CN114330445A - Wavelet threshold denoising method based on transformer vibration signal sensitive IMF - Google Patents

Wavelet threshold denoising method based on transformer vibration signal sensitive IMF Download PDF

Info

Publication number
CN114330445A
CN114330445A CN202111666053.3A CN202111666053A CN114330445A CN 114330445 A CN114330445 A CN 114330445A CN 202111666053 A CN202111666053 A CN 202111666053A CN 114330445 A CN114330445 A CN 114330445A
Authority
CN
China
Prior art keywords
wavelet
sensitive
imf
denoising
threshold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111666053.3A
Other languages
Chinese (zh)
Inventor
安滨
于柠源
张雷
丁晶
李震
任庆帅
刘丙伟
王人杰
夏苗
黎昊
王冬至
潘玉美
张鹏
刘学谦
李广韬
靳征
安琪
肖文文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Super High Voltage Co Of State Grid Shandong Electric Power Co
State Grid Corp of China SGCC
Original Assignee
Super High Voltage Co Of State Grid Shandong Electric Power Co
State Grid Corp of China SGCC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Super High Voltage Co Of State Grid Shandong Electric Power Co, State Grid Corp of China SGCC filed Critical Super High Voltage Co Of State Grid Shandong Electric Power Co
Priority to CN202111666053.3A priority Critical patent/CN114330445A/en
Publication of CN114330445A publication Critical patent/CN114330445A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Complex Calculations (AREA)

Abstract

The invention discloses a wavelet threshold denoising method based on transformer vibration signal sensitive IMF, relating to the technical field of transformer signal processing; the method of the invention comprises the following steps: and carrying out VMD decomposition on the transformer body vibration signal after the band-pass filtering, and screening out the sensitive IMF by using the sensitive factors of each IMF component. The method is characterized in that a wavelet threshold method is adopted to perform denoising processing on non-sensitive IMF components, and an improved wavelet threshold function is utilized to perform threshold processing on wavelet coefficients, so that the denoising capability of the wavelet threshold method is improved, noise interference is reduced, and more effective information of original vibration signals of the transformer is reserved. The wavelet threshold denoising method based on the transformer vibration signal sensitive IMF effectively improves the denoising capability of the transformer body vibration signal denoising method, improves the denoising efficiency, and meanwhile retains effective information in original signals.

Description

Wavelet threshold denoising method based on transformer vibration signal sensitive IMF
Technical Field
The invention relates to the technical field of transformer signal processing, in particular to a wavelet threshold denoising method based on transformer vibration signal sensitive IMF.
Background
The power transformer is an important device in the power system, and the operation reliability of the power transformer is directly related to the safety and stability of the whole power system. In the running process of the transformer, faults can occur inevitably, the faults can be found and eliminated as soon as possible, and the method has important significance for improving the running safety of the transformer.
The existing transformer fault detection methods include a vibration signal detection method, an infrared imaging monitoring method, an ultrasonic detection method and the like. Wherein the vibration signal detection is widely applied because of the advantages of no direct contact with the power system, easy acquisition, no influence on the normal operation of the whole power system, sensitive response to the defects of the mechanical structure and the like,
however, the vibration sensor collects the sound signals of the running state of the transformer and also has environmental noise, so that effective running state information is submerged in various interferences and effective subsequent processing is difficult to perform. Therefore, how to effectively extract the vibration signal of the transformer becomes the key for accurately judging the fault of the transformer in the follow-up process.
The vibration analysis method analyzes the vibration signal of the transformer body and monitors the mechanical states of the transformer iron core, the winding and the like. The vibration signal of the normal operation transformer body is mainly concentrated in a low frequency band, 100Hz is used as a fundamental frequency, and rich high-order harmonics are contained. However, the noise background of the transformer working site is complex, and the monitored data can be mixed with various noises, wherein other interference noises below 50Hz, small noises above 1000Hz and white noises are taken as main noises. The interference of these noises can reduce the effectiveness of the signal and affect the analysis of the vibration signal.
Therefore, there is a need for an effective method for reducing noise interference in the vibration signal of the transformer body.
Disclosure of Invention
In order to solve the above problems, the present invention provides a wavelet threshold denoising method based on transformer vibration signal sensitive IMF.
In order to achieve the purpose, the invention is realized by the following technical scheme:
a wavelet threshold denoising method based on transformer vibration signal sensitive IMF comprises the following steps:
step A: VMD decomposition is carried out on the transformer body vibration signal subjected to median filtering, the sensitive factor of each IMF component is calculated, and the sensitive IMF components are screened by utilizing the sensitive factor;
and B: improving a wavelet threshold function, and denoising the screened non-sensitive IMF component by using the improved wavelet threshold function; and combining and reconstructing the sensitive IMF component and the denoised non-sensitive IMF component to obtain a complete denoised signal.
A wavelet threshold denoising method based on transformer vibration signal sensitive IMF specifically comprises the following steps:
inputting an original signal s (t) into a band-pass filter, and filtering interference signals below 50Hz and above 1000Hz to obtain a filtered signal s' (t);
decomposing the filtered vibration signal s' (t) into k IMF components by using a VMD algorithm;
thirdly, calculating a sensitive factor, and screening out a sensitive IMF component, wherein the sensitive IMF component specifically comprises the following steps:
calculating a correlation coefficient Cf between each IMF component and the filtered vibration signal s' (t)i
Figure BDA0003451864240000021
In the formula, mui、σiRespectively, the ith IMF component xi(t) mean and standard deviation; μ and σ are the mean and standard deviation, respectively, of the filtered vibration signal s' (t);
② calculating the sensitivity factor Sf of each IMF componenti
Figure BDA0003451864240000022
Selecting sensitive IMF component.
According to the sensitivity factor Sf calculated in (2)iSequencing IMF from large to small to obtain a new IMF sequence and a sensitive factor sequence (Sf)i' }, calculating the difference d between the sensitivity factors of two adjacent IMFsiAnd the subscript corresponding to the maximum difference is i, the first i IMFs are the screened sensitive IMF components.
di=Sfi'-Sfi+1' (3)
Fourthly, denoising the screened (k-i) non-sensitive IMF components by utilizing an improved wavelet threshold function, and specifically comprises the following steps:
a, selecting a proper wavelet basis function, determining the number m of decomposition layers to decompose (k-i) non-sensitive IMF components respectively, and obtaining respective wavelet decomposition coefficients w;
b, constructing an improved wavelet threshold function as shown in a formula (4), and determining the optimal value of a parameter n of the improved wavelet threshold function;
Figure BDA0003451864240000031
wherein w is the wavelet decomposition coefficient obtained in the step one,
Figure BDA0003451864240000032
the value range of the wavelet coefficient and the parameter n after the wavelet coefficient is processed by the threshold function (4) is (0, ∞).
c, solving a wavelet threshold lambda in the formula (4) by adopting a self-adaptive unified threshold method, and performing threshold processing on the wavelet coefficient by using the formula (4), wherein the wavelet threshold solving formula is as follows:
Figure BDA0003451864240000033
in the formula, m is the number of decomposition layers, N is the signal length, and σ is the standard deviation of the noise signal, and the solving formula is:
Figure BDA0003451864240000034
where madian (·) is the median function, w1,allAll wavelet coefficients of the first layer, 0.6754 is an adjustment coefficient.
And d, performing signal reconstruction by using the wavelet coefficient subjected to wavelet threshold processing to obtain (k-i) denoising signals.
Fifthly, combining and reconstructing i sensitive IMF components in the third step and (k-i) denoised non-sensitive IMF components in the fourth step to obtain a complete denoised signal
Figure BDA0003451864240000041
Compared with the prior art, the invention has the following advantages:
the wavelet threshold denoising method based on the transformer vibration signal sensitive IMF screens a sensitive Intrinsic Mode Function (IMF) through Variable Modal Decomposition (VMD), utilizes an improved wavelet threshold method to denoise a non-sensitive IMF component, and reduces noise interference in a transformer body vibration signal. Aiming at the problems of incomplete denoising, noise residue, oscillation and the like existing in the original wavelet threshold denoising, the method improves the threshold function, not only retains the advantages of small mean square error of a hard threshold function and smooth processing of a soft threshold function in the traditional wavelet threshold, but also overcomes the defects of discontinuity of the hard threshold function and deviation of the soft threshold function.
The wavelet threshold denoising method based on the transformer vibration signal sensitive IMF adopts a dynamic selection mode in wavelet threshold selection. Because the wavelet coefficient of noise decreases with increasing scale, when de-noising a signal, the thresholds of different decomposition layers should be selected differently, and the thresholds should decrease with increasing decomposition scale. The threshold selection mode used by the invention enables the threshold to be changed along with the decomposition scale, and the threshold is correspondingly reduced when the decomposition scale is larger, so that the fact that the coefficients of different decomposition layers after wavelet decomposition are different in the proportion distribution of signals and noise is relatively met, the practicability of the threshold can be increased, and the deviation caused by wavelet coefficient threshold error breakage is reduced.
The invention discloses a wavelet threshold denoising method based on transformer vibration signal sensitive IMF, aiming at the interference noise components in the transformer body vibration signal: the method combines three denoising methods, namely band-pass filtering, VMD decomposition and improved wavelet threshold denoising, and effectively improves the denoising capability of the transformer body vibration signal denoising method, improves the denoising efficiency, and simultaneously retains effective information in original signals.
Drawings
FIG. 1 is a schematic diagram of an improved threshold function compared to a conventional threshold function;
FIG. 2 is a flow chart of a wavelet threshold denoising method based on transformer vibration signal sensitive IMF;
FIG. 3 is a time domain waveform of the filtered signal s' (t);
FIG. 4 is a signal s' (t) VMD decomposition;
FIG. 5 is an IMF4 waveform after wavelet threshold denoising;
FIG. 6 shows a signal after wavelet threshold denoising based on sensitive IMF
Figure BDA0003451864240000051
FIG. 7 is a time domain waveform of the filtered signal x' (t);
FIG. 8 shows a signal after wavelet threshold denoising based on sensitive IMF
Figure BDA0003451864240000052
Detailed Description
The invention aims to provide a wavelet threshold denoising method based on transformer vibration signal sensitive IMF, which is realized by the following technical scheme:
a wavelet threshold denoising method based on transformer vibration signal sensitive IMF comprises the following steps:
inputting an original signal s (t) into a band-pass filter, and filtering interference signals below 50Hz and above 1000Hz to obtain a filtered signal s' (t);
decomposing the filtered vibration signal s' (t) into k IMF components by using a VMD algorithm;
thirdly, calculating a sensitive factor, and screening out a sensitive IMF component, wherein the sensitive IMF component specifically comprises the following steps:
calculating a correlation coefficient Cf between each IMF component and the filtered vibration signal s' (t)i
Figure BDA0003451864240000061
In the formula, mui、σiRespectively, the ith IMF component xi(t) mean and standard deviation; μ and σ are the mean and standard deviation, respectively, of the filtered vibration signal s' (t);
② calculating the sensitivity factor Sf of each IMF componenti
Figure BDA0003451864240000062
Selecting sensitive IMF component.
According to the sensitivity factor Sf calculated in (2)iSequencing IMF from large to small to obtain a new IMF sequence and a sensitive factor sequence (Sf)i' }, calculating the difference d between the sensitivity factors of two adjacent IMFsiAnd the subscript corresponding to the maximum difference is i, the first i IMFs are the screened sensitive IMF components.
di=Sfi'-Sfi+1' (3)
Fourthly, denoising the screened (k-i) non-sensitive IMF components by utilizing an improved wavelet threshold function, and specifically comprises the following steps:
a, selecting a proper wavelet basis function, determining the number m of decomposition layers to decompose (k-i) non-sensitive IMF components respectively, and obtaining respective wavelet decomposition coefficients w;
b, constructing an improved wavelet threshold function as shown in a formula (4), and determining the optimal value of a parameter n of the improved wavelet threshold function;
Figure BDA0003451864240000063
wherein w is the wavelet decomposition coefficient obtained in the step one,
Figure BDA0003451864240000071
the value range of the wavelet coefficient and the parameter n after the wavelet coefficient is processed by the threshold function (4) is (0, ∞).
c, solving a wavelet threshold lambda in the formula (4) by adopting a self-adaptive unified threshold method, and performing threshold processing on the wavelet coefficient by using the formula (4), wherein the wavelet threshold solving formula is as follows:
Figure BDA0003451864240000072
in the formula, m is the number of decomposition layers, N is the signal length, and σ is the standard deviation of the noise signal, and the solving formula is:
Figure BDA0003451864240000073
where madian (·) is the median function, w1,allAll wavelet coefficients of the first layer, 0.6754 is an adjustment coefficient.
And d, performing signal reconstruction by using the wavelet coefficient subjected to wavelet threshold processing to obtain (k-i) denoising signals.
Fifthly, combining and reconstructing i sensitive IMF components in the third step and (k-i) denoised non-sensitive IMF components in the fourth step to obtain a complete denoised signal
Figure BDA0003451864240000074
In the traditional wavelet threshold denoising, due to the properties of discontinuity and large variance of a hard threshold function (formula 7), the problem of denoised signal oscillation can occur, and the problem of low similarity between a soft threshold (formula 8) denoised signal and an original signal is solved, and an improved threshold function is provided, as shown in formula (4).
Figure BDA0003451864240000075
Figure BDA0003451864240000076
Figure BDA0003451864240000081
For the improvement threshold function (4):
Figure BDA0003451864240000082
Figure BDA0003451864240000083
from equation (9), the modified threshold function is continuous at λ, i.e. the modified threshold function is continuous within its domain, overcoming the disadvantage of discontinuous hard threshold function. As can be seen from equation (10), as w gradually increases and approaches positive infinity, the improved threshold function value approaches the original wavelet coefficient infinitely, and the deviation from the true coefficient is reduced. Comparison of the three threshold functions, as shown in FIG. 1.
The invention is further described with reference to specific examples.
Example 1
A wavelet threshold denoising method based on transformer vibration signal sensitive IMF is disclosed, the flow of the method is shown in FIG. 2, and the method comprises the following steps:
firstly, inputting an original signal s (t) into a band-pass filter, filtering out interference signals below 50Hz and above 1000Hz, and obtaining a filtered signal s' (t), wherein the time domain waveform of the filtered signal is shown in fig. 3.
Secondly, the VMD algorithm is used to decompose the filtered vibration signal s' (t) into 10 IMF components, as shown in fig. 4.
Thirdly, calculating a sensitive factor, and screening out a sensitive IMF component, and the specific steps are as follows:
according toEquation (1) calculates a correlation coefficient Cf between each IMF component and the filtered vibration signal x' (t)i
Figure BDA0003451864240000091
In the formula, mui、σiRespectively, the ith IMF component xi(t) mean and standard deviation; μ and σ are the mean and standard deviation, respectively, of the filtered vibration signal s' (t).
Secondly, calculating the sensitivity factor Sf of each IMF component according to the formula (2)iThe results are shown in Table 1.
Figure BDA0003451864240000092
TABLE 1 sensitivity factor for each IMF component
IMF1 IMF2 IMF3 IMF4 IMF5 IMF6 IMF7 IMF8 IMF9 IMF10
Sf 1 0.8599 0.4451 0.0242 0.01 0.0081 0.0041 0.0037 0.0007 0
Selecting sensitive IMF component.
According to the sensitivity factor Sf calculated in 2iSequencing IMF from large to small to obtain a new IMF sequence and a sensitive factor sequence (Sf)i' }, calculating the difference d between the sensitivity factors of two adjacent IMFsiAs shown in table 2. The subscript corresponding to the maximum difference is 3, then the first 3 IMFs are the screened-out sensitive IMF components.
TABLE 2 difference between sensitivity factors of two adjacent IMFs
d1 d2 d3 d4 d5 d6 d7 d8 d9
0.1401 0.4148 0.4209 0.0142 0.019 0.0040 0.0004 0.0029 0.0007
Fourthly, denoising the screened 7 non-sensitive IMF components by utilizing an improved wavelet threshold function, and specifically comprises the following steps:
selecting a wavelet basis function coif5, decomposing 5 layers, and decomposing 7 non-sensitive IMF components respectively to obtain respective wavelet decomposition coefficients wi(i=1,2...5)。
Taking IMF4 as an example to show a specific process, calculating a standard deviation of a noise signal according to equation (5):
Figure BDA0003451864240000101
the wavelet threshold calculation result is:
Figure BDA0003451864240000102
and constructing an improved wavelet threshold function, wherein the parameter n is 8, and as shown in formula (11), processing the wavelet coefficient after IMF4 wavelet decomposition by using a wavelet threshold.
Figure BDA0003451864240000103
Thirdly, signal reconstruction is carried out by using the wavelet coefficient after wavelet threshold processing, and IMF4 after wavelet threshold denoising is obtained, as shown in FIG. 5.
Fourthly, after the same processing is carried out on other 6 IMF components, the IMF components and the 3 sensitive IMF components in the third step are combined and reconstructed to obtain a complete de-noising signal
Figure BDA0003451864240000104
As shown in fig. 6.
In order to further prove the denoising effect of the invention, the denoising effect of the improved threshold function of the invention is compared and evaluated with the denoising effect of the traditional soft threshold function and the traditional hard threshold function. Evaluation indexes selected signal-to-noise ratio (SNR), Root Mean Square Error (RMSE), and signal correlation Coefficient (COR), and the comparison results are shown in table 3.
TABLE 3 comparative evaluation result table of evaluation indexes
Figure BDA0003451864240000105
Figure BDA0003451864240000111
According to the evaluation indexes in table 3, the denoising effect of the denoising algorithm provided by the invention is obviously superior to that of the conventional wavelet threshold denoising, and the reduction degree of the effective information of the original signal is higher.
Example 2
A wavelet threshold denoising method based on transformer vibration signal sensitive IMF is disclosed, the flow of the method is shown in FIG. 2, and the method comprises the following steps:
firstly, inputting an original signal x (t) into a band-pass filter, filtering out interference signals below 50Hz and above 1000Hz, and obtaining a filtered signal x' (t), wherein the time domain waveform of the filtered signal is shown in fig. 7.
And secondly, decomposing the filtered vibration signal x' (t) into 6 IMF components by utilizing a VMD algorithm.
Thirdly, calculating a sensitive factor, and screening out a sensitive IMF component, and the specific steps are as follows:
calculating a correlation coefficient Cf between each IMF component and the filtered vibration signal x' (t) according to equation (1)i
Figure BDA0003451864240000112
In the formula, mui、σiRespectively, the ith IMF component xi(t) mean and standard deviation; μ and σ are the mean and standard deviation, respectively, of the filtered vibration signal s' (t).
Calculating the sensitivity factor Sf of each IMF component according to the formula (2)i
Figure BDA0003451864240000113
Sensitivity factor Sf calculated according to equation (2)iSequencing IMF from large to small to obtain a new IMF sequence and a sensitive factor sequence (Sf)i' }, calculating the difference d between the sensitivity factors of two adjacent IMFsi. The subscript corresponding to the maximum difference is 2, then the first 2 IMFs are the screened-out sensitive IMF components.
Fourthly, denoising the screened 4 non-sensitive IMF components by utilizing an improved wavelet threshold function, and specifically comprises the following steps:
selecting a wavelet basis function coif5, decomposing the 4 non-sensitive IMF components with 10 decomposition layers respectively to obtain respective wavelet decomposition coefficients wi(i=1,2...10)。
And (5) calculating the standard deviation of the noise signal according to the formula (5) to obtain a wavelet threshold calculation result.
Figure BDA0003451864240000121
Wherein m is the number of decomposition layers, N is the signal length, and sigma is the standard deviation of the noise signal;
and constructing an improved wavelet threshold function, wherein the parameter n is 4, and processing the wavelet coefficients after IMF4 wavelet decomposition by using a wavelet threshold. And performing signal reconstruction by using the wavelet coefficient subjected to wavelet threshold processing to obtain an IMF component subjected to wavelet threshold denoising.
The combined reconstruction is carried out with 2 sensitive IMF components in the third step to obtain a complete de-noising signal
Figure BDA0003451864240000122
As shown in fig. 8.
As can be seen from the comparison between FIG. 7 and FIG. 8, the denoising algorithm provided by the present invention has a good denoising effect.

Claims (4)

1. A wavelet threshold denoising method based on transformer vibration signal sensitive IMF is characterized by comprising the following steps: the method comprises the following steps:
step A: VMD decomposition is carried out on the transformer body vibration signal subjected to median filtering, the sensitive factor of each IMF component is calculated, and the sensitive IMF components are screened by utilizing the sensitive factor;
and B: improving a wavelet threshold function, and denoising the screened non-sensitive IMF component by using the improved wavelet threshold function; and combining and reconstructing the sensitive IMF component and the denoised non-sensitive IMF component to obtain a complete denoised signal.
2. The wavelet threshold denoising method based on transformer vibration signal sensitive IMF as claimed in claim 1, wherein: the step A comprises the following steps:
inputting an original signal s (t) into a band-pass filter, and filtering interference signals below 50Hz and above 1000Hz to obtain a filtered signal s' (t);
decomposing the filtered vibration signal s' (t) into k IMF components by using a VMD algorithm;
thirdly, calculating a sensitive factor, and screening out a sensitive IMF component, wherein the sensitive IMF component specifically comprises the following steps:
calculating a correlation coefficient Cf between each IMF component and the filtered vibration signal s' (t)i
Figure FDA0003451864230000011
In the formula, mui、σiRespectively, the ith IMF component xi(t) mean and standard deviation; μ and σ are the mean and standard deviation, respectively, of the filtered vibration signal s' (t);
② calculating the sensitivity factor Sf of each IMF componenti
Figure FDA0003451864230000012
Selecting sensitive IMF component:
according to the sensitivity factor Sf calculated in (2)iSequencing IMF from large to small to obtain a new IMF sequence and a sensitive factor sequence (Sf)i' }, calculating the difference d between the sensitivity factors of two adjacent IMFsiAnd the subscript corresponding to the maximum difference is i, then the first i IMFs are the screened sensitive IMF components:
di=Sfi'-Sfi+1' (3)。
3. the wavelet threshold denoising method based on transformer vibration signal sensitive IMF as claimed in claim 1, wherein: the step B comprises the following steps:
denoising the screened (k-i) non-sensitive IMF components by using an improved wavelet threshold function, and specifically comprising the following steps:
a, selecting a proper wavelet basis function, determining the number m of decomposition layers to decompose (k-i) non-sensitive IMF components respectively, and obtaining respective wavelet decomposition coefficients w;
b, constructing an improved wavelet threshold function as shown in a formula (4), and determining the optimal value of a parameter n of the improved wavelet threshold function;
Figure FDA0003451864230000021
wherein w is the wavelet decomposition coefficient obtained in the step one,
Figure FDA0003451864230000022
the value range of the wavelet coefficient and the parameter n after the wavelet coefficient and the parameter n are processed by the threshold function (4) is (0, ∞);
c, performing signal reconstruction by using the wavelet coefficient subjected to wavelet threshold processing to obtain (k-i) denoising signals;
d, performing signal reconstruction by using the wavelet coefficient subjected to wavelet threshold processing to obtain (k-i) denoising signals;
then, combining and reconstructing the screened i sensitive IMF components and the (k-i) denoised non-sensitive IMF components to obtain a complete denoising signal
Figure FDA0003451864230000023
4. The wavelet threshold denoising method based on transformer vibration signal sensitive IMF as claimed in claim 3, wherein: c, performing signal reconstruction by using the wavelet coefficient subjected to wavelet threshold processing to obtain (k-i) denoising signals, specifically comprising the following steps:
solving a wavelet threshold lambda in the formula (4) by adopting a self-adaptive unified threshold method, and performing threshold processing on the wavelet coefficient by using the formula (4), wherein the wavelet threshold solving formula is as follows:
Figure FDA0003451864230000031
in the formula, m is the number of decomposition layers, N is the signal length, and σ is the standard deviation of the noise signal, and the solving formula is:
Figure FDA0003451864230000032
where madian (·) is the median function, w1,allAll wavelet coefficients of the first layer, 0.6754 is an adjustment coefficient.
CN202111666053.3A 2021-12-31 2021-12-31 Wavelet threshold denoising method based on transformer vibration signal sensitive IMF Pending CN114330445A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111666053.3A CN114330445A (en) 2021-12-31 2021-12-31 Wavelet threshold denoising method based on transformer vibration signal sensitive IMF

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111666053.3A CN114330445A (en) 2021-12-31 2021-12-31 Wavelet threshold denoising method based on transformer vibration signal sensitive IMF

Publications (1)

Publication Number Publication Date
CN114330445A true CN114330445A (en) 2022-04-12

Family

ID=81021478

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111666053.3A Pending CN114330445A (en) 2021-12-31 2021-12-31 Wavelet threshold denoising method based on transformer vibration signal sensitive IMF

Country Status (1)

Country Link
CN (1) CN114330445A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117332221A (en) * 2023-09-26 2024-01-02 国网江苏省电力有限公司南通供电分公司 Noise reduction method and system for oil leakage ultrasonic signals of hydraulic mechanism
CN117786333A (en) * 2024-01-08 2024-03-29 江苏省家禽科学研究所 Broiler chicken breeding behavior data acquisition device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117332221A (en) * 2023-09-26 2024-01-02 国网江苏省电力有限公司南通供电分公司 Noise reduction method and system for oil leakage ultrasonic signals of hydraulic mechanism
CN117786333A (en) * 2024-01-08 2024-03-29 江苏省家禽科学研究所 Broiler chicken breeding behavior data acquisition device

Similar Documents

Publication Publication Date Title
WO2021056727A1 (en) Joint noise reduction method based on variational mode decomposition and permutation entropy
CN114330445A (en) Wavelet threshold denoising method based on transformer vibration signal sensitive IMF
US8489396B2 (en) Noise reduction with integrated tonal noise reduction
CN103405227B (en) Double-layer morphological filter based electrocardiosignal preprocessing method
CN110426569B (en) Noise reduction processing method for acoustic signals of transformer
CN112557038A (en) Bearing early fault diagnosis method based on multiple noise reduction processing
CN113378661A (en) Direct current electric energy signal denoising method based on improved wavelet threshold and related detection
CN114970602A (en) Signal denoising method and system based on improved empirical mode decomposition and wavelet threshold function
CN111553308A (en) Reconstruction method of partial discharge signal of power transformer
CN116304570B (en) Hydraulic turbine fault signal denoising method based on EEMD combined Chebyshev filtering
CN113553997A (en) Signal processing method, storage medium and system for jointly improving wavelet threshold
CN111239565A (en) Oil-filled casing partial discharge pulse signal processing method and system based on layered denoising model
CN109901224B (en) Method for protecting and suppressing noise of low-frequency signal of seismic data
CN118335094A (en) Noise reduction method for self-adaptive learning
CN114690003A (en) EEMD-based partial discharge signal noise reduction method
CN117316172A (en) Noise reduction method and system for robot sound emission signals
CN115859054B (en) MIC-CEEMDAN-based hydroelectric generating set draft tube pressure pulsation signal denoising method
Nannan The application of an improved wavelet threshold function in de-noising of heart sound signal
CN106405444B (en) A kind of magnetic survey signal antinoise method based on improved empirical mode decomposition
CN116383605A (en) Vehicle vibration signal denoising method based on wavelet decomposition
CN110703089A (en) Wavelet threshold denoising method for low-frequency oscillation Prony analysis
CN113567129A (en) CEEMD-based noise reduction method for train bearing vibration signal
CN111723677B (en) Wavelet denoising method based on self-adaptive threshold
CN114858430A (en) Mechanical seal acoustic emission signal noise reduction method based on LCD-wavelet new threshold
CN113702821A (en) Method and system for extracting GIS partial discharge signal

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination