的中国专利文献公开了一种豹纹状眼底图像识别方法,该方法获取眼底图像,并利用机器学习模型对所述眼底图像进行分类得到分类结果,所述分类结果用于表示眼底图像的豹纹状特征的显著程度。For example, Chinese patent document with publication number CN111046835A discloses a fundus photography multi-disease detection system based on regional feature set neural network, the system includes a semantic segmentation sub-network and a plurality of classifiers. The operating steps of the system are as follows: obtaining the original fundus photos to be tested and inputting the multiple fundus disease detection network model. The Chinese patent document with publication number CN110163839A discloses a method for recognizing a leopard-striped fundus image. The method obtains a fundus image, and uses a machine learning model to classify the fundus image to obtain a classification result, and the classification result is used to represent the fundus. The degree of saliency of the leopard-like features of the image.
现存的基于深度学习等机器学习算法的眼底图像分析方法多关注整个眼底,对其病变程度或病变种类进行预测,缺乏对于具体病灶的位置和种类信息的预测。同时,对于病理性近视这一近年来逐渐受到重视的眼底疾病,目前缺乏成熟的基于深度学习的检测方法。Existing fundus image analysis methods based on machine learning algorithms such as deep learning focus on the entire fundus to predict the degree or type of lesions, but lack information on the location and type of specific lesions. At the same time, for pathological myopia, a fundus disease that has received increasing attention in recent years, there is currently a lack of mature deep learning-based detection methods.
【发明内容】[Content of the invention]
本发明的目的就是解决现有技术中的问题,提出一种基于深度神经网络的病理性近视检测系统,该系统可以通过眼底照片对眼底的整体病变程度进行预测,同时可以对眼底存在的病灶进行分类与定位,并综合上述信息判断眼底是否患有病理性近视,并提供病灶的位置与种类信息。The purpose of the present invention is to solve the problems in the prior art, and propose a pathological myopia detection system based on a deep neural network. Classification and localization, combined with the above information to determine whether the fundus has pathological myopia, and provide information on the location and type of lesions.
为实现上述目的,本发明提出了一种基于深度神经网络的病理性近视检测系统,包括计算机存储器、可与计算机存储器通信的计算机处理器,以及存储在所述计算机存储器中并可在所述计算机处理器上执行的可执行程序,所述的可执行程序用于接收眼底图像,并将其传入训练好的病理性近视检测网络模型,最终输出结果;所述的病理性近视检测网络模型包括病灶检测器、病变程度分类器和病理性近视判别器;In order to achieve the above object, the present invention proposes a pathological myopia detection system based on a deep neural network, comprising a computer memory, a computer processor that can communicate with the computer memory, and is stored in the computer memory and can be used in the computer. An executable program executed on the processor, the executable program is used to receive the fundus image and transfer it to the trained pathological myopia detection network model, and finally output the result; the pathological myopia detection network model includes Lesion detector, lesion degree classifier and pathological myopia discriminator;
所述病变程度分类器用于判断眼底图像的病变等级;若该图像病变等级为不正常,则将眼底图像送入病灶检测器;The lesion grade classifier is used to judge the lesion grade of the fundus image; if the lesion grade of the image is abnormal, the fundus image is sent to the lesion detector;
所述病灶检测器用于检测眼底图像中的病灶种类及位置;The lesion detector is used for detecting the type and position of the lesion in the fundus image;
所述病理性近视判别器根据所述病变程度分类器与所述病灶检测器的输出结果判别该眼底图像是否患有病理性近视。The pathological myopia discriminator discriminates whether the fundus image suffers from pathological myopia according to the output results of the lesion degree classifier and the lesion detector.
作为优选,所述的病理性近视检测网络模型具体训练过程包括以下步骤:Preferably, the specific training process of the pathological myopia detection network model includes the following steps:
S1.收集眼底图像并进行标注作为训练用数据集,所述数据集包括眼底病变程度数据集、病灶检测数据集。S1. Fundus images are collected and marked as a data set for training. The data set includes a fundus lesion degree data set and a lesion detection data set.
S2.对数据集中的眼底图像进行预处理,使其符合网络输入要求;S2. Preprocess the fundus images in the dataset to make them meet the network input requirements;
S3.对病理性近视检测网络模型进行训练,训练过程分为两阶段:S3. Train the pathological myopia detection network model. The training process is divided into two stages:
第一阶段,使用眼底病变程度数据集训练病变程度分类器;In the first stage, use the fundus lesion degree dataset to train the lesion degree classifier;
第二阶段,使用病灶检测数据集对病灶检测器进行训练。In the second stage, the lesion detector is trained using the lesion detection dataset.
作为优选,第一阶段的具体步骤为:Preferably, the specific steps of the first stage are:
S31.病变程度分类器的网络参数均采用随机初始化;S31. The network parameters of the lesion degree classifier are all randomly initialized;
S32.初始学习率设置为0.001,采用余弦退火学习率衰减;S32. The initial learning rate is set to 0.001, and the learning rate is decayed by cosine annealing;
S33.采用随机梯度下降算法,训练集中所有数据经过一次网络完成一个轮次,待网络收敛后固定该部分参数,训练完成。S33. Using the stochastic gradient descent algorithm, all the data in the training set go through the network to complete one round, and after the network converges, the parameters of this part are fixed, and the training is completed.
作为优选,第二阶段的具体步骤为:Preferably, the specific steps of the second stage are:
S34.病灶检测器骨干网络的参数初始化自第一阶段训练完成的病变程度分类器网络,病灶检测器的其余部分网络参数均采用随机初始化;S34. The parameters of the lesion detector backbone network are initialized from the lesion degree classifier network trained in the first stage, and the rest of the network parameters of the lesion detector are randomly initialized;
S35.待网络收敛后,即得到完整的病理性近视检测网络模型;S35. After the network converges, a complete pathological myopia detection network model is obtained;
S36.将收集到的眼底图像输入病理性近视检测网络模型,病理性近视检测网络模型将预测该眼底图像是否患有病理性近视,若患有病理性近视,病理性近视检测网络模型还将输出病灶位置及种类辅助医生诊断。S36. Input the collected fundus image into the pathological myopia detection network model. The pathological myopia detection network model will predict whether the fundus image has pathological myopia. If the fundus image has pathological myopia, the pathological myopia detection network model will also output The location and type of lesions assist doctors in diagnosis.
作为优选,所述眼底病变程度数据集的标注为眼底图像病变程度,包括五个病变等级:等级0、等级1、等级2、等级3、等级4,分别表示:正常、豹纹状眼底、弥漫性脉络膜萎缩、斑片脉络膜萎缩、黄斑萎缩,所述病灶检测数据集的标注包括病灶位置和病灶种类,所述的病灶位置包括病灶的中心点坐标、宽度和高度,所述的病灶种类包括CNV、漆裂纹和Fuchs斑。Preferably, the fundus lesion degree data set is marked as the lesion degree of the fundus image, including five lesion grades: grade 0, grade 1, grade 2, grade 3, and grade 4, respectively representing: normal, leopard-striped fundus, diffuse choroidal atrophy, patchy choroidal atrophy, and macular atrophy, the labeling of the lesion detection dataset includes the location of the lesion and the type of the lesion, the location of the lesion includes the center point coordinates, width and height of the lesion, and the type of the lesion includes CNV , paint cracks and Fuchs spots.
作为优选,所述的病理性近视检测网络模型具体预测过程包括以下步骤:Preferably, the specific prediction process of the pathological myopia detection network model includes the following steps:
a.对待预测的眼底图像进行预处理使其符合病理性近视检测网络模型的输入要求;a. Preprocess the fundus image to be predicted to make it meet the input requirements of the pathological myopia detection network model;
b.眼底图像先输入到病变程度分类器网络进行病变程度的预测,若预测结果为正常:等级0,则预测结束,病理性近视检测网络模型会输出非PM(0);b. The fundus image is first input to the lesion degree classifier network to predict the degree of lesion. If the prediction result is normal: level 0, the prediction is over, and the pathological myopia detection network model will output non-PM(0);
c.若预测结果为不正常:等级1、等级2、等级3、等级4,则眼底图像进入病灶检测器网络,被病灶检测器网络检测到的病灶将被标记,并标出病灶类型及预测概率;c. If the prediction result is abnormal: level 1, level 2, level 3, level 4, the fundus image will enter the lesion detector network, and the lesions detected by the lesion detector network will be marked, and the type of lesions and predictions will be marked. probability;
d.病理性近视判别器综合病灶检测器网络与病变程度分类器网络的输出信息,判断该眼底是否患有病理性近视;d. The pathological myopia discriminator integrates the output information of the lesion detector network and the lesion degree classifier network to determine whether the fundus suffers from pathological myopia;
e.所述病理性近视检测网络模型输出所输入的眼底图像的病变程度、病灶位置及种类,以及该眼底图像是否属于病理性近视。e. The pathological myopia detection network model outputs the lesion degree, lesion location and type of the input fundus image, and whether the fundus image belongs to pathological myopia.
作为优选,步骤d中,判断该眼底是否患有病理性近视的具体方法为:若眼底病变程度为正常:等级0,或眼底病变程度为豹纹状眼底:等级1,但并未检测到病灶,则判断为非病理性近视,其他情况则判断为病理性近视。Preferably, in step d, the specific method for judging whether the fundus suffers from pathological myopia is: if the degree of fundus lesions is normal: grade 0, or the degree of fundus lesions is leopard-striped fundus: grade 1, but no lesions are detected , it is judged as non-pathological myopia, and other cases are judged as pathological myopia.
作为优选,所述的病变程度分类器包括深度残差网络、一层全连接层和一层Softmax分类层。Preferably, the lesion degree classifier includes a deep residual network, a fully connected layer and a Softmax classification layer.
作为优选,所述病灶检测器包括一个骨干网络,一个RPN网络,一个ROI-Pooling层和一个分类器。Preferably, the lesion detector includes a backbone network, an RPN network, a ROI-Pooling layer and a classifier.
作为优选,所述病理性近视判别器由逻辑判断语句构成。Preferably, the pathological myopia discriminator is composed of logical judgment sentences.
本发明的有益效果:Beneficial effects of the present invention:
1、相较于现存的基于神经网络的眼底图像分析模型,本发明不仅可以对眼底图片的整体病变程度或种类进行预测,还可以预测具体病灶位置及种类。1. Compared with the existing fundus image analysis model based on neural network, the present invention can not only predict the overall lesion degree or type of the fundus picture, but also predict the specific lesion location and type.
2、本发明可以同时预测眼底图像病变等级,检测眼底图像病灶位置,并综合这两者信息判断该样本是否患病理性近视。2. The present invention can simultaneously predict the lesion grade of the fundus image, detect the position of the lesion in the fundus image, and combine the two information to judge whether the sample is pathological myopia.
本发明的特征及优点将通过实施例进行详细说明。The features and advantages of the present invention will be explained in detail by way of examples.
【具体实施方式】【Detailed ways】
本发明一种基于深度神经网络的病理性近视检测系统,由如下部分组成:计算机存储器、计算机处理器以及可执行程序。所述的可执行程序接收眼底图像,将其传入训练好的病理性近视检测网络模型,最终输出结果。The present invention is a pathological myopia detection system based on a deep neural network, which is composed of the following parts: a computer memory, a computer processor and an executable program. The executable program receives the fundus image, transmits it to the trained pathological myopia detection network model, and finally outputs the result.
所述的病理性近视检测网络模型包括一个病灶检测器、一个病变程度分类器和一个病理性近视判别器。所述病变程度分类器用于判断眼底图像的病变等级(具体等级划分见表1);若该眼底图像病变等级不为0,则将眼底图像送入病灶检测器,所述病灶检测器用于检测眼底图像中的病灶种类及位置;所述病理性近视判别器根据所述病变程度分类器与所述病灶检测器的输出结果判别该眼底图像是否患有病理性近视。The pathological myopia detection network model includes a lesion detector, a lesion degree classifier and a pathological myopia discriminator. The lesion degree classifier is used to determine the lesion grade of the fundus image (see Table 1 for specific grades); if the lesion grade of the fundus image is not 0, the fundus image is sent to the lesion detector, which is used to detect the fundus. The type and location of the lesion in the image; the pathological myopia discriminator discriminates whether the fundus image suffers from pathological myopia according to the output results of the lesion degree classifier and the lesion detector.
表1Table 1
所述的病变程度分类器包括深度残差网络(ResNet-101)和一层全连接层(FCLayer),一层Softmax分类层。其中ResNet-101的结构包括第一卷积层、第二卷积层组、第三卷积层组、第四卷积层组、第五卷积层组。The lesion degree classifier includes a deep residual network (ResNet-101), a fully connected layer (FCLayer), and a Softmax classification layer. The structure of ResNet-101 includes the first convolutional layer, the second convolutional layer group, the third convolutional layer group, the fourth convolutional layer group, and the fifth convolutional layer group.
所述病灶检测器借用Faster-RCNN目标检测网络结构,具体包括一个骨干网络(ResNet-101),一个RPN网络,一个ROI-Pooling层和一个分类器。The lesion detector borrows the Faster-RCNN target detection network structure, which specifically includes a backbone network (ResNet-101), an RPN network, a ROI-Pooling layer and a classifier.
所述病理性近视判别器由逻辑判断语句构成。The pathological myopia discriminator is composed of logical judgment sentences.
所述的病理性近视检测网络模型具体训练过程如下:The specific training process of the pathological myopia detection network model is as follows:
(1)收集眼底图像并进行标注作为训练用数据集,该数据集分为两部分,一是眼底病变程度数据集,该眼底病变程度数据集的标注为眼底图像病变程度(0,1,2,3,4);二是病灶检测数据集,该病灶检测数据集的标注包括:病灶位置(中心点坐标,宽度,高度)和病灶种类(CNV,漆裂纹,Fuchs斑)。(1) Collect fundus images and label them as a training dataset. The dataset is divided into two parts. One is the fundus lesion degree dataset, which is labeled as the fundus image lesion degree (0, 1, 2) , 3, 4); the second is the lesion detection dataset, the annotation of the lesion detection dataset includes: lesion location (coordinates of center point, width, height) and lesion type (CNV, paint crack, Fuchs spot).
(2)对数据集中的眼底图像进行预处理,使其符合网络输入要求。(2) Preprocess the fundus images in the dataset to make them meet the network input requirements.
(3)对病理性近视检测网络模型进行训练,训练过程分为两阶段:(3) The pathological myopia detection network model is trained, and the training process is divided into two stages:
第一阶段:使用眼底病变程度数据集训练病变程度分类器。The first stage: using the fundus lesion degree dataset to train the lesion degree classifier.
该部分网络参数均采用随机初始化。This part of the network parameters are initialized randomly.
初始学习率设置为0.001,采用余弦退火学习率衰减。The initial learning rate is set to 0.001, and the learning rate decay is adopted with cosine annealing.
采用随机梯度下降算法,训练集中所有数据经过一次网络完成一个轮次,待网络收敛后固定该部分参数,训练完成。Using the stochastic gradient descent algorithm, all the data in the training set go through the network to complete one round, and after the network converges, the parameters of this part are fixed, and the training is completed.
第二阶段:使用病灶检测数据集对病灶检测器进行训练。Stage 2: The lesion detector is trained using the lesion detection dataset.
病灶检测器网络中,骨干网络ResNet101的参数初始化自阶段一训练完成的病变程度分类器网络。其余部分网络参数均采用随机初始化。In the lesion detector network, the parameters of the backbone network ResNet101 are initialized from the lesion degree classifier network trained in stage one. The rest of the network parameters are initialized randomly.
训练方法及损失函数的选择均参考文献(S.Ren,K.He,R.Girshick and J.Sun,"Faster R-CNN:Towards Real-Time Object Detection with Region ProposalNetworks,"in IEEE Transactions on Pattern Analysis and Machine Intelligence,vol.39,no.6,pp.1137-1149,1June 2017,doi:10.1109/TPAMI.2016.2577031)。The selection of training method and loss function are all references (S.Ren, K.He, R.Girshick and J.Sun, "Faster R-CNN: Towards Real-Time Object Detection with Region ProposalNetworks," in IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 39, no. 6, pp. 1137-1149, 1 June 2017, doi: 10.1109/TPAMI.2016.2577031).
待网络收敛后,即得到完整的病理性近视检测网络模型。After the network converges, a complete pathological myopia detection network model is obtained.
将收集到的眼底图像输入病理性近视检测网络模型,网络将预测该眼底图像是否患有病理性近视,若患有病理性近视,网络还将输出病灶位置及种类辅助医生诊断。Input the collected fundus images into the pathological myopia detection network model, and the network will predict whether the fundus image has pathological myopia.
所述的病理性近视检测网络模型具体预测过程如下:The specific prediction process of the pathological myopia detection network model is as follows:
对待预测的眼底图像进行预处理使其符合网络模型的输入要求。The fundus images to be predicted are preprocessed to meet the input requirements of the network model.
眼底图像会先输入进病变程度分类器网络进行病变程度的预测,若预测结果为正常(0),则预测结束,病理性近视检测网络模型会输出非PM(0)The fundus image will first be input into the lesion degree classifier network to predict the degree of lesion. If the prediction result is normal (0), the prediction is over, and the pathological myopia detection network model will output non-PM (0).
若预测结果为不正常(1,2,3,4),则眼底图像会进入病灶检测网络,被网络检测到的病灶会被用方框框出,并标出病灶类型及预测概率。If the predicted result is abnormal (1, 2, 3, 4), the fundus image will enter the lesion detection network, and the lesions detected by the network will be framed by a box, and the type of the lesion and the predicted probability will be marked.
病理性近视判别器综合病灶检测器网络与病变程度分类器网络的输出信息,判断该眼底是否患有病理性近视,具体方法为:若眼底病变程度为正常(0)或眼底病变程度为豹纹状眼底(1)但并未检测到病灶,则判断为非病理性近视,其他情况则判断为病理性近视。The pathological myopia discriminator integrates the output information of the lesion detector network and the lesion degree classifier network to determine whether the fundus has pathological myopia. The specific method is: if the degree of fundus lesions is normal (0) or the degree of fundus lesions is leopard print If no lesions were detected, it was judged as non-pathological myopia, and in other cases, it was judged as pathological myopia.
最终,所述病理性近视检测网络会输出所输入眼底图像的病变程度、病灶位置及种类,以及该眼底图像是否属于病理性近视。Finally, the pathological myopia detection network will output the lesion degree, lesion location and type of the input fundus image, and whether the fundus image belongs to pathological myopia.
利用本发明的病理性近视检测网络模型实现了对近视性黄斑病变的分级,分级效率高,且具有很高的精度,能够在临床上针对病理性近视这一日益受到关注的疾病,提供强大的AI技术辅助支持,帮助医生快速有效地筛查、诊断疾病。The pathological myopia detection network model of the present invention realizes the grading of myopic macular degeneration, has high grading efficiency and high precision, and can clinically target pathological myopia, a disease that is increasingly concerned, and provide powerful AI technology-assisted support helps doctors screen and diagnose diseases quickly and effectively.
上述实施例是对本发明的说明,不是对本发明的限定,任何对本发明简单变换后的方案均属于本发明的保护范围。The above-mentioned embodiments are illustrative of the present invention, not limitations of the present invention, and any scheme after simple transformation of the present invention belongs to the protection scope of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111391392.5A CN114334124A (en) | 2021-11-23 | 2021-11-23 | A pathological myopia detection system based on deep neural network |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111391392.5A CN114334124A (en) | 2021-11-23 | 2021-11-23 | A pathological myopia detection system based on deep neural network |
Publications (1)
Publication Number | Publication Date |
---|---|
CN114334124A true CN114334124A (en) | 2022-04-12 |
Family
ID=81045871
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111391392.5A Pending CN114334124A (en) | 2021-11-23 | 2021-11-23 | A pathological myopia detection system based on deep neural network |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114334124A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115049655A (en) * | 2022-08-15 | 2022-09-13 | 汕头大学·香港中文大学联合汕头国际眼科中心 | Mouse model retina focus distribution analysis method |
CN116491892A (en) * | 2023-06-28 | 2023-07-28 | 依未科技(北京)有限公司 | Myopia fundus change assessment method and device and electronic equipment |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112652392A (en) * | 2020-12-22 | 2021-04-13 | 成都市爱迦科技有限责任公司 | Fundus anomaly prediction system based on deep neural network |
-
2021
- 2021-11-23 CN CN202111391392.5A patent/CN114334124A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112652392A (en) * | 2020-12-22 | 2021-04-13 | 成都市爱迦科技有限责任公司 | Fundus anomaly prediction system based on deep neural network |
Non-Patent Citations (2)
Title |
---|
LI LU等: "AI-model for identifying pathologic myopia based on deep learning algorithms of myopic maculopathy classification and "plus" lesion detection in fundus images", 《FRONTIERS IN CELL AND DEVELOPMENTAL BIOLOGY》, vol. 09, 15 October 2021 (2021-10-15), pages 2 * |
金凯: "重要眼病基于计算机辅助图像分析诊断技术研究", 《中国博士学位论文全文数据库 信息科技辑》, no. 06, 15 June 2018 (2018-06-15), pages 138 - 125 * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115049655A (en) * | 2022-08-15 | 2022-09-13 | 汕头大学·香港中文大学联合汕头国际眼科中心 | Mouse model retina focus distribution analysis method |
CN115049655B (en) * | 2022-08-15 | 2022-11-11 | 汕头大学·香港中文大学联合汕头国际眼科中心 | Mouse model retina focus distribution analysis method |
US11839428B1 (en) | 2022-08-15 | 2023-12-12 | Joint Shantou International Eye Center of Shantou University and the Chinese University of Hong Kong | Method for analyzing distribution of retinal lesions in mouse model |
CN116491892A (en) * | 2023-06-28 | 2023-07-28 | 依未科技(北京)有限公司 | Myopia fundus change assessment method and device and electronic equipment |
CN116491892B (en) * | 2023-06-28 | 2023-09-22 | 依未科技(北京)有限公司 | Myopia fundus change assessment method and device and electronic equipment |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110276356B (en) | Fundus image microaneurysm identification method based on R-CNN | |
CN108615051B (en) | Diabetic retina image classification method and system based on deep learning | |
CN113011485B (en) | Multi-mode multi-disease long-tail distribution ophthalmic disease classification model training method and device | |
CN109472781B (en) | Diabetic retinopathy detection system based on serial structure segmentation | |
CN111481166B (en) | Automatic identification system based on eye ground screening | |
CN110648344B (en) | A device for classifying diabetic retinopathy based on local lesion characteristics | |
EP3659067B1 (en) | Method of modifying a retina fundus image for a deep learning model | |
CN111028206A (en) | Prostate cancer automatic detection and classification system based on deep learning | |
CN109948719B (en) | Automatic fundus image quality classification method based on residual dense module network structure | |
CN114612389B (en) | Fundus image quality evaluation method and device based on multi-source and multi-scale feature fusion | |
CN112185523B (en) | Diabetic retinopathy classification method based on multi-scale convolutional neural network | |
CN110837803A (en) | Diabetic retinopathy grading method based on depth map network | |
CN105513077A (en) | System for screening diabetic retinopathy | |
CN114334124A (en) | A pathological myopia detection system based on deep neural network | |
CN112837805A (en) | Extraction method of eyelid topological morphological features based on deep learning | |
CN110021022A (en) | A kind of thyroid gland nuclear medical image diagnostic method based on deep learning | |
CN113160119A (en) | Diabetic retinopathy image classification method based on deep learning | |
CN110826576A (en) | Cervical lesion prediction system based on multi-mode feature level fusion | |
CN117893530B (en) | Throat image analysis system based on artificial intelligence | |
Hatanaka et al. | CAD scheme to detect hemorrhages and exudates in ocular fundus images | |
WO2019073962A1 (en) | Image processing device and program | |
Harangi et al. | Automatic detection of the optic disc using majority voting in a collection of optic disc detectors | |
Kumar et al. | Automatic detection of red lesions in digital color retinal images | |
CN110598724A (en) | Cell low-resolution image fusion method based on convolutional neural network | |
Mu et al. | Improved model of eye disease recognition based on VGG model |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |