CN114330197B - Parameter extraction method of IGBT numerical model based on convolutional neural network - Google Patents
Parameter extraction method of IGBT numerical model based on convolutional neural network Download PDFInfo
- Publication number
- CN114330197B CN114330197B CN202210250735.4A CN202210250735A CN114330197B CN 114330197 B CN114330197 B CN 114330197B CN 202210250735 A CN202210250735 A CN 202210250735A CN 114330197 B CN114330197 B CN 114330197B
- Authority
- CN
- China
- Prior art keywords
- igbt
- data
- neural network
- convolutional neural
- process parameters
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000013527 convolutional neural network Methods 0.000 title claims abstract description 44
- 238000000605 extraction Methods 0.000 title claims abstract description 21
- 238000000034 method Methods 0.000 claims abstract description 119
- 230000008569 process Effects 0.000 claims abstract description 90
- 238000012549 training Methods 0.000 claims abstract description 26
- 238000011176 pooling Methods 0.000 claims description 15
- 238000004088 simulation Methods 0.000 claims description 14
- INQLNSVYIFCUML-QZTLEVGFSA-N [[(2r,3s,4r,5r)-5-(6-aminopurin-9-yl)-3,4-dihydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl] [(2r,3s,4r,5r)-5-(4-carbamoyl-1,3-thiazol-2-yl)-3,4-dihydroxyoxolan-2-yl]methyl hydrogen phosphate Chemical compound NC(=O)C1=CSC([C@H]2[C@@H]([C@H](O)[C@@H](COP(O)(=O)OP(O)(=O)OC[C@@H]3[C@H]([C@@H](O)[C@@H](O3)N3C4=NC=NC(N)=C4N=C3)O)O2)O)=N1 INQLNSVYIFCUML-QZTLEVGFSA-N 0.000 claims description 12
- 230000035945 sensitivity Effects 0.000 claims description 11
- 238000013528 artificial neural network Methods 0.000 claims description 10
- 210000004027 cell Anatomy 0.000 claims description 10
- 238000010606 normalization Methods 0.000 claims description 9
- 230000001052 transient effect Effects 0.000 claims description 9
- 239000013598 vector Substances 0.000 claims description 9
- 230000015556 catabolic process Effects 0.000 claims description 6
- 230000007613 environmental effect Effects 0.000 claims description 6
- 238000005070 sampling Methods 0.000 claims description 5
- 238000012360 testing method Methods 0.000 claims description 4
- 238000003491 array Methods 0.000 claims description 3
- 239000003990 capacitor Substances 0.000 claims description 3
- 210000002569 neuron Anatomy 0.000 claims description 3
- 238000007781 pre-processing Methods 0.000 claims description 3
- 238000012952 Resampling Methods 0.000 claims description 2
- 238000010276 construction Methods 0.000 abstract description 2
- 238000010586 diagram Methods 0.000 description 11
- 230000006870 function Effects 0.000 description 7
- 230000008859 change Effects 0.000 description 5
- 238000002474 experimental method Methods 0.000 description 5
- 238000009826 distribution Methods 0.000 description 4
- 230000006872 improvement Effects 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 238000003062 neural network model Methods 0.000 description 2
- 238000005457 optimization Methods 0.000 description 2
- 230000008521 reorganization Effects 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000009795 derivation Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
Images
Landscapes
- Testing Or Measuring Of Semiconductors Or The Like (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
本发明涉及IGBT工艺参数技术领域,公开了一种基于卷积神经网络的IGBT数值模型参数提取方法,包括如下步骤:利用TCAD数值仿真软件构建数值模型、生成工艺参数取值网表、输出特性曲线,构成原始数据集,将原始数据集经过数据扩充、标准化和归一化,取得可供卷积神经网络识别的训练数据集,卷积神经网络利用训练数据集学习特性曲线与工艺参数之间的关系,生成IGBT数值模型参数提取卷积神经网络,最后采用实际电路提取的波形作为输入值,利用IGBT数值模型参数提取卷积神经网络计算求解,获得工艺参数。本发明基于卷积神经网络的IGBT数值模型参数提取方法,有效解决了IGBT工艺参数实验提取困难、难以精确构建的问题。
The invention relates to the technical field of IGBT process parameters, and discloses a method for extracting parameters of an IGBT numerical model based on a convolutional neural network. , constitute the original data set, expand, standardize and normalize the original data set to obtain a training data set that can be recognized by the convolutional neural network. The convolutional neural network uses the training data set to learn the relationship between the characteristic curve and the process parameters. According to the relationship, the IGBT numerical model parameters are extracted to extract the convolutional neural network. Finally, the waveform extracted from the actual circuit is used as the input value, and the IGBT numerical model parameters are used to extract the convolutional neural network to calculate and solve to obtain the process parameters. The IGBT numerical model parameter extraction method based on the convolutional neural network of the present invention effectively solves the problems of difficulty in experimental extraction of IGBT process parameters and difficulty in accurate construction.
Description
技术领域technical field
本发明涉及IGBT工艺参数技术领域,具体涉及一种基于卷积神经网络的IGBT数值模型参数提取方法。The invention relates to the technical field of IGBT process parameters, in particular to a method for extracting parameters of an IGBT numerical model based on a convolutional neural network.
背景技术Background technique
随着半导体生产工艺的改进,绝缘栅型双极性晶体管(IGBT)产品代际更替更快,产品线更加丰富,例如从最初的小功率的PT型IGBT模块,到现在常用于大功率的第四代沟槽栅结构的IGBT模块,进化到现在适用于新能源汽车的第六代和第七带精细沟槽栅IGBT模块等等。产品工艺的复杂化也给数值软件建模和芯片工艺逆向带来了挑战,要想建立较为准确的数值模型,就需要对这些工艺参数进行合理有效的提取。With the improvement of semiconductor production process, the generation of insulated gate bipolar transistor (IGBT) products has been replaced faster and the product line has become more abundant. Four generations of IGBT modules with trench gate structure have evolved to the sixth and seventh generations of IGBT modules with fine trench gates suitable for new energy vehicles. The complexity of the product process also brings challenges to numerical software modeling and chip process inversion. In order to establish a more accurate numerical model, it is necessary to extract these process parameters reasonably and effectively.
IGBT工艺参数指的是器件集电极侧,发射层和场截止层掺杂浓度随掺杂深度的分布信息。相较于其他的参数,如发射极侧参数,其位置和浓度很容易通过公式提取,这些工艺参数通常很难得到或者准确逆向分析出来。利用SRP(扩展电阻测试)的方法可以大致测得部分器件的实际参数分布情况,但是其精度有限,往往和实际误差较大。工艺参数也决定着器件的核心性能优势,涉及厂家核心秘密,不会向一般研究者公开。利用公式推导的方法可以近似推导某些参数的变化趋势和变化的敏感性,但是器件实际掺杂分布不均匀,参数变量多,往往某个参数的取值变化由多个分布量决定,而现有的手段中无法直接衡量每个分布参数变化对输出特性变化的影响大小。这就导致利用公式敏感性的方法不再适用。相应的,在数值模型参数校准中,往往需要对每个工艺参数的取值范围内进行平均取值,积累大量的仿真数据进行分析比较,这大大增加了提取参数难度。The IGBT process parameters refer to the distribution information of the doping concentration of the device collector side, the emitter layer and the field stop layer with the doping depth. Compared with other parameters, such as the emitter-side parameters, its location and concentration can be easily extracted by formulas, and these process parameters are usually difficult to obtain or accurately reversely analyzed. Using the SRP (extended resistance test) method can roughly measure the actual parameter distribution of some devices, but its accuracy is limited and often has a large error with the actual. Process parameters also determine the core performance advantages of the device, which involve the core secrets of manufacturers and will not be disclosed to general researchers. The variation trend and sensitivity of some parameters can be approximately deduced by the method of formula derivation, but the actual doping distribution of the device is not uniform, and there are many parameter variables. In some methods, the influence of each distribution parameter change on the output characteristic change cannot be directly measured. This makes the method of exploiting formula sensitivity no longer applicable. Correspondingly, in the numerical model parameter calibration, it is often necessary to average the value within the value range of each process parameter, and accumulate a large amount of simulation data for analysis and comparison, which greatly increases the difficulty of parameter extraction.
发明内容SUMMARY OF THE INVENTION
本发明的目的就是针对上述技术的不足,提供一种基于卷积神经网络的IGBT数值模型参数提取方法,有效解决了IGBT工艺参数实验提取困难、难以精确构建的问题。The purpose of the present invention is to provide a method for extracting parameters of IGBT numerical model based on convolutional neural network to solve the problems of difficulty in experimental extraction of IGBT process parameters and difficult to construct accurately.
为实现上述目的,本发明所涉及的基于卷积神经网络的IGBT数值模型参数提取方法,包括如下步骤:In order to achieve the above purpose, the method for extracting parameters of IGBT numerical model based on convolutional neural network involved in the present invention includes the following steps:
A)基于TCAD数值仿真软件构建数值模型,所述数值模型包含IGBT的元胞尺寸结构参数和待求解的工艺参数;A) build a numerical model based on TCAD numerical simulation software, and the numerical model includes the cell size structure parameters of the IGBT and the process parameters to be solved;
B)利用TCAD数值仿真软件对所述工艺参数进行筛选赋值,生成工艺参数取值网表,利用TCAD数值仿真软件得到每组工艺下输出的特性曲线,所述特性曲线和工艺参数取值网表构成原始数据集;B) use TCAD numerical simulation software to screen and assign the process parameters, generate a process parameter value netlist, use TCAD numerical simulation software to obtain the characteristic curve output under each group of processes, the characteristic curve and the process parameter value netlist form the original dataset;
C)将所述原始数据集经过数据扩充、标准化和归一化,取得可供卷积神经网络识别的训练数据集;C) the original data set is subjected to data expansion, standardization and normalization to obtain a training data set that can be identified by the convolutional neural network;
D)卷积神经网络利用训练数据集学习所述特性曲线与所述工艺参数之间的关系,生成IGBT数值模型参数提取卷积神经网络;D) the convolutional neural network uses the training data set to learn the relationship between the characteristic curve and the process parameters, and generates the IGBT numerical model parameter extraction convolutional neural network;
E)采用实际电路提取的波形作为输入值,利用IGBT数值模型参数提取卷积神经网络计算求解,获得工艺参数。E) Using the waveform extracted from the actual circuit as the input value, using the IGBT numerical model parameters to extract the convolutional neural network to calculate and solve, and obtain the process parameters.
优选地,所述步骤A)中,所述元胞尺寸结构参数利用观测工具对芯片截面样品进行观察提取,所述工艺参数包括集电极峰值浓度Pcollector,集电极结深Hemit,集电极结处浓度Pjuntion,场截止层浓度Nbuff和场截止层结深Hcut。Preferably, in the step A), the cell size and structure parameters are observed and extracted by using an observation tool to observe and extract the chip cross-section sample, and the process parameters include the peak collector concentration Pcollector, the collector junction depth Hemit, and the concentration at the collector junction. Pjuntion, field stop concentration Nbuff and field stop junction depth Hcut.
优选地,所述步骤B)中,对所述工艺参数进行筛选赋值,包括如下步骤:Preferably, in the step B), the process parameters are screened and assigned, including the following steps:
B1)通过仿真的方法确定所述工艺参数的取值范围;B1) determine the value range of the process parameter by means of simulation;
B2)采用等间隔取值加插值的方法对所述工艺参数进行取值。B2) The process parameters are valued by the method of taking values at equal intervals and adding interpolation.
优选地,所述步骤B1)中,利用TCAD数值仿真软件对工艺参数进行筛选赋值,通过求解器件的导通压降Vces、击穿电压Vcesat、器件损耗Eoff,并满足如下条件:Preferably, in the step B1), use TCAD numerical simulation software to screen and assign process parameters, by solving the on-voltage drop Vces of the device, the breakdown voltage Vcesat, and the device loss Eoff, and meet the following conditions:
Vces>1800VVces>1800V
Vcesat=2±0.15VVcesat=2±0.15V
Eoff=1500±200mJEoff=1500±200mJ
其中,计算击穿电压Vcesat的环境条件为栅极电压Vg=15V,集电极电流为3600A,环境温度为25℃,计算器件损耗Eoff的环境条件为驱动电阻1欧姆,器件在发射集电流Ic=3600A条件下完成关断,环境温度为25摄氏度,在同时满足以上三个条件的前提下,获得工艺参数的取值范围。Among them, the environmental conditions for calculating the breakdown voltage Vcesat are the gate voltage Vg=15V, the collector current is 3600A, the ambient temperature is 25°C, the environmental conditions for calculating the device loss Eoff are the
优选地,所述步骤B2)中,首先基于取值范围进行等间隔取值,计算共k个取值下,该参数输出特性曲线,通过特性曲线提取每个取值下的器件饱和导通压降和关断损耗,其中,相邻两个参数取值下,存在插值ΔVcesat和插值ΔEoff,计算出敏感度ki=[(ΔVcesat/Vcesat)2+(ΔEoff/Eoff)2]1/2/(Δmi/mi),其中i表示第i组参数,mi表示工艺参数中任意一个参数的具体值,Δmi=mi-mi-1表示该参数最相邻的两个取值之间的差值,计算出k个敏感度平均值k’,当敏感度ki>k’,在这两个参数中插入均值点m’i=(mi+mi+1)/2。Preferably, in the step B2), firstly take values at equal intervals based on the value range, calculate the output characteristic curve of the parameter under a total of k values, and extract the saturated on-voltage of the device under each value through the characteristic curve drop and turn-off loss, where, under the values of two adjacent parameters, there are interpolation ΔV cesat and interpolation ΔE off , and the calculated sensitivity k i =[(ΔVcesat/Vcesat) 2 +(ΔEoff/Eoff) 2 ] 1/ 2 /(Δm i /m i ), where i represents the i-th group of parameters, m i represents the specific value of any parameter in the process parameters, Δm i =m i -m i-1 represents the two most adjacent parameters of the parameter Take the difference between the values and calculate the k sensitivity averages k'. When the sensitivity ki>k', insert the mean point m' i =(m i +m i+1 )/ 2.
优选地,所述步骤B)中,所述步骤B)中,所述特性曲线包括器件集电极电流Ic与集射极电压Vce之间的关系曲线、瞬态关断集射极电压Vce随时间Time变化曲线和瞬态关断时集电极电流Ict随时间Time变化曲线。Preferably, in the step B), in the step B), the characteristic curve includes the relationship curve between the device collector current Ic and the collector-emitter voltage Vce, the transient turn-off collector-emitter voltage Vce with time Time variation curve and the collector current Ict variation curve with time at transient turn-off.
优选地,所述步骤C)中,将所述原始数据集经过数据扩充、标准化和归一化包括如下步骤:Preferably, in the step C), the original data set is subjected to data expansion, standardization and normalization, including the following steps:
C1)采用奇偶间隔采样的手段,按照所述原始数据集的数据奇偶性,在所述原始数据集的偶数序列中等间隔采样后,在其相邻的奇数位上进行等间隔重采样,得到相同数据长度的输出数据,实现对有限样本个数的数据扩充;C1) Using the means of parity interval sampling, according to the data parity of the original data set, after the even sequence of the original data set is sampled at equal intervals, perform equal interval resampling on its adjacent odd bits to obtain the same The output data of the data length realizes the data expansion of the limited number of samples;
C2)将数据扩充后的原始数据集内的所有数据整理成为512位长度的数据链,包含[Vce,Ic],[Time,Ict],[Time,Vce]三组二维列向量;C2) Arrange all data in the original data set after data expansion into a data chain with a length of 512 bits, including three groups of two-dimensional column vectors [Vce,Ic],[Time,Ict],[Time,Vce];
C3)将数据链中的数据采用归一化策略,分别找到三组向量在5000组数据链中该类数据的最大值,分别记为Icmax,Ictmax,Vcemax,利用Ic=Ic/Icmax,Ict=Ictmax,Vce=Vcemax,得到归一化后的数据,其范围在(0,1)内,然后将数据链顺序打乱并完成数据链中数组的首尾拼接,最终得到完整的输入数据链。C3) Use the normalization strategy for the data in the data chain, and find the maximum value of this type of data in the 5000 groups of data chains for three groups of vectors, respectively, denoted as Icmax, Ictmax, Vcemax, using Ic=Ic/Icmax, Ict= Ictmax, Vce=Vcemax, the normalized data is obtained, and its range is within (0, 1), and then the sequence of the data chain is disrupted and the end-to-end splicing of the arrays in the data chain is completed, and finally a complete input data chain is obtained.
优选地,所述步骤D)中,所述卷积神经网络采用keras网络架构,存在四层结构,其中包括第一卷积层与池化层,第二卷积层与池化层,压平层和全连接层,所述卷积神经网络的输入层为包含有若干组IGBT特性曲线的数据链,输出层为工艺参数的取值。Preferably, in the step D), the convolutional neural network adopts a keras network architecture and has a four-layer structure, including a first convolutional layer and a pooling layer, a second convolutional layer and a pooling layer, and flattened layer and fully connected layer, the input layer of the convolutional neural network is a data chain containing several groups of IGBT characteristic curves, and the output layer is the value of the process parameters.
优选地,所述步骤D)中,所述卷积神经网络的训练过程为:输入数据链带入第一卷积层中,此时数据链长度为5000,数据链的没有经过卷积扩充,深度信息为1,计为(5000,1),被64个神经元构成的滤波器进行卷积运算,采用ELU函数进行激活,ELU函数可表示成:f(x)={x(x>0);(ex-1)(x≤0)},得到数据结构为(2500,64),信息维度扩充,而后连接第一池化层,池化缩放比例因子为5,将数据的长度进一步缩小,得到数据结构为(500,64),而后进入第二卷积层,数据变为(250,128),进入第二池化层,数据结构变为(25,256),此时的数据经过压平层处理,将所有维度展平,得到数据结构(25*256,1),而后经过全连接层,最终得到的数据结构为(5,1),此时得到一个包含5个输出信息的一维参数。Preferably, in the step D), the training process of the convolutional neural network is as follows: the input data chain is brought into the first convolution layer, the length of the data chain is 5000 at this time, and the data chain is not expanded by convolution, The depth information is 1, which is counted as (5000, 1), which is convolved by a filter composed of 64 neurons, and activated by the ELU function. The ELU function can be expressed as: f(x)={x(x>0 ); (e x -1)(x≤0)}, the data structure is (2500, 64), the information dimension is expanded, and then the first pooling layer is connected, the pooling scaling factor is 5, and the length of the data is further Zoom out to get the data structure as (500, 64), then enter the second convolution layer, the data becomes (250, 128), enter the second pooling layer, the data structure becomes (25, 256), the data at this time After the flattening layer processing, all dimensions are flattened to obtain the data structure (25*256, 1), and then through the full connection layer, the final data structure obtained is (5, 1), and a data structure containing 5 output information is obtained at this time. one-dimensional parameters.
优选地,所述步骤E)中,所述实际电路包括电压源VDC,电源端电容CDC,线路连接处杂散电感Ls,放电IGBT T1以及待测IGBT T2,其中电压源VDC经过线路连接处杂散电感Ls连接到放电IGBT T1的集电极,由放电IGBT T1的发射极连接到待测IGBT T2的集电极,再由待测IGBT T2的发射极连接所述电压源VDC的负极,待测IGBT T2电路中VGE1为栅极驱动电压,可以控制线路中IGBT开通关断时间,使得器件能在特定电流下完成关断,利用电路端口测试的手段得到器件关断瞬态集射极电压Vce,集电极电流Ic随时间time变化曲线,集电极电流Ic随集射极电压Vce变化曲线,采用所述步骤C)预处理手段,得到改组曲线得到输入数据链,带入训练完成的IGBT数值模型参数提取神经网络中,计算待求解的工艺参数。Preferably, in the step E), the actual circuit includes a voltage source V DC , a power supply terminal capacitor C DC , a stray inductance Ls at the line connection, a discharge IGBT T1 and an IGBT T2 to be tested, wherein the voltage source VDC is connected through the line The stray inductance Ls is connected to the collector of the discharge IGBT T1, the emitter of the discharge IGBT T1 is connected to the collector of the IGBT T2 to be tested, and the emitter of the IGBT T2 to be tested is connected to the negative electrode of the voltage source V DC , In the IGBT T2 circuit to be tested, V GE1 is the gate drive voltage, which can control the turn-on and turn-off time of the IGBT in the circuit, so that the device can be turned off at a specific current, and the device is turned off transient collector-emitter is obtained by means of circuit port testing. Voltage Vce, collector current Ic with time change curve, collector current Ic with collector-emitter voltage Vce change curve, using the step C) preprocessing method, obtain the reorganization curve to obtain the input data link, bring into the training completed IGBT The numerical model parameters are extracted from the neural network, and the process parameters to be solved are calculated.
本发明与现有技术相比,具有以下优点:Compared with the prior art, the present invention has the following advantages:
1、基于神经网络训练的工艺参数提取方法,能够避免采用采用传统的基于SPR实验的方法,节约了模型构建的时间和经费,为部分缺少专业实验设备或条件的单位提取工艺参数提供了备选方案;1. The process parameter extraction method based on neural network training can avoid the traditional method based on SPR experiment, save the time and cost of model construction, and provide an alternative for some units that lack professional experimental equipment or conditions to extract process parameters. Program;
2、采用神经网络的方法能够充分调动TCAD软件优势,通过数据集的学习训练过程提高了工艺参数提取精度,使得模型更符合实际器件的典型特征;2. The neural network method can fully mobilize the advantages of TCAD software, and the process parameter extraction accuracy is improved through the learning and training process of the data set, so that the model is more in line with the typical characteristics of the actual device;
3、相比于利用实验曲线和近似公式来提取参数的方法,该方法能够更好的适应器件集电极侧复杂的工艺参数,模型精度更优,也能较好的适应数值模型需求;3. Compared with the method of extracting parameters using experimental curves and approximate formulas, this method can better adapt to the complex process parameters on the collector side of the device, the model accuracy is better, and it can also better adapt to the needs of numerical models;
4、为半导体生产企业的工艺优化改进提供一个可实施的方法,器件生产中参数的改进和寻优,也可以通过少量实验加数值模型仿真来实现,从而节约了开发时间。4. Provide an implementable method for process optimization and improvement of semiconductor manufacturers. The improvement and optimization of parameters in device production can also be realized through a small amount of experiments and numerical model simulation, thereby saving development time.
附图说明Description of drawings
图1为本发明基于卷积神经网络的IGBT数值模型参数提取方法中芯片元胞结构的示意图;Fig. 1 is the schematic diagram of the chip cell structure in the IGBT numerical model parameter extraction method based on convolutional neural network of the present invention;
图2为本发明中IGBT的器件结构及工艺参数参考图;2 is a reference diagram of the device structure and process parameters of the IGBT in the present invention;
图3为本发明中动态IGBT开通关断测试平台电路图;3 is a circuit diagram of a dynamic IGBT on-off test platform in the present invention;
图4为本发明中的数据扩充示意图;4 is a schematic diagram of data expansion in the present invention;
图5为本发明中数据的标准化归一化和随机排序示意图;Fig. 5 is the standardization normalization and random sorting schematic diagram of data in the present invention;
图6为本发明中使用神经网络模型训练得出的工艺参数值的模型训练结果和训练次数之间的关系图;Fig. 6 is the relation diagram between the model training result of the process parameter value that uses neural network model training in the present invention and the number of times of training;
图7为本发明中使用仿真训练给出的工艺参数值的模型训练结果和训练次数之间的关系图;Fig. 7 is the relation diagram between the model training result and the training times of the process parameter value that uses simulation training to provide in the present invention;
图8为本发明中仿真结果与实际实验结果静态特性对照图;Fig. 8 is the static characteristic comparison diagram of simulation result and actual experiment result in the present invention;
图9为本发明中一个工况下仿真结果与实际实验结果动态特性对照图;Fig. 9 is the dynamic characteristic comparison diagram of simulation result and actual experiment result under a working condition in the present invention;
图10为本发明中另一个工况下仿真结果与实际实验结果动态特性对照图。FIG. 10 is a comparison diagram of the dynamic characteristics between the simulation results and the actual experimental results under another working condition in the present invention.
具体实施方式Detailed ways
下面结合附图和具体实施例对本发明作进一步的详细说明。The present invention will be further described in detail below with reference to the accompanying drawings and specific embodiments.
一种基于卷积神经网络的IGBT数值模型参数提取方法,包括如下步骤:A method for extracting parameters of an IGBT numerical model based on a convolutional neural network, comprising the following steps:
A)基于TCAD数值仿真软件构建数值模型,数值模型包含IGBT的元胞尺寸结构参数和待求解的工艺参数,工艺参数包括集电极峰值浓度Pcollector,集电极结深Hemit,集电极结处浓度Pjuntion,场截止层浓度Nbuff和场截止层结深Hcut,元胞尺寸结构参数利用观测工具对芯片截面样品进行观察提取,本实施例中,利用扫描电镜对芯片截面样品进行观察,同时,结合芯片染结实验确定芯片的掺杂的位置,利用TCAD数值仿真软件,构建相应的IGBT元胞区域的几何模型,最终,芯片的元胞结构如图1所示,结合对芯片电镜观测和染结实验结果,确立器件的元胞尺寸结构参数;A) Build a numerical model based on TCAD numerical simulation software. The numerical model includes the cell size structure parameters of the IGBT and the process parameters to be solved. The process parameters include the peak collector concentration Pcollector, the collector junction depth Hemit, and the collector junction concentration Pjuntion, The field cutoff layer concentration Nbuff, the field cutoff layer junction depth Hcut, the cell size and structure parameters are observed and extracted by using observation tools to observe and extract the chip cross-section sample. In this embodiment, the chip cross-section sample is observed by scanning electron microscope. The doping position of the chip was determined experimentally, and the geometric model of the corresponding IGBT cell area was constructed by using the TCAD numerical simulation software. Finally, the cell structure of the chip was shown in Figure 1. Combined with the observation of the chip electron microscope and the results of the dye-junction experiment, Establish the cell size structure parameters of the device;
B)利用TCAD数值仿真软件对工艺参数进行筛选赋值,生成工艺参数取值网表,利用TCAD数值仿真软件得到每组工艺下输出的特性曲线,特性曲线包括器件集电极电流Ic与集射极电压Vce之间的关系曲线、瞬态关断集射极电压Vce随时间Time变化曲线和瞬态关断时集电极电流Ict随时间Time变化曲线,后两条特性曲线为器件瞬态特性曲线,所对应的电路如图3所示,特性曲线和工艺参数取值网表构成原始数据集,其中,对工艺参数进行筛选赋值,包括如下步骤:B) Use TCAD numerical simulation software to screen and assign process parameters, generate a netlist for the value of process parameters, and use TCAD numerical simulation software to obtain the output characteristic curves of each group of processes. The characteristic curves include device collector current Ic and collector-emitter voltage. The relationship curve between Vce, the time curve of the transient turn-off collector-emitter voltage Vce, and the time curve of the collector current Ict at the time of transient turn-off, the latter two characteristic curves are the transient characteristic curves of the device, so The corresponding circuit is shown in Figure 3. The characteristic curve and the process parameter value netlist constitute the original data set. Among them, the process parameters are screened and assigned, including the following steps:
B1)通过仿真的方法确定工艺参数的取值范围,IGBT的器件结构及工艺参数参考图2,通过仿真的方法确定其取值范围,具体实施方法是:利用TCAD数值仿真软件对5个工艺参数进行筛选赋值,通过求解器件的导通压降Vces、击穿电压Vcesat、器件损耗Eoff,并满足如下条件:B1) Determine the value range of the process parameters by means of simulation. Refer to Figure 2 for the device structure and process parameters of the IGBT, and determine the range of values by means of simulation. Screening and assignment is performed by solving the on-voltage drop Vces, breakdown voltage Vcesat, and device loss Eoff of the device, and the following conditions are met:
Vces>1800VVces>1800V
Vcesat=2±0.15VVcesat=2±0.15V
Eoff=1500±200mJEoff=1500±200mJ
其中,计算击穿电压Vcesat的环境条件为栅极电压Vg=15V,集电极电流为3600A,环境温度为25℃,计算器件损耗Eoff的环境条件为驱动电阻1欧姆,器件在发射集电流Ic=3600A条件下完成关断,环境温度为25摄氏度,在同时满足以上三个条件的前提下,获得5个工艺参数取值范围,见表1;Among them, the environmental conditions for calculating the breakdown voltage Vcesat are the gate voltage Vg=15V, the collector current is 3600A, the ambient temperature is 25°C, the environmental conditions for calculating the device loss Eoff are the driving
表1 IGBT工艺参数说明及其范围Table 1 IGBT process parameter description and its range
B2)采用等间隔取值加插值的方法对工艺参数进行取值,首先基于取值范围进行等间隔取值,计算共k个取值下,该参数输出特性曲线,通过特性曲线提取每个取值下的器件饱和导通压降和关断损耗,其中,相邻两个参数取值下,存在插值ΔVcesat和插值ΔEoff,计算出敏感度ki=[(ΔVcesat/Vcesat)2+(ΔEoff/Eoff)2]1/2/(Δmi/mi),其中i表示第i组参数,mi表示工艺参数中任意一个参数的具体值,Δmi=mi-mi-1表示该参数最相邻的两个取值之间的差值,计算出k个敏感度平均值k’,当敏感度ki>k’,在这两个参数中插入均值点m’i=(mi+mi+1)/2;B2) Use the method of taking values at equal intervals and adding interpolation to take values for the process parameters. First, take values at equal intervals based on the value range, calculate a total of k values, and output the characteristic curve for this parameter, and extract each parameter from the characteristic curve. The saturation turn-on voltage drop and turn-off loss of the device under the value of , where, under the values of two adjacent parameters, there are interpolation ΔV cesat and interpolation ΔE off , and the sensitivity k i =[(ΔVcesat/Vcesat) 2 +( ΔEoff/Eoff) 2 ] 1/2 /(Δm i /m i ), where i represents the i-th group of parameters, mi represents the specific value of any parameter in the process parameters, and Δm i =m i -m i-1 represents The difference between the two most adjacent values of the parameter is calculated to calculate k sensitivity average values k'. When the sensitivity ki>k', insert the mean point m' in these two parameters i = (m i +m i+1 )/2;
C)将原始数据集经过数据扩充、标准化和归一化,取得可供卷积神经网络识别的训练数据集,具体步骤如下:C) The original data set is subjected to data expansion, standardization and normalization to obtain a training data set that can be recognized by the convolutional neural network. The specific steps are as follows:
C1)采用奇偶间隔采样的手段,按照原始数据集的数据奇偶性,在原始数据集的偶数序列中等间隔采样后,在其相邻的奇数位上进行等间隔重采样,得到相同数据长度的输出数据,实现对有限样本个数的数据扩充;C1) Using the method of odd-even interval sampling, according to the data parity of the original data set, after the even-numbered sequence of the original data set is sampled at equal intervals, the adjacent odd-numbered bits are resampled at equal intervals to obtain the output of the same data length data to achieve data expansion for a limited number of samples;
C2)将数据扩充后的原始数据集内的所有数据整理成为512位长度的数据链,包含[Vce,Ic],[Time,Ict],[Time,Vce]三组二维列向量;C2) Arrange all data in the original data set after data expansion into a data chain with a length of 512 bits, including three groups of two-dimensional column vectors [Vce,Ic],[Time,Ict],[Time,Vce];
C3)将数据链中的数据采用归一化策略,分别找到三组向量在5000组数据链中该类数据的最大值,分别记为Icmax,Ictmax,Vcemax,利用Ic=Ic/Icmax,Ict=Ictmax,Vce=Vcemax,得到归一化后的数据,其范围在(0,1)内,然后将数据链顺序打乱并完成数据链中数组的首尾拼接,最终得到完整的输入数据链;C3) Use the normalization strategy for the data in the data chain, and find the maximum value of this type of data in the 5000 groups of data chains for three groups of vectors, respectively, denoted as Icmax, Ictmax, Vcemax, using Ic=Ic/Icmax, Ict= Ictmax, Vce=Vcemax, the normalized data is obtained, and its range is within (0, 1), and then the sequence of the data chain is scrambled and the end-to-end splicing of the arrays in the data chain is completed, and a complete input data chain is finally obtained;
以原始数据集中瞬态关断集射极电压Vce随时间变化曲线为例,采用等间隔采样的形式,在原始数据集中抽取其中512个数据点,且所有采样点在原始数据中的序数均为偶数点,在每个偶数点右侧的奇数点进行重新采样,实现原始数据扩充翻倍,如图4所示;Taking the curve of transient turn-off collector-emitter voltage Vce in the original data set as an example, 512 data points are extracted from the original data set in the form of sampling at equal intervals, and the ordinal numbers of all sampling points in the original data are For even-numbered points, resample the odd-numbered points to the right of each even-numbered point to double the original data expansion, as shown in Figure 4;
然后将扩充翻倍的数据按照标准的数据链的格式进行排布,每组数据链包含[Vce,Ic],[Time,Ict],[Time,Vce]三组二维列向量,列向量长度均为512,数据链的数量为5000个,然后,对标准化后的数据进行归一化处理,分别找到三组向量在5000组数据链中该类数据的最大值,分别记为Icmax,Ictmax,Vcemax。利用Ic=Ic/Icmax,Ict=Ictmax,Vce=Vcemax,得到归一化后的数据,其范围在(0,1)内,而后将原有的数据链进行乱序处理,并完成首尾拼接,最终得到完整的输入数据链,于此同时,将工艺参数取值网表按照乱序后的顺序首尾拼接,得到输出数据链,整个过程如图5所示,输入输出数据链最终构成了训练数据集;Then, the expanded and doubled data is arranged according to the standard data chain format. Each group of data chains contains three sets of two-dimensional column vectors [Vce,Ic],[Time,Ict],[Time,Vce], and the length of the column vector Both are 512, and the number of data chains is 5,000. Then, normalize the standardized data to find the maximum value of the three sets of vectors in the 5,000 sets of data chains, and record them as Icmax, Ictmax, Vcemax. Using Ic=Ic/Icmax, Ict=Ictmax, Vce=Vcemax, the normalized data is obtained, and its range is within (0, 1), and then the original data chain is processed out of order, and the end-to-end splicing is completed, Finally, a complete input data chain is obtained. At the same time, the process parameter value netlist is spliced in the disordered order, and the output data chain is obtained. The whole process is shown in Figure 5. The input and output data chain finally constitutes the training data. set;
D)卷积神经网络利用训练数据集学习特性曲线与工艺参数之间的关系,生成IGBT数值模型参数提取卷积神经网络,卷积神经网络采用keras网络架构,存在四层结构,其中包括第一卷积层与池化层,第二卷积层与池化层,压平层和全连接层,卷积神经网络的输入层为包含有若干组IGBT特性曲线的数据链,输出层为工艺参数的取值,卷积神经网络的训练过程为:输入数据链带入第一卷积层中,此时数据链长度为5000,数据链的没有经过卷积扩充,深度信息为1,计为(5000,1),被64个神经元构成的滤波器进行卷积运算,采用ELU函数进行激活,ELU函数可表示成:f(x)={x(x>0);(ex-1)(x≤0)},得到数据结构为(2500,64),信息维度扩充,而后连接第一池化层,池化缩放比例因子为5,将数据的长度进一步缩小,得到数据结构为(500,64),而后进入第二卷积层,数据变为(250,128),进入第二池化层,数据结构变为(25,256),此时的数据经过压平层处理,将所有维度展平,得到数据结构(25*256,1),而后经过全连接层,最终得到的数据结构为(5,1),此时得到一个包含5个输出信息的一维参数;D) The convolutional neural network uses the training data set to learn the relationship between the characteristic curve and the process parameters, and generates the IGBT numerical model parameters to extract the convolutional neural network. The convolutional neural network adopts the keras network architecture and has a four-layer structure, including the first Convolutional layer and pooling layer, second convolutional layer and pooling layer, flattening layer and fully connected layer, the input layer of the convolutional neural network is a data chain containing several groups of IGBT characteristic curves, and the output layer is the process parameters The training process of the convolutional neural network is: the input data chain is brought into the first convolutional layer, the length of the data chain is 5000 at this time, the data chain has not been expanded by convolution, and the depth information is 1, which is counted as ( 5000, 1), which is convolved by a filter composed of 64 neurons, and activated by the ELU function. The ELU function can be expressed as: f(x)={x(x>0); (e x -1) (x≤0)}, the data structure is (2500, 64), the information dimension is expanded, and then the first pooling layer is connected, the pooling scaling factor is 5, the length of the data is further reduced, and the data structure is (500 , 64), then enter the second convolution layer, the data becomes (250, 128), enter the second pooling layer, the data structure becomes (25, 256), the data at this time is processed by the flattening layer, and all The dimension is flattened to obtain the data structure (25*256, 1), and then through the fully connected layer, the final data structure is (5, 1), and a one-dimensional parameter containing 5 output information is obtained at this time;
卷积神经网络的单次学习过程下,利用图5中所属的输入数据链,得到卷积神经网络下的输出数据链,由于数据链中包含五个参数,而训练数据集中的输出数据链长度为5000个,故计i为参数的序号,k为该组参数在数据链中的序号,利用卷积神经网络得到的输出数据链每个元素为mi,k,工艺参数取值网表构成的输出数据链计为Mi,k,计β为误差代价函数,βk=0.2∑[(mi,k-Mi,k)/Mi,k]2i=1,2,3,4,5,β=∑βk,k=1,2,……5000,通过迭代策略,改变卷积神经网络中的权重值,使得误差代价函数达到最优,若20次迭代调整后误差函数仍未改善,则卷积运算停止,认为训练达到要求,图6和图7展示了在训练网络对1000个数据处理后的结果,神经网络模型训练得出的工艺参数值和仿真训练给出的工艺参数值之间的对比,可以看出,神经网络能够较好的模拟该种对应关系,在样本有限的情况下,其学习效果较好,结果误差较小;In the single learning process of the convolutional neural network, the input data chain in Figure 5 is used to obtain the output data chain under the convolutional neural network. Since the data chain contains five parameters, the length of the output data chain in the training data set is is 5000, so i is the serial number of the parameter, k is the serial number of the group of parameters in the data chain, each element of the output data chain obtained by using the convolutional neural network is m i,k , and the process parameter value netlist is composed of The output data chain is counted as Mi ,k , and β is the error cost function, β k =0.2∑[(mi,k-Mi,k)/Mi,k] 2 i=1,2,3,4,5 , β=∑β k , k=1,2,...5000, through the iterative strategy, change the weight value in the convolutional neural network to make the error cost function optimal, if the error function is still not improved after 20 iterative adjustments , the convolution operation is stopped, and the training is considered to meet the requirements. Figures 6 and 7 show the results after the
E)采用实际电路提取的波形作为输入值,利用IGBT数值模型参数提取卷积神经网络计算求解,获得工艺参数,实际电路包括电压源VDC,电源端电容CDC,线路连接处杂散电感Ls,放电IGBT T1以及待测IGBT T2,其中电压源VDC经过线路连接处杂散电感Ls连接到放电IGBT T1的集电极,由放电IGBT T1的发射极连接到待测IGBT T2的集电极,再由待测IGBTT2的发射极连接电压源VDC的负极,待测IGBT T2电路中VGE1为栅极驱动电压,可以控制线路中IGBT开通关断时间,使得器件能在特定电流下完成关断,利用电路端口测试的手段得到器件关断瞬态集射极电压Vce,集电极电流Ic随时间time变化曲线,集电极电流Ic随集射极电压Vce变化曲线,采用步骤C)预处理手段,得到改组曲线得到输入数据链,带入训练完成的IGBT数值模型参数提取神经网络中,计算待求解的工艺参数。E) Use the waveform extracted from the actual circuit as the input value, use the IGBT numerical model parameters to extract the convolutional neural network for calculation and solution, and obtain the process parameters. The actual circuit includes the voltage source V DC , the power supply terminal capacitor C DC , and the stray inductance Ls at the line connection , the discharge IGBT T1 and the IGBT T2 to be tested, in which the voltage source VDC is connected to the collector of the discharge IGBT T1 through the stray inductance Ls at the line connection, and the emitter of the discharge IGBT T1 is connected to the collector of the IGBT T2 to be tested, and then by The emitter of the IGBT T2 to be tested is connected to the negative electrode of the voltage source V DC . In the circuit of the IGBT T2 to be tested, V GE1 is the gate driving voltage, which can control the turn-on and turn-off time of the IGBT in the circuit, so that the device can be turned off at a specific current. The circuit port test method is used to obtain the device turn-off transient collector-emitter voltage Vce, the collector current Ic changing curve with time, the collector current Ic changing curve with the collector-emitter voltage Vce, using step C) preprocessing method to obtain the reorganization The curve is obtained from the input data chain and brought into the trained IGBT numerical model parameter extraction neural network to calculate the process parameters to be solved.
为进一步验证该工艺参数的准确性,将该工艺参数下的模型在多个工况下实验波形和仿真波形进行对比。下面用一实例展示最终效果,表2的内容展示了传统寻的方法和神经网络参数提取方法的结果对比,In order to further verify the accuracy of the process parameters, the experimental waveforms and simulation waveforms of the model under the process parameters were compared under multiple working conditions. The final effect is shown below with an example. The content of Table 2 shows the comparison of the results of the traditional search method and the neural network parameter extraction method.
表2传统方法与神经网络方法输出结果对比Table 2 Comparison of the output results of the traditional method and the neural network method
图8~图10为其最终结果对比图,其中图8为数据手册和器件仿真曲线的静态特性结果对比,图9和图10为不同工况下动态关断特性对比,结果发现其一致性较好,能够满足精度要求,验证了本发明的正确性。Figures 8 to 10 are the comparison diagrams of the final results, of which Figure 8 is the comparison of the static characteristics of the data sheet and the device simulation curve, and Figures 9 and 10 are the comparison of the dynamic turn-off characteristics under different operating conditions. Well, the accuracy requirement can be met, and the correctness of the present invention is verified.
本发明中,利用神经网络的方法可以改进工艺参数提取方法,为部分难以确定的工艺参量拟合提供一个新的方法,本方法还可以用来简化实际工艺中部分复杂的工艺过程,得到较为精确的模型,提升了模型提取的准确性和效率。除上述实例外,本发明还可以用于IGBT等半导体器件生产过程中部分工艺参数调校,调试过程,可以在待调整的工艺参数附近构建工艺网表,利用工艺网表输出仿真结果训练神经网络。最后再利用目标输出曲线寻的最优输入工艺参数。In the present invention, the method of using the neural network can improve the process parameter extraction method, and provide a new method for fitting some process parameters that are difficult to determine. The model can improve the accuracy and efficiency of model extraction. In addition to the above-mentioned examples, the present invention can also be used for the adjustment of some process parameters in the production process of semiconductor devices such as IGBTs. During the debugging process, a process netlist can be constructed near the process parameters to be adjusted, and the neural network can be trained by using the process netlist to output simulation results. . Finally, use the target output curve to find the optimal input process parameters.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210250735.4A CN114330197B (en) | 2022-03-15 | 2022-03-15 | Parameter extraction method of IGBT numerical model based on convolutional neural network |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210250735.4A CN114330197B (en) | 2022-03-15 | 2022-03-15 | Parameter extraction method of IGBT numerical model based on convolutional neural network |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114330197A CN114330197A (en) | 2022-04-12 |
CN114330197B true CN114330197B (en) | 2022-07-29 |
Family
ID=81033596
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210250735.4A Active CN114330197B (en) | 2022-03-15 | 2022-03-15 | Parameter extraction method of IGBT numerical model based on convolutional neural network |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114330197B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114792078A (en) * | 2022-04-26 | 2022-07-26 | 中国科学院微电子研究所 | Method and device for extracting model parameters of integrated circuit device |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105763121A (en) * | 2016-03-03 | 2016-07-13 | 湖南大学 | Synchronous electric main shaft acceleration strong magnetic control method for variable-load superhigh-speed grinding |
CN106202590A (en) * | 2015-04-29 | 2016-12-07 | 国网智能电网研究院 | IGBT module switching transients model parameter acquisition methods and method for establishing model |
CN110502805A (en) * | 2019-07-31 | 2019-11-26 | 中国人民解放军海军工程大学 | Parameter extraction method of IGBT physical model |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20200210824A1 (en) * | 2018-12-28 | 2020-07-02 | Utopus Insights, Inc. | Scalable system and method for forecasting wind turbine failure with varying lead time windows |
CN113935413A (en) * | 2021-10-14 | 2022-01-14 | 国网浙江省电力有限公司金华供电公司 | Distribution network wave recording file waveform identification method based on convolutional neural network |
-
2022
- 2022-03-15 CN CN202210250735.4A patent/CN114330197B/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106202590A (en) * | 2015-04-29 | 2016-12-07 | 国网智能电网研究院 | IGBT module switching transients model parameter acquisition methods and method for establishing model |
CN105763121A (en) * | 2016-03-03 | 2016-07-13 | 湖南大学 | Synchronous electric main shaft acceleration strong magnetic control method for variable-load superhigh-speed grinding |
CN110502805A (en) * | 2019-07-31 | 2019-11-26 | 中国人民解放军海军工程大学 | Parameter extraction method of IGBT physical model |
Non-Patent Citations (2)
Title |
---|
An Improved Physical Model of Power Diode in the Rectifier Circuit;Zenan Shi 等;《 IEEE Journal of Emerging and Selected Topics in Power Electronics》;20210625;第1203-1218页 * |
IGBT 机理建模及其基于神经网络的参数辨识方法;孙跃 等;《西南交通大学学报》;20151215;第1143-1149+1163页 * |
Also Published As
Publication number | Publication date |
---|---|
CN114330197A (en) | 2022-04-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110502805B (en) | IGBT physical model parameter extraction method | |
CN105138741B (en) | IGBT model parameters calibration system and method based on neutral net | |
CN105548862A (en) | Simulation circuit fault diagnosis method on the basis of generalized multi-nuclear support vector machine | |
CN114330197B (en) | Parameter extraction method of IGBT numerical model based on convolutional neural network | |
CN113536661B (en) | TFET device structure optimization and performance prediction method based on neural network | |
CN102708260A (en) | Electromagnetic transient simulation method and device | |
JP6961117B1 (en) | Modeling method | |
CN102663166A (en) | Method and system for simulating on-chip power supply network | |
CN102254065B (en) | Method for extracting parameters of bipolar transistor and equivalent circuit of bipolar transistor | |
CN114066005B (en) | CNN network-based silicon carbide diode breakdown voltage prediction method | |
CN106407542A (en) | Modeling method for gate pole current conversion thyristor physical model used for circuit simulation | |
CN103810311B (en) | The method that bipolar transistor is emulated and bipolar transistor artificial circuit | |
CN100561488C (en) | The modeling method of metal-oxide-semiconductor resistance | |
CN118627445A (en) | 1200V SiC MOSFET modeling optimization and performance prediction method based on neural network | |
CN107918708A (en) | A kind of extracting method of GaN HEMT devices parasitic parameter | |
CN106202590A (en) | IGBT module switching transients model parameter acquisition methods and method for establishing model | |
CN107622167B (en) | Collector current soft measurement method for grid control device | |
CN116205190B (en) | IGBT physical model parameter acquisition method and device | |
CN104899344A (en) | Radio-frequency circuit simulation method and radio-frequency circuit simulation system | |
CN106055761A (en) | Load model parameter verification method based on decision tree classification | |
Aldridge et al. | High performance SiGe HBT performance variability learning by utilizing neural networks and technology computer aided design | |
CN116090390A (en) | Prediction method of DC characteristics of FINFET devices based on deep learning | |
CN111898281B (en) | SiC IGBT device behavior model building method | |
CN104573283B (en) | Semiconductor device parameter extraction device and method | |
CN119227499A (en) | Modeling method for IGBT switching transients in electric drive systems of new energy vehicles |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |