CN114330384A - 一种基于无源rfid相位信息的手臂运动轨迹追踪方法 - Google Patents

一种基于无源rfid相位信息的手臂运动轨迹追踪方法 Download PDF

Info

Publication number
CN114330384A
CN114330384A CN202111407305.0A CN202111407305A CN114330384A CN 114330384 A CN114330384 A CN 114330384A CN 202111407305 A CN202111407305 A CN 202111407305A CN 114330384 A CN114330384 A CN 114330384A
Authority
CN
China
Prior art keywords
arm
label
user
phase
phase information
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111407305.0A
Other languages
English (en)
Inventor
肖甫
宋宇霖
桂林卿
周剑
盛碧云
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Posts and Telecommunications
Original Assignee
Nanjing University of Posts and Telecommunications
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Posts and Telecommunications filed Critical Nanjing University of Posts and Telecommunications
Priority to CN202111407305.0A priority Critical patent/CN114330384A/zh
Publication of CN114330384A publication Critical patent/CN114330384A/zh
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

一种基于无源RFID相位信息的手臂运动轨迹追踪方法,将无源RFID标签贴附于手臂的指定位置,让用户做出指定动作并采集此时RFID标签的相位信息;基于标签相位信息分别计算出用户前臂和上臂的长度;采集用户手臂移动时RFID标签的相位信息;将采集到的相位信息基于运动轨迹追踪计算出手臂的运动轨迹;通过基于阈值和局部加权线性回归LWLR的修正方法对结果进行修正以达到精准追踪手臂运动轨迹的目的。本方法在降低了实现成本的同时极大地提高的用户的使用体验;不需要针对不同的用户进行特殊的调整,提高了整个方法的可适应性;对于结果中可能出现的异常点,采用局部加权线性回归的方法进行修正,同时采用阈值检测的方法筛选出异常点从而减少LWLR的算法开销。

Description

一种基于无源RFID相位信息的手臂运动轨迹追踪方法
技术领域
本发明涉及人体感知及行为识别技术领域,具体涉及一种基于无源RFID相位信息的手臂运动轨迹追踪方法。
背景技术
体感技术是计算机识别人体的代表性的技术产物,它使得人们可以直接通过控制自身身体的动作,结合周围的环境,通过特殊的算法来直接实现人和虚拟世界中各种场景与物体的互动。体感设备与传统的人机交互设备相比,更加注重便携性以及用户使用中的沉浸感受,最为关键的是体感设备可以让用户的身体直接与虚拟世界中的各种场景与物体进行互动,而传统的人机交互设备如键盘,鼠标等就无法达到这些效果。
体感设备在游戏领域获得了大量的应用,其中基于手臂运动轨迹追踪的体感设备应用的最为广泛,许多体感游戏都需要通过追踪玩家的手臂运动使得玩家能够与游戏内容进行交互。传统的体感设备例如基于惯性感测技术的手持式设备、红外光学定位设备、可见光定位设备。它们都有其各自的缺点。手持式设备不便携具有一定的侵入性,且设备的价格往往比较昂贵易损耗。红外光学定位设备价格也非常昂贵且对设备搭建的要求非常高,对个人用户不友好。可见光定位设备对定位的精度较差,对光照环境有严格限制且对多目标定位识别较为困难。
发明内容
本发明的目的是提供一种基于无源RFID相位信息的手臂运动轨迹追踪方法解决传统手臂体感设备中存在的价格昂贵,对环境光照敏感,侵入性强的问题。
一种基于无源RFID相位信息的手臂运动轨迹追踪方法,包括如下步骤:
步骤1,将RFID标签贴附于手臂的指定位置处,并让用户做出指定动作;
步骤2,在室内环境下采集用户完成步骤1中指定动作时RFID标签的相位信息;
步骤3,将步骤2采集到的相位信息,基于标签相位信息,通过滑动窗口检测提取相位信息,计算出用户前臂和上臂的长度;
步骤4,采集用户手臂在一个平面内任意移动时RFID标签的相位信息,将采集到的相位信息和步骤3计算出的用户手臂长度,结合手臂运动过程中的角度变化,实现基于运动轨迹追踪计算出手臂的运动轨迹;
步骤5,基于阈值和局部加权线性回归LWLR的修正,构建线性回归模型,对结果进行修正,完成最终的精准手臂运动轨迹追踪。
进一步地,步骤1中,使用五张ImpinjHR61无源RFID标签,其中一号标签贴附于肩膀处,二号标签贴附于肘部外侧,三号标签贴附于小臂外侧与二号标签至少保持15cm以上的距离,四号标签与五号标签以手臂中轴线为对称轴在手背上对称位置贴附;用户做出的指定动作为,首先让整个手臂伸直向前与地面保持平行维持数秒,然后在手臂保持伸直的情况下缓慢将手臂举起到与地面90度垂直的位置维持数秒。
进一步地,步骤2中,利用ImpinjR420RFID阅读器以及HX-A04ARRFID天线采集用户完成步骤1中指定动作时五张RFID标签的相位信息;采集时天线布置在贴附有标签的手臂一侧,天线的中心位置与一号标签位置对齐。
进一步地,步骤3包括如下分步骤:
步骤3-1,数据去噪;分别对步骤3中采集到的一号标签,二号标签,三号标签的相位序列进行Savitzky-Golay滤波,将数据平滑去除噪声的干扰;
步骤3-2,数据提取;通过滑动窗口检测的方法,首先计算出第j个滑动窗口的平均绝对偏差Dj
Figure BDA0003372712010000031
其中ω是滑动窗口的长度,θi是滑动窗口中的第i个相位值,E(θ)是滑动窗口中相位值的平均期望;设置阈值α=0.2,当Dj<α时识别为此时手臂保持不动,以此将所需的相位序列提取出来,提取出来的相位序列为θj;然后通过公式
Figure BDA0003372712010000032
计算提取出来的相位序列的平均相位值,其中θ为计算出的平均相位值,l为提取出的相位序列中元素的个数,具体包括:
Figure BDA0003372712010000033
分别表示一号标签在手臂与地面保持平行和手臂与地面保持垂直时的平均相位值;
Figure BDA0003372712010000034
分别表示二号标签在手臂与地面保持平行和手臂与地面保持垂直时的平均相位值;
Figure BDA0003372712010000035
Figure BDA0003372712010000036
分别表示三号标签在手臂与地面保持平行和手臂与地面保持垂直时的平均相位值。
步骤3-3:手臂长度的计算。通过如下方程组的求解,计算出用户前臂以及上臂的长度:
Figure BDA0003372712010000041
其中λ=0.326m为RFID天线发射信号的波长,Δθt是两个标签自身硬件带来的相位偏移的差值,dOA为天线中心点到手臂运动所属平面的垂直距离,dOO′为天线中心点到手臂运动所属平面的垂足与一号标签之间的距离,dO′B为一号标签与二号标签之间的距离,dBC为二号标签与三号标签之间的距离;通过求解方程组可以将方程组中的四个未知变量dOA,dOO′,dO′B,dBC求出,由dO′B和dBC的长度得到用户前臂和上臂的长度。
进一步地,步骤4中,当用户的手臂在一个平面内运动时,计算出用户手臂各个关节转动的角度,在已知用户手臂长度的情况下计算出用户手臂的运动轨迹;具体要计算以下三个关节转动的角度,上臂饶肩膀旋转的角度,上臂与前臂之间的夹角,手部以前臂为旋转轴旋转的角度,具体分步骤如下:
步骤4-1,通过采集一号标签在用户手臂运动时的相位信息,计算出手臂运动过程中不同时刻上臂绕肩膀转动的角度:
Figure BDA0003372712010000042
其中
Figure BDA0003372712010000051
为手臂位于初始位置时一号标签的相位值与手臂在时刻t所处位置时一号标签的相位值之间的差值,αt为时刻t时上臂绕肩膀转动的角度;
步骤4-2,采集二号标签和三号标签在用户手臂运动时的相位信息,再结合步骤4-1中求出的αt以及步骤3-3中求出的用户前臂的长度dO′B和上臂的长度dBC,通过求解如下方程来得到手臂运动过程中不同时刻上臂与前臂之间的夹角:
Figure BDA0003372712010000052
其中Δθ为同一时刻二号标签与三号标签之间的相位差值,θA为天线自身硬件所导致的相位偏移,βt为时刻t时上臂与前臂之间的夹角;
步骤4-3,采集四号标签和五号标签在用户手臂运动时的相位信息,通过求解以下方程组得到手臂运动过程中不同时刻手掌以前臂为旋转轴转动的角度:
Figure BDA0003372712010000053
其中Δθ为同一时刻四号标签与五号标签之间的相位差值,Δθt为两个标签自身硬件所造成的相位偏移的差值,γt为时刻t时手掌以前臂为旋转轴转动的角度;
步骤4-4,通过步骤4-1,步骤4-2,步骤4-3中求出的手臂在不同时刻t时各个关节的旋转角度αt、βt、γt以及步骤3-3中求出的用户手臂长度dO′B、dBC还原出手臂运动轨迹。
进一步地,步骤5具体为:
步骤5-1,筛选需要修正的数据,设置一个阈值
Figure BDA0003372712010000061
这个阈值代表人手臂正常运动时关节转动的角速度绝对值的最大值;对于步骤4中得到的旋转角度αt、βt、γt,通过长度为1=11的滑动窗口,分别计算出它们在时刻t时的角速度的绝对值
Figure BDA0003372712010000062
当ωt>μ时就要对这个数据进行修正对于βt、γt中数据的筛选将上述公式中的αt-1、αt分别替换为βt-1、βt和γt-1、γt即可;
步骤5-2,以滑动窗口中的数据作为数据集,采用局部加权线性回归(LWLR)的方法构建出一个线性回归模型,该模型中的损失函数为:
Figure BDA0003372712010000063
其中x(i)为滑动窗口中第i个样本对应的时间戳,y(i)为滑动窗口中第i个样本对应的旋转角度,ω(i)为滑动窗口中第i个样本在该模型中的权重:
Figure BDA0003372712010000064
其中x(i)为滑动窗口中第i个样本的时间戳,x为需要修正的数据的时间戳,k的取值为0.01。在该模型中样本的时间戳距离需要修正的数据的时间戳越近权重越大,忽略距离较远的样本点的贡献。k的值控制了权值随距离下降的速度,k的值越大下降的越快。将需要修正的数据的时间戳带入通过此模型拟合出的直线,得到的值就是对该数据修正后的新值。
本发明的有益效果是:
(1)本发明采用无源RFID的相位信息进行手臂运动轨迹的追踪,相比传统的手臂体感设备,基于无源RFID的运动轨迹追踪方法具有RFID标签价格低廉,不怕损耗,无需考虑环境光照的影响,自身需要的能耗非常小且相比常见的体感交互设备来说更加便携的优点,在降低了使用成本的同时极大地提高的用户的使用体验。
(2)本发明采用基于相位的手臂运动轨迹追踪算法,通过用户手臂运动时各个标签的相位值变化计算出手臂在运动时各个关节的转动角度,从而计算出手臂的运动轨迹,该算法无需提前对数据集进行训练就可以完成实时的,精准的手臂运动轨迹追踪任务。同时不同用户的手臂长度不同不会影响该算法的计算结果,这一特点使得该算法不需要针对不同的用户进行特殊的调整,提高了整个方法的可适应性。
(3)本发明采用基于阈值和局部加权线性回归(LWLR)的修正算法对结果进行修正以达到精准追踪手臂运动轨迹的目的,对于结果中可能出现的异常点,采用局部加权线性回归(LWLR)的方法进行修正,同时采用阈值检测的方法筛选出异常点从而减少LWLR的算法开销。
附图说明
图1是本发明实施例中手臂运动轨迹追踪方法的流程示意图。
图2是本发明实施例中RFID标签在手臂上的布置位置示意图。
图3是本发明实施例中手臂运动时计算出的α角β角γ角的结果数据展示图。
具体实施方式
下面结合说明书附图对本发明的技术方案做进一步的详细说明。
一种基于无源RFID相位信息的手臂运动轨迹追踪方法,其实现步骤包括:将RFID标签贴附于手臂的指定位置处,并让用户做出指定动作;在室内环境下采集用户完成步骤1中指定动作时RFID标签的相位信息;将上面采集到的相位信息,通过提出一个基于标签相位信息的算法计算出用户小臂和上臂的长度;采集用户手臂在一个平面内任意移动时RFID标签的相位信息,将采集到的相位信息和上面计算出的用户手臂长度,通过提出一种运动轨迹追踪算法计算出手臂的运动轨迹;通过提出一种基于阈值和局部加权线性回归(LWLR)的修正算法对结果进行修正以达到精准追踪手臂运动轨迹的目的。
如图1,本方法具体包括以下步骤:
步骤1:将RFID标签贴附于手臂的指定位置处,并让用户做出指定动作,具体为:
其中本步骤中RFID标签在手臂上的布置位置如图2所示。
使用五张Impinj HR61无源RFID标签,其中一号标签贴附于肩膀处,二号标签贴附于肘部外侧,三号标签贴附于小臂外侧与二号标签至少保持10cm以上的距离,四号标签与五号标签以手臂中轴线为对称轴在手背上对称位置贴附。用户做出的指定动作为首先让整个手臂伸直向前与地面保持平行维持数秒,然后在手臂保持伸直的情况下缓慢地将手臂举起到与地面90度垂直的位置维持数秒。
步骤2:在室内环境下采集用户完成步骤1中指定动作时RFID标签的相位信息,具体为:
利用Impinj R420 RFID阅读器以及HX-A04AR RFID天线采集用户完成步骤1中指定动作时五张RFID标签的相位信息。采集时天线布置在贴附有标签的手臂一侧,天线的中心位置与一号标签位置对齐。
步骤3:将步骤2采集到的相位信息,通过提出一个基于标签相位信息的算法计算出用户前臂和上臂的长度,具体为:
步骤3-1:数据去噪,为了将数据平滑去除噪声的干扰,分别对步骤3中采集到的一号标签,二号标签,三号标签的相位序列进行Savitzky-Golay滤波。
步骤3-2:数据提取,通过滑动窗口检测的方法将步骤2所描述的指定动作开始时手臂保持不动数秒,和结束时手臂保持不动数秒时,三个标签所对应的相位序列提取出来。首先计算出第j个滑动窗口的平均绝对偏差Dj
Figure BDA0003372712010000091
其中ω是滑动窗口的长度,θi是滑动窗口j中的第i个相位值,E(θ)是滑动窗口j中相位值的平均期望。设置阈值α=0.2,当Dj<α时识别为此时手臂保持不动,以此将所需的相位序列提取出来,提取出来的相位序列为θj;然后通过公式
Figure BDA0003372712010000092
计算提取出来的相位序列的平均相位值,其中θ为计算出的平均相位值,l为提取出的相位序列中元素的个数,具体包括:
Figure BDA0003372712010000093
分别表示一号标签在手臂与地面保持平行和手臂与地面保持垂直时的平均相位值。
Figure BDA0003372712010000094
分别表示二号标签在手臂与地面保持平行和手臂与地面保持垂直时的平均相位值。
Figure BDA0003372712010000101
分别表示三号标签在手臂与地面保持平行和手臂与地面保持垂直时的平均相位值。
步骤3-3:手臂长度的计算。通过以下方程组的求解,计算出用户前臂以及上臂的长度:
Figure BDA0003372712010000102
其中λ=0.326m为RFID天线发射信号的波长,Δθt是两个标签自身硬件带来的相位偏移的差值,dOA为天线中心点到手臂运动所属平面的垂直距离,dOO′为天线中心点到手臂运动所属平面的垂足与一号标签之间的距离,dO′B为一号标签与二号标签之间的距离,dBC为二号标签与三号标签之间的距离。通过求解方程组可以将方程组中的四个未知变量dOA,dOO′,dO′B,dBC求出,由dO′B和dBC的长度得到用户前臂和上臂的长度。
步骤4:采集用户手臂任意移动时RFID标签的相位信息并对其进行预处理,将处理过的相位信息以及步骤3计算出的用户手臂长度,通过提出的一种运动轨迹追踪算法计算出手臂的运动轨迹,具体为:
当用户的手臂在一个平面内运动时,计算出用户手臂各个关节转动的角度,在已知用户手臂长度的情况下就可以计算出用户手臂的运动轨迹。具体要计算以下三个关节转动的角度,上臂饶肩膀旋转的角度,上臂与前臂之间的夹角,手部以前臂为旋转轴旋转的角度。
步骤4-1:通过采集一号标签在用户手臂运动时的相位信息,计算出手臂运动过程中不同时刻上臂绕肩膀转动的角度:
Figure BDA0003372712010000111
其中
Figure BDA0003372712010000112
为手臂位于初始位置时一号标签的相位值与手臂在时刻t所处位置时一号标签的相位值之间的差值,αt为时刻t时上臂绕肩膀转动的角度。
步骤4-2:采集二号标签和三号标签在用户手臂运动时的相位信息,再结合步骤4-1中求出的α角与步骤3-3中求出的用户前臂的长度dO′B和上臂的长度dBC,通过求解以下方程得到手臂运动过程中不同时刻上臂与前臂之间的夹角:
Figure BDA0003372712010000113
其中Δθ为同一时刻二号标签与三号标签之间的相位差值,θA为天线自身硬件所导致的相位偏移,βt为时刻t时上臂与前臂之间的夹角。
步骤4-3:采集四号标签和五号标签在用户手臂运动时的相位信息,通过求解以下方程组得到手臂运动过程中不同时刻手掌以前臂为旋转轴转动的角度:
Figure BDA0003372712010000121
其中Δθ为同一时刻四号标签与五号标签之间的相位差值,Δθt为两个标签自身硬件所造成的相位偏移的差值,γt为时刻t时手掌以前臂为旋转轴转动的角度。
步骤4-4:通过步骤4-1,步骤4-2,步骤4-3中求出的手臂在不同时刻t时各个关节的旋转角度αt、βt、γt以及步骤3-3中求出的用户手臂长度dO′B、dBC还原出手臂运动轨迹。
步骤5:通过提出一种基于阈值和局部加权线性回归(LWLR)的修正算法对结果进行修正以达到精准追踪手臂运动轨迹的目的,具体为:
步骤5-1:筛选需要修正的数据,设置一个阈值
Figure BDA0003372712010000122
这个阈值代表人手臂正常运动时关节转动的角速度绝对值的最大值。对于步骤4中得到的旋转角度αt、βt、γt,通过长度为1=11的滑动窗口,分别计算出它们在时刻t时的角速度的绝对值
Figure BDA0003372712010000123
当ωt>μ时就要对最后加入滑动窗口的那个数据进行修正,对于βt、γt中数据的筛选将上述公式中的αt-1、αt分别替换为βt-1、βt和γt-1、γt即可。
步骤5-2:对于步骤5-1中筛选出的需要修正的数据,以此时滑动窗口中的数据作为数据集,采用局部加权线性回归(LWLR)的方法构建出一个线性回归模型,该模型中的损失函数为:
Figure BDA0003372712010000131
Figure BDA0003372712010000132
其中x(i)为滑动窗口中第i个样本对应的时间戳,y(i)为滑动窗口中第i个样本对应的旋转角度,ω(i)为滑动窗口中第i个样本在该模型中的权重:
Figure BDA0003372712010000133
其中x(i)为滑动窗口中第i个样本的时间戳,x为需要修正的数据的时间戳,k的取值为0.01。在该模型中样本的时间戳距离需要修正的数据的时间戳越近权重越大,忽略距离较远的样本点的贡献。k的值控制了权值随距离下降的速度,k的值越大下降的越快。将需要修正的数据的时间戳带入通过此模型拟合出的直线,得到的值就是对该数据修正后的新值。
为了展示手臂运动轨迹追踪的效果,让用户手臂做出指定动作,让手臂的α角从0度匀速转动到90度,同时让β角从0度匀速转动到90度,同时再让γ角从0度匀速转动到45度之后再转回到0度。期间采集各个RFID标签的相位信息,再通过上述步骤完成对三个手臂关节转动的计算。结果如图3,由上往下依次是α角,β角和γ角的计算结果,左侧是对异常数据修正前的追踪结果,右侧是对异常数据修正后的追踪结果。图中横轴代表时间戳,纵轴代表角度转动的度数。
以上所述仅为本发明的较佳实施方式,本发明的保护范围并不以上述实施方式为限,但凡本领域普通技术人员根据本发明所揭示内容所作的等效修饰或变化,皆应纳入权利要求书中记载的保护范围内。

Claims (6)

1.一种基于无源RFID相位信息的手臂运动轨迹追踪方法,其特征在于:所述方法包括如下步骤:
步骤1,将RFID标签贴附于手臂的指定位置处,并让用户做出指定动作;
步骤2,在室内环境下采集用户完成步骤1中指定动作时RFID标签的相位信息;
步骤3,将步骤2采集到的相位信息,基于标签相位信息,通过滑动窗口检测提取相位信息,计算出用户前臂和上臂的长度;
步骤4,采集用户手臂在一个平面内任意移动时RFID标签的相位信息,将采集到的相位信息和步骤3计算出的用户手臂长度,结合手臂运动过程中的角度变化,实现基于运动轨迹追踪计算出手臂的运动轨迹;
步骤5,基于阈值和局部加权线性回归LWLR的修正,构建线性回归模型,对结果进行修正,完成最终的精准手臂运动轨迹追踪。
2.根据权利要求1所述的一种基于无源RFID相位信息的手臂运动轨迹追踪方法,其特征在于:步骤1中,使用五张ImpinjHR61无源RFID标签,其中一号标签贴附于肩膀处,二号标签贴附于肘部外侧,三号标签贴附于小臂外侧与二号标签至少保持15cm以上的距离,四号标签与五号标签以手臂中轴线为对称轴在手背上对称位置贴附;用户做出的指定动作为,首先让整个手臂伸直向前与地面保持平行维持数秒,然后在手臂保持伸直的情况下缓慢将手臂举起到与地面90度垂直的位置维持数秒。
3.根据权利要求1所述的一种基于无源RFID相位信息的手臂运动轨迹追踪方法,其特征在于:步骤2中,利用ImpinjR420RFID阅读器以及HX-A04ARRFID天线采集用户完成步骤1中指定动作时五张RFID标签的相位信息;采集时天线布置在贴附有标签的手臂一侧,天线的中心位置与一号标签位置对齐。
4.根据权利要求1所述的一种基于无源RFID相位信息的手臂运动轨迹追踪方法,其特征在于:步骤3包括如下分步骤:
步骤3-1,数据去噪;分别对步骤3中采集到的一号标签,二号标签,三号标签的相位序列进行Savitzky-Golay滤波,将数据平滑去除噪声的干扰;
步骤3-2,数据提取;通过滑动窗口检测的方法,首先计算出第j个滑动窗口的平均绝对偏差Dj
Figure RE-FDA0003535240150000021
其中ω是滑动窗口的长度,θi是滑动窗口中的第i个相位值,E(θ)是滑动窗口中相位值的平均期望;设置阈值α=0.2,当Dj<α时识别为此时手臂保持不动,以此将所需的相位序列提取出来,提取出来的相位序列为θj;然后通过公式
Figure RE-FDA0003535240150000022
计算提取出来的相位序列的平均相位值,其中θ为计算出的平均相位值,l为提取出的相位序列中元素的个数,具体包括:
Figure RE-FDA0003535240150000023
分别表示一号标签在手臂与地面保持平行和手臂与地面保持垂直时的平均相位值;
Figure RE-FDA0003535240150000024
分别表示二号标签在手臂与地面保持平行和手臂与地面保持垂直时的平均相位值;
Figure RE-FDA0003535240150000025
分别表示三号标签在手臂与地面保持平行和手臂与地面保持垂直时的平均相位值。
步骤3-3:手臂长度的计算。通过如下方程组的求解,计算出用户前臂以及上臂的长度:
Figure RE-FDA0003535240150000031
其中λ=0.326m为RFID天线发射信号的波长,Δθt为两个标签自身硬件带来的相位偏移的差值,dOA为天线中心点到手臂运动所属平面的垂直距离,dOO'为天线中心点到手臂运动所属平面的垂足与一号标签之间的距离,dO'B为一号标签与二号标签之间的距离,dBC为二号标签与三号标签之间的距离;通过求解方程组可以将方程组中的四个未知变量dOA,dOO',dO'B,dBC求出,由dO'B和dBC的长度得到用户前臂和上臂的长度。
5.根据权利要求1所述的一种基于无源RFID相位信息的手臂运动轨迹追踪方法,其特征在于:步骤4中,当用户的手臂在一个平面内运动时,计算出用户手臂各个关节转动的角度,在已知用户手臂长度的情况下计算出用户手臂的运动轨迹;具体要计算以下三个关节转动的角度,上臂饶肩膀旋转的角度,上臂与前臂之间的夹角,手部以前臂为旋转轴旋转的角度,具体分步骤如下:
步骤4-1,通过采集一号标签在用户手臂运动时的相位信息,计算出手臂运动过程中不同时刻上臂绕肩膀转动的角度:
Figure RE-FDA0003535240150000041
其中
Figure RE-FDA0003535240150000042
为手臂位于初始位置时一号标签的相位值与手臂在时刻t所处位置时一号标签的相位值之间的差值,αt为时刻t时上臂绕肩膀转动的角度;
步骤4-2,采集二号标签和三号标签在用户手臂运动时的相位信息,再结合步骤4-1中求出的αt以及步骤3-3中求出的用户前臂的长度dO'B和上臂的长度dBC,通过求解如下方程来得到手臂运动过程中不同时刻上臂与前臂之间的夹角:
Figure RE-FDA0003535240150000043
其中Δθ为同一时刻二号标签与三号标签之间的相位差值,θA为天线自身硬件所导致的相位偏移,βt为时刻t时上臂与前臂之间的夹角;
步骤4-3,采集四号标签和五号标签在用户手臂运动时的相位信息,通过求解以下方程组得到手臂运动过程中不同时刻手掌以前臂为旋转轴转动的角度:
Figure RE-FDA0003535240150000044
其中Δθ为同一时刻四号标签与五号标签之间的相位差值,Δθt为两个标签自身硬件所造成的相位偏移的差值,γt为时刻t时手掌以前臂为旋转轴转动的角度;
步骤4-4,通过步骤4-1,步骤4-2,步骤4-3中求出的手臂在不同时刻t时各个关节的旋转角度αt、βt、γt以及步骤3-3中求出的用户手臂长度dO'B、dBC还原出手臂运动轨迹。
6.根据权利要求1所述的一种基于无源RFID相位信息的手臂运动轨迹追踪方法,其特征在于:步骤5具体为:
步骤5-1,筛选需要修正的数据,设置一个阈值
Figure RE-FDA0003535240150000051
这个阈值代表人手臂正常运动时关节转动的角速度绝对值的最大值;对于步骤4中得到的旋转角度αt、βt、γt,通过长度为l=11的滑动窗口,分别计算出它们在时刻t时的角速度的绝对值
Figure RE-FDA0003535240150000052
当ωt>μ时就要对这个数据进行修正,对于βt、γt中数据的筛选将上述公式中的αt-1、αt分别替换为βt-1、βt和γt-1、γt即可;
步骤5-2,以滑动窗口中的数据作为数据集,采用局部加权线性回归(LWLR)的方法构建出一个线性回归模型,该模型中的损失函数为:
Figure RE-FDA0003535240150000053
其中x(i)为滑动窗口中第i个样本对应的时间戳,y(i)为滑动窗口中第i个样本对应的旋转角度,ω(i)为滑动窗口中第i个样本在该模型中的权重:
Figure RE-FDA0003535240150000054
其中x(i)为滑动窗口中第i个样本的时间戳,x为需要修正的数据的时间戳,k的取值为0.01。在该模型中样本的时间戳距离需要修正的数据的时间戳越近权重越大,忽略距离较远的样本点的贡献。k的值控制了权值随距离下降的速度,k的值越大下降的越快;将需要修正的数据的时间戳带入通过此模型拟合出的直线,得到的值就是对该数据修正后的新值。
CN202111407305.0A 2021-11-24 2021-11-24 一种基于无源rfid相位信息的手臂运动轨迹追踪方法 Pending CN114330384A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111407305.0A CN114330384A (zh) 2021-11-24 2021-11-24 一种基于无源rfid相位信息的手臂运动轨迹追踪方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111407305.0A CN114330384A (zh) 2021-11-24 2021-11-24 一种基于无源rfid相位信息的手臂运动轨迹追踪方法

Publications (1)

Publication Number Publication Date
CN114330384A true CN114330384A (zh) 2022-04-12

Family

ID=81047251

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111407305.0A Pending CN114330384A (zh) 2021-11-24 2021-11-24 一种基于无源rfid相位信息的手臂运动轨迹追踪方法

Country Status (1)

Country Link
CN (1) CN114330384A (zh)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2005258784A1 (en) * 2004-07-01 2006-01-12 Powerid Ltd. Battery-assisted backscatter RFID transponder
CN101667059A (zh) * 2008-09-03 2010-03-10 黑龙江大学 基于手势识别的无线智能裁判系统
US20120038515A1 (en) * 2010-08-10 2012-02-16 Truitt Patrick W Arm-worn rfid reader
US9740899B1 (en) * 2017-01-11 2017-08-22 Motorola Mobility Llc RFID-based sensory monitoring of sports equipment
CN107832647A (zh) * 2017-10-20 2018-03-23 南京邮电大学 一种基于无源射频标签的相位式手势识别方法
CN108133160A (zh) * 2017-12-21 2018-06-08 儒安科技有限公司 基于rfid的游泳安全监控系统
CN110087188A (zh) * 2019-04-25 2019-08-02 中山大学 基于rfid标签的室内定位虚拟指纹数据库构建方法
CN110207631A (zh) * 2019-06-12 2019-09-06 安徽海控电子科技有限公司 大型移动机电设备自动控制的高精度行程测量系统及方法
CN110736962A (zh) * 2019-09-10 2020-01-31 天津大学 一种无源rfid场景下的目标追踪方法
CN110800015A (zh) * 2017-06-26 2020-02-14 株式会社爱瑞思 手套记录系统
CN111459192A (zh) * 2020-03-26 2020-07-28 华中科技大学 一种基于rfid的移动机器人动态目标跟踪方法
WO2021038109A1 (de) * 2019-08-30 2021-03-04 Metralabs Gmbh Neue Technologien Und Systeme System zur erfassung von bewegungsabläufen und/oder vitalparametern einer person

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2005258784A1 (en) * 2004-07-01 2006-01-12 Powerid Ltd. Battery-assisted backscatter RFID transponder
CN101667059A (zh) * 2008-09-03 2010-03-10 黑龙江大学 基于手势识别的无线智能裁判系统
US20120038515A1 (en) * 2010-08-10 2012-02-16 Truitt Patrick W Arm-worn rfid reader
US9740899B1 (en) * 2017-01-11 2017-08-22 Motorola Mobility Llc RFID-based sensory monitoring of sports equipment
CN110800015A (zh) * 2017-06-26 2020-02-14 株式会社爱瑞思 手套记录系统
CN107832647A (zh) * 2017-10-20 2018-03-23 南京邮电大学 一种基于无源射频标签的相位式手势识别方法
CN108133160A (zh) * 2017-12-21 2018-06-08 儒安科技有限公司 基于rfid的游泳安全监控系统
CN110087188A (zh) * 2019-04-25 2019-08-02 中山大学 基于rfid标签的室内定位虚拟指纹数据库构建方法
CN110207631A (zh) * 2019-06-12 2019-09-06 安徽海控电子科技有限公司 大型移动机电设备自动控制的高精度行程测量系统及方法
WO2021038109A1 (de) * 2019-08-30 2021-03-04 Metralabs Gmbh Neue Technologien Und Systeme System zur erfassung von bewegungsabläufen und/oder vitalparametern einer person
CN110736962A (zh) * 2019-09-10 2020-01-31 天津大学 一种无源rfid场景下的目标追踪方法
CN111459192A (zh) * 2020-03-26 2020-07-28 华中科技大学 一种基于rfid的移动机器人动态目标跟踪方法

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
S. S. BHAVSAR AND A. N. KULKARNI: "Train collision avoidance system by using RFID", 《2016 INTERNATIONAL CONFERENCE ON COMPUTING, ANALYTICS AND SECURITY TRENDS (CAST)》, pages 30 - 34 *
Z. WANG, M. XU AND F. XIAO: "Recognizing 3D Orientation of a Two-RFID-Tag Labeled Object in Multipath Environments Using Deep Transfer Learning", 2021 IEEE 41ST INTERNATIONAL CONFERENCE ON DISTRIBUTED COMPUTING SYSTEMS (ICDCS), pages 652 - 662 *
刘玉焘: "基于可穿戴式传感器的人体动作捕获与识别研究", 《中国博士学位论文全文数据库信息科技辑》, pages 138 - 129 *
曹书敏: "基于智能可穿戴设备的人体动作识别与交互", 《中国优秀硕士学位论文全文数据库信息科技辑》, pages 137 - 122 *
朱海, 肖甫等: "基于信道状态信息的WiFi环境感知技术", 《南京邮电大学学报(自然科学版)》, vol. 36, no. 1, pages 94 - 110 *
李昕;刘路;: "基于视觉与RFID的机器人自定位抓取算法", 计算机工程, no. 23 *
郭小焕;全太锋;潘英杰;马浩;: "基于Kinect的手部关节位置推断方法的研究", 计算机应用与软件, no. 10, pages 158 - 165 *

Similar Documents

Publication Publication Date Title
Zhang et al. Ergonomic posture recognition using 3D view-invariant features from single ordinary camera
CN109344694B (zh) 一种基于三维人体骨架的人体基本动作实时识别方法
CN110711374B (zh) 多模态舞蹈动作评价方法
US8254627B2 (en) Method for automatically following hand movements in an image sequence
CN111144217A (zh) 一种基于人体三维关节点检测的动作评价方法
CN108376405B (zh) 基于双体感追踪系统的人体运动捕捉系统及捕捉方法
CN108670263A (zh) 一种基于mpu-6050的睡眠姿态判定方法
CN108171278B (zh) 一种基于运动训练数据的运动模式识别方法和系统
US11847803B2 (en) Hand trajectory recognition method for following robot based on hand velocity and trajectory distribution
Jiang et al. Real time gait recognition system based on Kinect skeleton feature
CN103955680B (zh) 基于形状上下文的动作识别方法及装置
Monir et al. Rotation and scale invariant posture recognition using Microsoft Kinect skeletal tracking feature
CN110755085B (zh) 基于关节活动度与运动协调性的运动功能评估方法及设备
Zinnen et al. An analysis of sensor-oriented vs. model-based activity recognition
CN114495267A (zh) 基于多维数据融合的老人跌倒风险评估方法
CN108629295A (zh) 转角地标识别模型训练方法、转角地标识别方法及装置
CN106073793B (zh) 基于微惯性传感器的姿态跟踪与识别方法
CN113849068A (zh) 一种手势多模态信息融合的理解与交互方法及其系统
CN107092882A (zh) 一种基于子动作感知的行为识别系统及其工作方法
CN110866468A (zh) 一种基于无源rfid的手势识别系统及方法
CN109839827A (zh) 一种基于全空间位置信息的手势识别智能家居控制系统
CN104898971B (zh) 一种基于视线跟踪技术的鼠标指针控制方法及系统
Ko et al. CNN and bi-LSTM based 3D golf swing analysis by frontal swing sequence images
Ghobadi et al. A robust automatic gait monitoring approach using a single IMU for home-based applications
CN108392207B (zh) 一种基于姿态标签的动作识别方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination