CN114330978A - 一种空地机器人任务动态分配方法、存储介质及终端设备 - Google Patents

一种空地机器人任务动态分配方法、存储介质及终端设备 Download PDF

Info

Publication number
CN114330978A
CN114330978A CN202111332092.XA CN202111332092A CN114330978A CN 114330978 A CN114330978 A CN 114330978A CN 202111332092 A CN202111332092 A CN 202111332092A CN 114330978 A CN114330978 A CN 114330978A
Authority
CN
China
Prior art keywords
air
ground
task
robot
ground robot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202111332092.XA
Other languages
English (en)
Other versions
CN114330978B (zh
Inventor
涂伟
周连杰
李清泉
张亮
张德津
王欢
周宝定
汪驰升
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen University
Original Assignee
Shenzhen University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen University filed Critical Shenzhen University
Priority to CN202111332092.XA priority Critical patent/CN114330978B/zh
Publication of CN114330978A publication Critical patent/CN114330978A/zh
Application granted granted Critical
Publication of CN114330978B publication Critical patent/CN114330978B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manipulator (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

本发明公开了一种空地机器人任务动态分配方法、存储介质及终端设备,其中,方法包括步骤:布局n个用于对m个任务点进行观测的空地机器人,并定义所述空地机器人的观测描述模型,所述空地机器人包括空中机器人和地面机器人,其中,n大于m;基于所述空地机器人的观测描述模型,按照时空特性建立任务点对应的状态模型,基于所述状态模型获取空地机器人执行任务点时的收益模型;基于所述收益模型建立双阶段启发式任务分配策略,完成空地机器人的任务动态分配。本发明提供的空地机器人任务动态分配方法有效地量化了空地机器人和任务之间的收益关系,能够克服时空参数带来的收益计算偏差,从而支撑空地机器人高效完成作业。

Description

一种空地机器人任务动态分配方法、存储介质及终端设备
技术领域
本发明涉及任务动态分布技术领域,尤其涉及一种空地机器人任务动 态分配方法、存储介质及终端设备。
背景技术
智能无人系统是集机械、电子、控制、传感、人工智能等多学科先进 技术于一体的复杂系统。随着人工智能、精密制造、智能传感技术的发展, 当前智能无人系统已是第三代,这类系统带有多种传感器,能够将多种传 感器得到的信息进行融合处理,能够适应环境的动态变化,具有较强的自 适应能力和学习能力,解决了以往无人系统智能化所需要的多传感器信息 融合、自主导航控制、环境动态感知与本体控制等复杂技术瓶颈,使机器 人单体智能化水平得到了大幅的提升,也为异构多智能机器人群体协同提 供了基础支撑。
相比于定点抓拍摄像头,无人机具有更大优势,不仅能弥补监控摄像 头的盲点地区,观测区域交通状况,还能灵活移动,自动调节高度,将查 处现场的过程清晰地展现出来。美国宾夕法尼亚大学的Michael等人提出 了一种抽象模型,使空中平台不需要特定专业知识即可控制地面机器人组。 但是,目前空地协同方案中空地机器人缺乏有效的协同机制和方法,协同 效果有待进一步提高。
因此,现有技术还有待于改进和发展。
发明内容
鉴于上述现有技术的不足,本发明的目的在于提供一种空地机器人任 务动态分配方法、存储介质及终端设备,旨在解决现有空地协同方案中空 地机器人缺乏有效的协同机制,导致空地机器人无法高效执行任务的问题。
本发明的技术方案如下:
一种空地机器人任务动态分配方法,其中,包括步骤:
布局n个用于对m个任务点进行观测的空地机器人,并定义所述空地 机器人的观测描述模型,所述空地机器人包括空中机器人和地面机器人, 其中,n大于m;
基于所述空地机器人的观测描述模型,按照时空特性建立任务点对应 的状态模型,基于所述状态模型获取空地机器人执行任务点时的收益模型;
基于所述收益模型建立双阶段启发式任务分配策略,完成空地机器人 的任务动态分配。
所述的空地机器人任务动态分配方法,其中,所述空地机器人的观测 描述模型包括空中机器人的观测描述模型和地面机器人的观测描述模型, 其中,定义空中机器人的观测描述模型为: βaerial=∑α1×raerial2×θaeeial3×ηaerial,其中,βaerial是用于执行任务时空 中机器人的能力指数,α为相关系数,raerial为空中机器人执行任务时的空 间分辨率,θaeeial为空中机器人执行观测任务时的倾斜角度,ηaerial为空中机 器人执行任务时的空间覆盖范围;定义地面机器人的观测描述模型为: βground=min{α1×rground2×ηground3×θground,},其中,βground是用于执行任务 时地面机器人的能力指数,min{}为选取最小值函数,α为相关系数,rground为地面机器人执行任务时的空间分辨率,θground为地面机器人执行观测任务 时的倾斜角度,ηground为地面机器人执行任务时的空间覆盖范围。
所述的空地机器人任务动态分配方法,其中,基于所述空地机器人的 观测描述模型,按照时空特性建立任务点对应的状态模型的步骤包括:
假设任务空间中包含分布于二维平面上不同位置的m个任务点,定义 第i个任务点在时刻t的状态值为Si(t),则第i个任务点的状态模型表示 为:
Figure BDA0003349173150000031
其中,Si(0)是第i个目标点的 初始状态值(Si(t)>0),αi是第i个目标点的状态变化率,βji是用于执行第i 个任务的第j个空地机器人的能力指数,ni是分配到该任务点的空地机器 人的数量,ε是状态阈值。
所述的空地机器人任务动态分配方法,其中,基于所述状态模型获取 空地机器人执行任务点时的收益模型为:
Figure BDA0003349173150000032
其中,dji表 示第j个地面机器人距离第i个任务点的空间距离,
Figure BDA0003349173150000033
表示第j个地面机 器人在时刻t执行第i个任务取得的原始收益。
所述的空地机器人任务动态分配方法,其中,所述空间距离为欧式距 离、马氏距离或闵科夫斯基距离。
所述的空地机器人任务动态分配方法,其中,基于所述收益模型建立 双阶段启发式任务分配策略,完成空地机器人的任务动态分配的步骤包括:
在第一阶段,计算将第i个空地机器人分配给第j个任务点所获得的 收益值矩阵,对于每个任务点,计算各个空地机器人执行所述任务点获得 的最大收益值,并按最大收益值由大到小对任务点进行排序,排在前面的 任务点优先选择一个对应的空地机器人;对于第j个任务点,从所述收益 值矩阵中选择最大值对应的空地机器人与所述第j个任务点匹配;
在第二阶段,对于在第一阶段中未分配的空地机器人,计算将其分配 给各个任务点所能产生的收益增加值矩阵,对于每个未分配的空地机器人, 求得所述收益增加值矩阵中的最大值
Figure BDA0003349173150000034
和第二大值
Figure BDA0003349173150000035
之间的差值
Figure BDA0003349173150000041
将所述未分配的空地机器人按
Figure BDA0003349173150000042
值由大到小优先进行分配 排序;对于当前未分配的空地机器人,从所述收益增加值矩阵中选择最大 值对应的任务点与所述当前未分配的空地机器人匹配。
所述的空地机器人任务动态分配方法,其中,在第一阶段还包括步骤: 遍历所有未分配的任务节点,从所述收益值矩阵中选择最大值对应的空地 机器人与所述未分配的任务点匹配,直至每一个任务节点至少分配到一个 空地机器人。
所述的空地机器人任务动态分配方法,其中,在第二阶段还包括步骤: 遍历所有未分配的空地机器人,根据所述收益增加矩阵选择对应分配的任 务点,直至所有未分配的空地机器人全部分配。
一种存储介质,其中,所述存储介质存储有一个或者多个程序,所述 一个或者多个程序可被一个或者多个处理器执行,以实现本发明所述空地 机器人任务动态分配方法中的步骤。
一种终端设备,其中,包括:处理器、存储器及通信总线;所述存储器 上存储有可被所述处理器执行的计算机可读程序;
所述通信总线实现处理器和存储器之间的连接通信;
所述处理器执行所述计算机可读程序时实现本发明所述空地机器人任 务动态分配方法中的步骤。
有益效果:本发明提供了一种空地机器人任务动态分配方法,通过建 立空地机器人观测指数模型,设计双阶段启发式任务分配策略,将任务分 配划分为两个阶段,按照收益增加高低分配空地机器人。本发明为空地机 器人分配任务节点收益计算提供了一种定量化的方法,有效地降低了任务 动态分配实时在线资源单位时间消耗量,显著提升了空地机器人任务动态 分配计算效率;根据时空特性和启发式算法进行任务动态分配,支撑空地机器人高效完成作业。
附图说明
图1为本发明一种空地机器人任务动态分配方法的流程图。
图2为本发明一种终端设备的结构原理图。
具体实施方式
本发明提供一种空地机器人任务动态分配方法、存储介质及终端设备, 为使本发明的目的、技术方案及效果更加清楚、明确,以下对本发明进一 步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明, 并不用于限定本发明。
请参阅图1,图1为本发明提供的一种空地机器人任务动态分配方法较 佳实施例的流程图,如图所示,其包括步骤:
S10、布局n个用于对m个任务点进行观测的空地机器人,并定义所述 空地机器人的观测描述模型,所述空地机器人包括空中机器人和地面机器 人,其中,n大于m;
S20、基于所述空地机器人的观测描述模型,按照时空特性建立任务点 对应的状态模型,基于所述状态模型获取空地机器人执行任务点时的收益 模型;
S30、基于所述收益模型建立双阶段启发式任务分配策略,完成空地机 器人的任务动态分配。
本实施例针对空地机器人协同作业,提出了一种基于时空启发式算法 的空地机器人任务动态分配方法,该方法首先建立了空地机器人的观测指 数模型,然后设计双阶段启发式任务分配策略,将任务分配划分为两个阶 段,按照收益增加高低分配空地机器人;本实施例并融合地理时空位置、 任务完成能力指数、任务点在某时刻的状态值,来测定任务完成带来的收 益,有效地量化了空地机器人和任务之间的收益关系,能够克服时空参数带来的收益计算偏差;本实施例为空地机器人分配任务节点收益计算提供 了一种定量化的方法,有效地降低了任务动态分配实时在线资源单位时间 消耗量,显著提升了空地机器人任务动态分配计算效率;根据时空特性和 启发式算法进行任务动态分配,支撑空地机器人高效完成作业。
在一些实施方式中,所述空地机器人包括空中机器人和地面机器人, 所述空中机器人负责全局观测,全局测图,观测精度稍低;地面机器人负 责局部观测,局部测图,观测精度较高。其协同观测思路为地面机器人观 测辅助空中观测机器人,空中机器人进行全局观测,地面机器人辅助进行 高精度观测,从而实现全局高精度测图。在本实施例中,所述空地机器人 的观测描述模型包括空中机器人的观测描述模型和地面机器人的观测描述 模型,其中,定义空中机器人的观测描述模型为: βaerial=∑α1×raerial2×θaeeial3×ηaerial,其中,βaerial是用于执行任务时空 中机器人的能力指数,α为相关系数,raerial为空中机器人执行任务时的空 间分辨率,θaeeial为空中机器人执行观测任务时的倾斜角度,ηaerial为空中机 器人执行任务时的空间覆盖范围;定义地面机器人的观测描述模型为: βground=min{α1×rground2×ηground3×θground,},其中,βground是用于执行任务 时地面机器人的能力指数,min{}为选取最小值函数,α为相关系数,rground为地面机器人执行任务时的空间分辨率,θground为地面机器人执行观测任务 时的倾斜角度,ηground为地面机器人执行任务时的空间覆盖范围。
在一些实施方式中,基于所述空地机器人的观测描述模型,按照时空 特性建立任务点对应的状态模型的步骤包括:假设任务空间中包含分布于 二维平面上不同位置的m个任务点,为了区别不同目标在时刻t的重要性, 每个任务点具有一个对应的收益函数Rj,i,tφi(t),其中Ri是完成任务i可以 获得的最大收益,φi(t)是完成任务i获得的收益随时间变化的“打折函数”, 假设当φi(t)≠0时,φi(t)/dt≠0,或者φi(t)/dt<0;定义第i个任务点在时刻 t的状态值为Si(t),空地机器人完成任务是通过将其状态归零实现,则第i个任务点的状态模型表示为:
Figure BDA0003349173150000071
其中, Si(0)是第i个目标点的初始状态值(Si(t)>0),αi是第i个目标点的状态变 化率,βji是用于执行第i个任务的第j个空地机器人的能力指数,ni是分 配到该任务点的空地机器人的数量,ε是状态阈值。整个任务的目标是使获 得的最终任务收益最大化。
在本实施例中,基于时空特性的第j个地面机器人在时刻t执行第i 个任务取得的收益模型表示为:
Figure BDA0003349173150000072
其中,dji表示第j个 地面机器人距离第i个任务点的空间距离,
Figure BDA0003349173150000073
表示第j个地面机器人在时 刻t执行第i个任务取得的原始收益。其中,所述空间距离为欧式距离、 马氏距离或闵科夫斯基距离,但不限于此。
在一些实施方式中,启发式算法最大的优点是计算量少,特别适合实 时性要求高的场合,对于多空地机器人的任务分配问题,根据经验知识, 以下两个启发式规则将被融入到算法的构造中:
1)对于某个任务点而言,完成其获得的收益值Ri越大,表明其重要程 度越高,越应该被优先分配。
2)对于某个空地机器人而言,计算出把它分配给不同任务时对系统整 体指标的提高值(ΔRi,1,ΔRi,2,...,ΔRi,M)。其中,ΔRi,j为将第i个空地机器人分配 给第j个任务点时系统性能指标的增加值,求得(ΔRi,1,ΔRi,2,...,ΔRi,M)中的最大 值ΔRi 1和第二大值ΔRi 2,并计算二者的差值ΔRi 1-ΔRi 2。经验表明,ΔRi 1-ΔRi 2较大者应该优先分配。
基于上述两个启发式规则,本实施提供出一种双阶段启发式任务分配 策略,有n个空地机器人和m个任务点,且n>m,则具体操作方式为:
在第一阶段,计算将第i(i=1,2,...,N)个空地机器人分配给第j(j=1,2,...,M)个任务点所获得的收益值矩阵
Figure BDA0003349173150000081
对于 每个任务点,计算各个空地机器人执行所述任务点获得的最大收益值,并 按最大收益值由大到小对任务点进行排序,排在前面的任务点优先选择一 个对应的空地机器人;对于第j个任务点,从所述收益值矩阵R1,j,R2,j,...,RN,j中选择最大值对应的空地机器人与所述第j个任务点匹配。同时,优先级 较高的任务点匹配的空地机器人在后续分配中不再考虑。
在第二阶段,对于在第一阶段中未分配的空地机器人(数量为n-m), 计算将其分配给各个任务点所能产生的收益增加值矩阵
Figure BDA0003349173150000082
ΔRi,j表示将第i个空地机器人分配给第 j个任务点后整个任务收益的增加值,对于每个未分配的空地机器人,求 得所述收益增加值矩阵中的最大值
Figure BDA0003349173150000083
和第二大值
Figure BDA0003349173150000084
之间的差值
Figure BDA0003349173150000085
将所述未分配的空地机器人按
Figure BDA0003349173150000086
值由大到小优先进行分配 排序;对于当前未分配的空地机器人,从所述收益增加值矩阵中选择最大 值对应的任务点与所述当前未分配的空地机器人匹配。
在一些具体的实施方式中,在第一阶段还包括步骤:遍历所有未分配 的任务节点,从所述收益值矩阵中选择最大值对应的空地机器人与所述未 分配的任务点匹配,直至每一个任务节点至少分配到一个空地机器人。
在一些具体的实施方式中,所在第二阶段还包括步骤:遍历所有未分 配的空地机器人,按照ΔR来计算收益增加矩阵,计算出对应分配的任务节 点,直至所有未分配的空地机器人全部分配。
在本实施例中,所述第一阶段的分配主要针对任务点而言,保证了所 有任务点分配到一个空地机器人,同时按照任务点的重要程度进行先后分 配。第二阶段根据第二条启发式规则,从未分配的空地机器人角度出发进 行分配,将空地机器人分配到任务收益增加最大的任务点。假设将一个空 地机器人分配给任务点进行收益计算所消耗的时间是t0,计算第一阶段的计 算复杂性为O(t0.M.N),并计算第二阶段的计算复杂性为O(t0.M.(N-M)),将其 相加得到整个启发式任务分配算法的计算复杂度为O(M.N)。
在一些实施方式中,还提供一种存储介质,其中,所述存储介质存储 有一个或者多个程序,所述一个或者多个程序可被一个或者多个处理器执 行,以实现本发明所述空地机器人任务动态分配方法中的步骤。
基于上述空地机器人任务动态分配方法,本申请还提供了一种终端设 备,如图2所示,其包括至少一个处理器(processor)20;显示屏21;以 及存储器(memory)22,还可以包括通信接口(Communications Interface) 23和总线24。其中,处理器20、显示屏21、存储器22和通信接口23可 以通过总线24完成相互间的通信。显示屏21设置为显示初始设置模式中 预设的用户引导界面。通信接口23可以传输信息。处理器20可以调用存 储器22中的逻辑指令,以执行上述实施例中的方法。
此外,上述的存储器22中的逻辑指令可以通过软件功能单元的形式实 现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介 质中。
存储器22作为一种计算机可读存储介质,可设置为存储软件程序、计 算机可执行程序,如本公开实施例中的方法对应的程序指令或模块。处理 器20通过运行存储在存储器22中的软件程序、指令或模块,从而执行功 能应用以及数据处理,即实现上述实施例中的方法。
存储器22可包括存储程序区和存储数据区,其中,存储程序区可存储 操作系统、至少一个功能所需的应用程序;存储数据区可存储根据终端设 备的使用所创建的数据等。此外,存储器22可以包括高速随机存取存储器, 还可以包括非易失性存储器。例如,U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者 光盘等多种可以存储程序代码的介质,也可以是暂态存储介质。
此外,存储介质以及终端设备中的多条指令处理器加载并执行的具体 过程在上述方法中已经详细说明,在这里就不再一一陈述。
综上所述,本发明公开了一种空地机器人任务动态分配方法,该方法 利用多个空地机器人、时空启发算法和双阶段启发式任务分配策略,将任 务动态分配给空地机器人。本发明公开的空地机器人任务分配策略,计算 复杂度低、适合于计算资源有限的空地机器人的任务动态分配,降低了任 务分配的复杂度,能够降低任务动态分配计算带来的延迟。本发明还利用 地理时空位置、建立空地机器人观测指数模型,任务点在某时刻的状态值,来测定任务完成带来的收益,有效地量化了空地机器人和任务之间的收益 关系,能够克服时空参数带来的收益计算偏差。
应当理解的是,本发明的应用不限于上述的举例,对本领域普通技术 人员来说,可以根据上述说明加以改进或变换,所有这些改进和变换都应 属于本发明所附权利要求的保护范围。

Claims (10)

1.一种空地机器人任务动态分配方法,其特征在于,包括步骤:
布局n个用于对m个任务点进行观测的空地机器人,并定义所述空地机器人的观测描述模型,所述空地机器人包括空中机器人和地面机器人,其中,n大于m;
基于所述空地机器人的观测描述模型,按照时空特性建立任务点对应的状态模型,基于所述状态模型获取空地机器人执行任务点时的收益模型;
基于所述收益模型建立双阶段启发式任务分配策略,完成空地机器人的任务动态分配。
2.根据权利要求1所述的空地机器人任务动态分配方法,其特征在于,所述空地机器人的观测描述模型包括空中机器人的观测描述模型和地面机器人的观测描述模型,其中,定义空中机器人的观测描述模型为:βaerial=∑α1×raerial2×θaeeial3×ηaerial,其中,βaerial是用于执行任务时空中机器人的能力指数,α为相关系数,raerial为空中机器人执行任务时的空间分辨率,θaeeial为空中机器人执行观测任务时的倾斜角度,ηaerial为空中机器人执行任务时的空间覆盖范围;定义地面机器人的观测描述模型为:βground=min{α1×rground2×ηground3×θground,},其中,βground是用于执行任务时地面机器人的能力指数,min{}为选取最小值函数,α为相关系数,rground为地面机器人执行任务时的空间分辨率,θground为地面机器人执行观测任务时的倾斜角度,ηground为地面机器人执行任务时的空间覆盖范围。
3.根据权利要求2所述的空地机器人任务动态分配方法,其特征在于,基于所述空地机器人的观测描述模型,按照时空特性建立任务点对应的状态模型的步骤包括:
假设任务空间中包含分布于二维平面上不同位置的m个任务点,定义第i个任务点在时刻t的状态值为Si(t),则第i个任务点的状态模型表示为:
Figure FDA0003349173140000021
其中,Si(0)是第i个目标点的初始状态值(Si(t)>0),αi是第i个目标点的状态变化率,βji是用于执行第i个任务的第j个空地机器人的能力指数,ni是分配到该任务点的空地机器人的数量,ε是状态阈值。
4.根据权利要求3所述的空地机器人任务动态分配方法,其特征在于,基于所述状态模型获取空地机器人执行任务点时的收益模型为:
Figure FDA0003349173140000022
其中,dji表示第j个地面机器人距离第i个任务点的空间距离,
Figure FDA0003349173140000023
表示第j个地面机器人在时刻t执行第i个任务取得的原始收益。
5.根据权利要求4所述的空地机器人任务动态分配方法,其特征在于,所述空间距离为欧式距离、马氏距离或闵科夫斯基距离。
6.根据权利要求4所述的空地机器人任务动态分配方法,其特征在于,基于所述收益模型建立双阶段启发式任务分配策略,完成空地机器人的任务动态分配的步骤包括:
在第一阶段,计算将第i个空地机器人分配给第j个任务点所获得的收益值矩阵,对于每个任务点,计算各个空地机器人执行所述任务点获得的最大收益值,并按最大收益值由大到小对任务点进行排序,排在前面的任务点优先选择一个对应的空地机器人;对于第j个任务点,从所述收益值矩阵中选择最大值对应的空地机器人与所述第j个任务点匹配;
在第二阶段,对于在第一阶段中未分配的空地机器人,计算将其分配给各个任务点所能产生的收益增加值矩阵,对于每个未分配的空地机器人,求得所述收益增加值矩阵中的最大值
Figure FDA0003349173140000024
和第二大值
Figure FDA0003349173140000025
之间的差值
Figure FDA0003349173140000026
将所述未分配的空地机器人按
Figure FDA0003349173140000027
值由大到小优先进行分配排序;对于当前未分配的空地机器人,从所述收益增加值矩阵中选择最大值对应的任务点与所述当前未分配的空地机器人匹配。
7.根据权利要求6所述的空地机器人任务动态分配方法,其特征在于,在第一阶段还包括步骤:遍历所有未分配的任务节点,从所述收益值矩阵中选择最大值对应的空地机器人与所述未分配的任务点匹配,直至每一个任务节点至少分配到一个空地机器人。
8.根据权利要求6所述的空地机器人任务动态分配方法,其特征在于,在第二阶段还包括步骤:遍历所有未分配的空地机器人,根据所述收益增加矩阵选择对应分配的任务点,直至所有未分配的空地机器人全部分配。
9.一种存储介质,其特征在于,所述存储介质存储有一个或者多个程序,所述一个或者多个程序可被一个或者多个处理器执行,以实现如权利要求1-8任意一项所述空地机器人任务动态分配方法中的步骤。
10.一种终端设备,其特征在于,包括:处理器、存储器及通信总线;所述存储器上存储有可被所述处理器执行的计算机可读程序;
所述通信总线实现处理器和存储器之间的连接通信;
所述处理器执行所述计算机可读程序时实现如权利要求1-8任意一项所述空地机器人任务动态分配方法中的步骤。
CN202111332092.XA 2021-11-11 2021-11-11 一种空地机器人任务动态分配方法、存储介质及终端设备 Active CN114330978B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111332092.XA CN114330978B (zh) 2021-11-11 2021-11-11 一种空地机器人任务动态分配方法、存储介质及终端设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111332092.XA CN114330978B (zh) 2021-11-11 2021-11-11 一种空地机器人任务动态分配方法、存储介质及终端设备

Publications (2)

Publication Number Publication Date
CN114330978A true CN114330978A (zh) 2022-04-12
CN114330978B CN114330978B (zh) 2022-08-09

Family

ID=81044545

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111332092.XA Active CN114330978B (zh) 2021-11-11 2021-11-11 一种空地机器人任务动态分配方法、存储介质及终端设备

Country Status (1)

Country Link
CN (1) CN114330978B (zh)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106020189A (zh) * 2016-05-24 2016-10-12 武汉科技大学 基于邻域约束的空地异构机器人系统路径规划方法
CN106875090A (zh) * 2017-01-09 2017-06-20 中南大学 一种面向动态任务的多机器人分布式任务分配形成方法
CN108416488A (zh) * 2017-12-21 2018-08-17 中南大学 一种面向动态任务的多智能机器人任务分配方法
CN109579843A (zh) * 2018-11-29 2019-04-05 浙江工业大学 一种空地多视角下的多机器人协同定位及融合建图方法
WO2019178147A1 (en) * 2018-03-12 2019-09-19 Virginia Polytechnic Institute And State University Intelligent distribution of data for robotic and autonomous systems
CN112068590A (zh) * 2020-08-21 2020-12-11 广东工业大学 无人机基站飞行规划方法、系统、储存介质及无人机基站
CN112733421A (zh) * 2020-12-01 2021-04-30 南京航空航天大学 一种针对有人无人机协同对地作战的任务规划方法
CN113044458A (zh) * 2021-03-25 2021-06-29 北京物资学院 一种物流机器人动态任务分配方法及系统
CN113157002A (zh) * 2021-05-28 2021-07-23 南开大学 一种基于多无人机多基站的空地协同全覆盖轨迹规划方法
WO2021196529A1 (zh) * 2020-04-02 2021-10-07 同济人工智能研究院(苏州)有限公司 空地协同式智能巡检机器人及巡检方法
CN113487221A (zh) * 2021-07-23 2021-10-08 中南大学 面向动态目标观测的空天异构对地观测资源协同调度方法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106020189A (zh) * 2016-05-24 2016-10-12 武汉科技大学 基于邻域约束的空地异构机器人系统路径规划方法
WO2017202141A1 (zh) * 2016-05-24 2017-11-30 武汉科技大学 基于邻域约束的空地异构机器人系统路径规划方法
CN106875090A (zh) * 2017-01-09 2017-06-20 中南大学 一种面向动态任务的多机器人分布式任务分配形成方法
CN108416488A (zh) * 2017-12-21 2018-08-17 中南大学 一种面向动态任务的多智能机器人任务分配方法
WO2019178147A1 (en) * 2018-03-12 2019-09-19 Virginia Polytechnic Institute And State University Intelligent distribution of data for robotic and autonomous systems
CN109579843A (zh) * 2018-11-29 2019-04-05 浙江工业大学 一种空地多视角下的多机器人协同定位及融合建图方法
WO2021196529A1 (zh) * 2020-04-02 2021-10-07 同济人工智能研究院(苏州)有限公司 空地协同式智能巡检机器人及巡检方法
CN112068590A (zh) * 2020-08-21 2020-12-11 广东工业大学 无人机基站飞行规划方法、系统、储存介质及无人机基站
CN112733421A (zh) * 2020-12-01 2021-04-30 南京航空航天大学 一种针对有人无人机协同对地作战的任务规划方法
CN113044458A (zh) * 2021-03-25 2021-06-29 北京物资学院 一种物流机器人动态任务分配方法及系统
CN113157002A (zh) * 2021-05-28 2021-07-23 南开大学 一种基于多无人机多基站的空地协同全覆盖轨迹规划方法
CN113487221A (zh) * 2021-07-23 2021-10-08 中南大学 面向动态目标观测的空天异构对地观测资源协同调度方法

Also Published As

Publication number Publication date
CN114330978B (zh) 2022-08-09

Similar Documents

Publication Publication Date Title
CN110308740B (zh) 一种面向移动目标追踪的无人机群动态任务分配方法
CN110221614B (zh) 一种基于快速探索随机树的多机器人地图探索方法
CN107179768B (zh) 一种障碍物识别方法及装置
CN109755995B (zh) 基于ros机器人操作系统的机器人自动充电对接方法
CN107831685B (zh) 一种群体机器人的控制方法和系统
CN114281104B (zh) 一种基于改进蚁群算法的多无人机协同调控方法
CN112965507B (zh) 一种基于智能优化的集群无人机协同工作系统及方法
CN112508369A (zh) 基于改进蚁群算法的多无人机任务分配方法
CN112001309A (zh) 基于无人机集群的目标搜索方法、装置、设备及存储介质
CN111798097B (zh) 一种基于市场机制的自主移动机器人任务分配处理方法
WO2021072709A1 (zh) 目标检测与跟踪方法、系统、设备及存储介质
CN116105742B (zh) 复合场景巡检导航方法、系统及相关设备
CN111354022A (zh) 基于核相关滤波的目标跟踪方法及系统
CN112070328B (zh) 环境信息部分已知的多水面无人搜救艇任务分配方法
CN115326051A (zh) 一种基于动态场景的定位方法、装置、机器人及介质
CN114330978B (zh) 一种空地机器人任务动态分配方法、存储介质及终端设备
WO2024067137A1 (zh) 一种无人驾驶航空器的智能续航管理方法、系统和介质
CN113190038A (zh) 一种无人机集群空中区域侦察任务的分配方法
CN115857543A (zh) 一种基于先验信息的多无人机协同搜索方法
CN116520302A (zh) 应用于自动驾驶系统的定位方法和构建三维地图的方法
CN115619954A (zh) 稀疏语义地图的构建方法、装置、设备及存储介质
CN112747752B (zh) 基于激光里程计的车辆定位方法、装置、设备和存储介质
CN113627646A (zh) 一种基于神经网络的路径规划方法、装置、设备及介质
CN114397894A (zh) 一种模仿人类记忆的移动机器人目标搜索方法
CN112214037A (zh) 一种基于野外台站的无人机遥感组网航迹规划方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant