CN114318378A - A kind of catalyst for electroreducing CO to make ethanol and preparation method thereof - Google Patents
A kind of catalyst for electroreducing CO to make ethanol and preparation method thereof Download PDFInfo
- Publication number
- CN114318378A CN114318378A CN202111453813.2A CN202111453813A CN114318378A CN 114318378 A CN114318378 A CN 114318378A CN 202111453813 A CN202111453813 A CN 202111453813A CN 114318378 A CN114318378 A CN 114318378A
- Authority
- CN
- China
- Prior art keywords
- catalyst
- preparation
- solution
- ethanol
- alkylamine
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 title claims abstract description 78
- 239000003054 catalyst Substances 0.000 title claims abstract description 48
- 238000002360 preparation method Methods 0.000 title claims abstract description 15
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-dimethylformamide Substances CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 claims abstract description 79
- LZZYPRNAOMGNLH-UHFFFAOYSA-M Cetrimonium bromide Chemical compound [Br-].CCCCCCCCCCCCCCCC[N+](C)(C)C LZZYPRNAOMGNLH-UHFFFAOYSA-M 0.000 claims abstract description 29
- 239000000243 solution Substances 0.000 claims abstract description 29
- 238000003756 stirring Methods 0.000 claims abstract description 22
- 239000007864 aqueous solution Substances 0.000 claims abstract description 15
- ZKXWKVVCCTZOLD-FDGPNNRMSA-N copper;(z)-4-hydroxypent-3-en-2-one Chemical compound [Cu].C\C(O)=C\C(C)=O.C\C(O)=C\C(C)=O ZKXWKVVCCTZOLD-FDGPNNRMSA-N 0.000 claims abstract description 15
- 150000003973 alkyl amines Chemical class 0.000 claims abstract description 14
- 239000003638 chemical reducing agent Substances 0.000 claims abstract description 9
- -1 unsaturated hydrocarbyl amine Chemical class 0.000 claims abstract description 8
- 239000003960 organic solvent Substances 0.000 claims abstract description 5
- 239000002994 raw material Substances 0.000 claims abstract description 4
- 239000007810 chemical reaction solvent Substances 0.000 claims abstract description 3
- 239000000203 mixture Substances 0.000 claims abstract description 3
- 239000011949 solid catalyst Substances 0.000 claims abstract description 3
- 239000010949 copper Substances 0.000 claims description 81
- 239000001267 polyvinylpyrrolidone Substances 0.000 claims description 28
- 229920000036 polyvinylpyrrolidone Polymers 0.000 claims description 28
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 claims description 28
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 10
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 claims description 9
- 229910052802 copper Inorganic materials 0.000 claims description 8
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 claims description 6
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical group OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 claims description 6
- 150000001412 amines Chemical class 0.000 claims description 5
- 239000012279 sodium borohydride Substances 0.000 claims description 5
- 229910000033 sodium borohydride Inorganic materials 0.000 claims description 5
- TUSDEZXZIZRFGC-UHFFFAOYSA-N 1-O-galloyl-3,6-(R)-HHDP-beta-D-glucose Natural products OC1C(O2)COC(=O)C3=CC(O)=C(O)C(O)=C3C3=C(O)C(O)=C(O)C=C3C(=O)OC1C(O)C2OC(=O)C1=CC(O)=C(O)C(O)=C1 TUSDEZXZIZRFGC-UHFFFAOYSA-N 0.000 claims description 3
- KWSLGOVYXMQPPX-UHFFFAOYSA-N 5-[3-(trifluoromethyl)phenyl]-2h-tetrazole Chemical compound FC(F)(F)C1=CC=CC(C2=NNN=N2)=C1 KWSLGOVYXMQPPX-UHFFFAOYSA-N 0.000 claims description 3
- 239000001263 FEMA 3042 Substances 0.000 claims description 3
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 claims description 3
- LRBQNJMCXXYXIU-PPKXGCFTSA-N Penta-digallate-beta-D-glucose Natural products OC1=C(O)C(O)=CC(C(=O)OC=2C(=C(O)C=C(C=2)C(=O)OC[C@@H]2[C@H]([C@H](OC(=O)C=3C=C(OC(=O)C=4C=C(O)C(O)=C(O)C=4)C(O)=C(O)C=3)[C@@H](OC(=O)C=3C=C(OC(=O)C=4C=C(O)C(O)=C(O)C=4)C(O)=C(O)C=3)[C@H](OC(=O)C=3C=C(OC(=O)C=4C=C(O)C(O)=C(O)C=4)C(O)=C(O)C=3)O2)OC(=O)C=2C=C(OC(=O)C=3C=C(O)C(O)=C(O)C=3)C(O)=C(O)C=2)O)=C1 LRBQNJMCXXYXIU-PPKXGCFTSA-N 0.000 claims description 3
- 229960005070 ascorbic acid Drugs 0.000 claims description 3
- 235000010323 ascorbic acid Nutrition 0.000 claims description 3
- 239000011668 ascorbic acid Substances 0.000 claims description 3
- 229960004106 citric acid Drugs 0.000 claims description 3
- LRBQNJMCXXYXIU-QWKBTXIPSA-N gallotannic acid Chemical compound OC1=C(O)C(O)=CC(C(=O)OC=2C(=C(O)C=C(C=2)C(=O)OC[C@H]2[C@@H]([C@@H](OC(=O)C=3C=C(OC(=O)C=4C=C(O)C(O)=C(O)C=4)C(O)=C(O)C=3)[C@H](OC(=O)C=3C=C(OC(=O)C=4C=C(O)C(O)=C(O)C=4)C(O)=C(O)C=3)[C@@H](OC(=O)C=3C=C(OC(=O)C=4C=C(O)C(O)=C(O)C=4)C(O)=C(O)C=3)O2)OC(=O)C=2C=C(OC(=O)C=3C=C(O)C(O)=C(O)C=3)C(O)=C(O)C=2)O)=C1 LRBQNJMCXXYXIU-QWKBTXIPSA-N 0.000 claims description 3
- 239000008103 glucose Substances 0.000 claims description 3
- 229910001379 sodium hypophosphite Inorganic materials 0.000 claims description 3
- 229940033123 tannic acid Drugs 0.000 claims description 3
- 235000015523 tannic acid Nutrition 0.000 claims description 3
- 229920002258 tannic acid Polymers 0.000 claims description 3
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 claims description 2
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 claims description 2
- 235000015165 citric acid Nutrition 0.000 claims description 2
- 238000001914 filtration Methods 0.000 claims description 2
- 239000011241 protective layer Substances 0.000 claims description 2
- 125000000217 alkyl group Chemical group 0.000 claims 1
- 239000003792 electrolyte Substances 0.000 description 14
- 238000011056 performance test Methods 0.000 description 11
- 238000006722 reduction reaction Methods 0.000 description 7
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 6
- HQABUPZFAYXKJW-UHFFFAOYSA-N butan-1-amine Chemical compound CCCCN HQABUPZFAYXKJW-UHFFFAOYSA-N 0.000 description 5
- 239000007789 gas Substances 0.000 description 4
- 229930195735 unsaturated hydrocarbon Natural products 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- 229910021607 Silver chloride Inorganic materials 0.000 description 3
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 3
- 238000002441 X-ray diffraction Methods 0.000 description 3
- 239000001569 carbon dioxide Substances 0.000 description 3
- 229910002092 carbon dioxide Inorganic materials 0.000 description 3
- UAOMVDZJSHZZME-UHFFFAOYSA-N diisopropylamine Chemical compound CC(C)NC(C)C UAOMVDZJSHZZME-UHFFFAOYSA-N 0.000 description 3
- 238000005868 electrolysis reaction Methods 0.000 description 3
- 238000002347 injection Methods 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- PAYRUJLWNCNPSJ-UHFFFAOYSA-N Aniline Chemical compound NC1=CC=CC=C1 PAYRUJLWNCNPSJ-UHFFFAOYSA-N 0.000 description 2
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 2
- 239000005977 Ethylene Substances 0.000 description 2
- 238000005481 NMR spectroscopy Methods 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 238000003917 TEM image Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000000446 fuel Substances 0.000 description 2
- 239000010410 layer Substances 0.000 description 2
- 239000007791 liquid phase Substances 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 239000012071 phase Substances 0.000 description 2
- HKZLPVFGJNLROG-UHFFFAOYSA-M silver monochloride Chemical compound [Cl-].[Ag+] HKZLPVFGJNLROG-UHFFFAOYSA-M 0.000 description 2
- 239000003381 stabilizer Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 241000883964 Ariocarpus retusus Species 0.000 description 1
- VMQMZMRVKUZKQL-UHFFFAOYSA-N Cu+ Chemical compound [Cu+] VMQMZMRVKUZKQL-UHFFFAOYSA-N 0.000 description 1
- JPVYNHNXODAKFH-UHFFFAOYSA-N Cu2+ Chemical compound [Cu+2] JPVYNHNXODAKFH-UHFFFAOYSA-N 0.000 description 1
- SNRUBQQJIBEYMU-UHFFFAOYSA-N Dodecane Natural products CCCCCCCCCCCC SNRUBQQJIBEYMU-UHFFFAOYSA-N 0.000 description 1
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 1
- REYJJPSVUYRZGE-UHFFFAOYSA-N Octadecylamine Chemical compound CCCCCCCCCCCCCCCCCCN REYJJPSVUYRZGE-UHFFFAOYSA-N 0.000 description 1
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical class [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 238000000862 absorption spectrum Methods 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 239000003011 anion exchange membrane Substances 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 239000007806 chemical reaction intermediate Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- BERDEBHAJNAUOM-UHFFFAOYSA-N copper(I) oxide Inorganic materials [Cu]O[Cu] BERDEBHAJNAUOM-UHFFFAOYSA-N 0.000 description 1
- KRFJLUBVMFXRPN-UHFFFAOYSA-N cuprous oxide Chemical compound [O-2].[Cu+].[Cu+] KRFJLUBVMFXRPN-UHFFFAOYSA-N 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 229940043279 diisopropylamine Drugs 0.000 description 1
- MGHPNCMVUAKAIE-UHFFFAOYSA-N diphenylmethanamine Chemical compound C=1C=CC=CC=1C(N)C1=CC=CC=C1 MGHPNCMVUAKAIE-UHFFFAOYSA-N 0.000 description 1
- JRBPAEWTRLWTQC-UHFFFAOYSA-N dodecylamine Chemical compound CCCCCCCCCCCCN JRBPAEWTRLWTQC-UHFFFAOYSA-N 0.000 description 1
- 238000000157 electrochemical-induced impedance spectroscopy Methods 0.000 description 1
- UQSQSQZYBQSBJZ-UHFFFAOYSA-N fluorosulfonic acid Chemical compound OS(F)(=O)=O UQSQSQZYBQSBJZ-UHFFFAOYSA-N 0.000 description 1
- 239000006261 foam material Substances 0.000 description 1
- 239000002803 fossil fuel Substances 0.000 description 1
- 238000004817 gas chromatography Methods 0.000 description 1
- 239000005431 greenhouse gas Substances 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 239000000543 intermediate Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- VQJOPRHZJAIGEW-UHFFFAOYSA-N n-ethyl-n-methylcyclopropanamine Chemical compound CCN(C)C1CC1 VQJOPRHZJAIGEW-UHFFFAOYSA-N 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 238000005580 one pot reaction Methods 0.000 description 1
- 230000002572 peristaltic effect Effects 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000001878 scanning electron micrograph Methods 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
Images
Landscapes
- Catalysts (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
一种电还原CO制乙醇的催化剂及其制备方法,所述催化剂为烷基胺或不饱和烃基胺保护的Cu/Cu2O催化剂,Cu为内核,Cu2O为壳层。制备方法如下:1)将原料Cu(acac)2和反应溶剂DMF混合均匀,搅拌,得到溶液A;2)向溶液A中滴加含还原剂、CTAB、PVP和烷基胺或不饱和烃基胺水溶液B,搅拌得到溶液C;3)将溶液C转移至高压釜中密封,一定温度下反应,过滤收集固体催化剂,用有机溶剂洗涤,干燥后得到催化剂Cu/Cu2O。在‑0.7V vs RHE时,C2+产物的法拉第效率达到95%,电流密度为151mA cm‑2,其中乙醇的法拉第效率为70%。
A catalyst for producing ethanol by electroreduction of CO and a preparation method thereof. The catalyst is a Cu/Cu 2 O catalyst protected by an alkylamine or an unsaturated hydrocarbyl amine, where Cu is an inner core and Cu 2 O is a shell. The preparation method is as follows: 1) uniformly mix the raw material Cu(acac) 2 and the reaction solvent DMF, and stir to obtain a solution A; 2) dropwise add a reducing agent, CTAB, PVP and an alkylamine or an unsaturated hydrocarbyl amine into the solution A Aqueous solution B, stir to obtain solution C; 3) transfer solution C to an autoclave to seal, react at a certain temperature, filter and collect solid catalyst, wash with organic solvent, and dry to obtain catalyst Cu/Cu 2 O. At ‑0.7V vs RHE, the Faradaic efficiency of the C 2+ product reaches 95% with a current density of 151 mA cm ‑2 , where the Faradaic efficiency of ethanol is 70%.
Description
技术领域technical field
本发明涉及电化学催化技术领域,尤其涉及一种电还原CO制乙醇的催化剂及其制备方法。The invention relates to the technical field of electrochemical catalysis, in particular to a catalyst for preparing ethanol by electroreduction of CO and a preparation method thereof.
背景技术Background technique
电化学还原二氧化碳转化为燃料和化学品可能是缓解对化石燃料的依赖和减轻温室气体效应的解决方案。单碳产品的生产相对简单,例如,CO2RR生成CO目前已投入商业应用。含有两个或两个以上碳(C2+产品),如乙烯、乙酸和乙醇,是具有明显经济价值的有用化学品或燃料。因此,高效还原二氧化碳转化为C2+产物是非常重要的。铜基催化剂已被证明可以有效地将二氧化碳转化为C2+产物,并具有明显的选择性。然而,研究工作仍集中在降低阴极过电位和进一步提高C2+产物选择性方面。Electrochemical reduction of carbon dioxide into fuels and chemicals may be a solution to ease dependence on fossil fuels and mitigate the effects of greenhouse gases. The production of single-carbon products is relatively simple, for example, CO 2 RR to CO is currently in commercial use. Containing two or more carbons (C 2+ products), such as ethylene, acetic acid and ethanol, are useful chemicals or fuels with significant economic value. Therefore, efficient reduction of carbon dioxide to C2 + products is very important. Copper-based catalysts have been shown to efficiently convert carbon dioxide to C2 + products with remarkable selectivity. However, research efforts are still focused on reducing the cathode overpotential and further improving the C2 + product selectivity.
CO被认为是生成C2+化合物的关键反应中间体。最近的一项研究证明了CO可以高速率转换,从而使CO还原反应受到了越来越多的关注。因此以CO作为中间原料,通过电化学方式进一步转化为C2+具有诱人的发展前景。CO is considered to be a key reaction intermediate for the formation of C 2+ compounds. A recent study demonstrated that CO can be converted at a high rate, leading to increased attention for the CO reduction reaction. Therefore, using CO as an intermediate raw material to further convert it into C2 + by electrochemical means has an attractive development prospect.
据报道,通过优化阴极结构,促进CO在电极和铜催化剂表面的扩散,CO还原生成乙烯的法拉第效率(FE)高达52.7%。相比之下,关于CO还原形成乙醇的研究却很少。乙醇具有高能源密度,市场价格高,全球需求一致,因此特别值得关注。不幸的是,总电流密度高于100mAcm-2,迄今为止报道的CO还原生成乙醇的最佳法拉第效率仅为33%,而且催化剂稳定性较差。因此CO还原生成乙醇过程中探索具有高催化活性、选择性和稳定性的催化剂仍然是一项具有挑战性的任务。It has been reported that the faradaic efficiency (FE) of CO reduction to ethylene is as high as 52.7% by optimizing the cathode structure and promoting the diffusion of CO on the electrode and copper catalyst surfaces. In contrast, there are few studies on the reduction of CO to ethanol. Ethanol is of particular concern due to its high energy density, high market prices and consistent global demand. Unfortunately, the total current density is higher than 100 mAcm -2 , the best faradaic efficiency of CO reduction to ethanol reported so far is only 33%, and the catalyst stability is poor. Therefore, it is still a challenging task to explore catalysts with high catalytic activity, selectivity and stability during CO reduction to ethanol.
发明内容SUMMARY OF THE INVENTION
本发明的目的在于解决现有技术中的上述问题,提供一种电还原CO制乙醇的催化剂及其制备方法,采用简便的一锅法合成Cu/Cu2O催化剂,提高乙醇的法拉第效率。The purpose of the present invention is to solve the above problems in the prior art, and to provide a catalyst for producing ethanol by electroreduction of CO and a preparation method thereof.
为达到上述目的,本发明采用如下技术方案:To achieve the above object, the present invention adopts the following technical solutions:
一种电还原CO制乙醇的催化剂,所述催化剂为烷基胺或不饱和烃基胺保护的Cu/Cu2O催化剂,Cu为内核,Cu2O为壳层,烷基胺或不饱和烃基胺为外保护层。A catalyst for electroreducing CO to produce ethanol, the catalyst is a Cu/Cu 2 O catalyst protected by alkylamine or unsaturated hydrocarbyl amine, Cu is the inner core, Cu 2 O is the shell, the alkylamine or unsaturated hydrocarbyl amine for the outer protective layer.
本发明所述的一种电还原CO制乙醇的催化剂的制备方法,包括以下步骤:The preparation method of a catalyst for preparing ethanol by electroreduction of CO according to the present invention comprises the following steps:
1)将原料Cu(acac)2和反应溶剂二甲基甲酰胺(DMF)混合均匀,搅拌,得到溶液A;1) mix the raw material Cu(acac) 2 and the reaction solvent dimethylformamide (DMF) evenly, and stir to obtain solution A;
2)向溶液A中滴加含还原剂、十六烷基三甲基溴化铵(CTAB)、聚乙烯吡咯烷酮(PVP)和烷基胺或不饱和烃基胺水溶液B,搅拌得到溶液C;2) in solution A, drip containing reducing agent, cetyltrimethylammonium bromide (CTAB), polyvinylpyrrolidone (PVP) and alkylamine or unsaturated hydrocarbylamine aqueous solution B, stir to obtain solution C;
3)将溶液C转移至高压釜中密封,一定温度下反应,过滤收集固体催化剂,用有机溶剂洗涤,干燥后得到催化剂Cu/Cu2O。3) The solution C is transferred to an autoclave and sealed, reacted at a certain temperature, the solid catalyst is collected by filtration, washed with an organic solvent, and dried to obtain a catalyst Cu/Cu 2 O.
步骤1)中,所述搅拌为剧烈搅拌3~30min;步骤2)中,搅拌的时间为10~60min。In step 1), the stirring is vigorously stirring for 3-30 min; in step 2), the stirring time is 10-60 min.
步骤1)中,Cu(acac)2与二甲基甲酰胺的质量比为2~8:1。In step 1), the mass ratio of Cu(acac) 2 to dimethylformamide is 2-8:1.
步骤2)中,所述烷基胺或不饱和烃基胺水溶液的浓度为10wt%~45wt%。In step 2), the concentration of the alkylamine or unsaturated hydrocarbylamine aqueous solution is 10wt% to 45wt%.
步骤2)中,所述还原剂为环六亚甲基四胺、抗坏血酸、单宁酸、柠檬酸、水合次亚磷酸钠、葡萄糖、硼氢化钠中的一种或几种;还原剂与铜元素的质量比为1:1~15。In step 2), the reducing agent is one or more of cyclohexamethylenetetramine, ascorbic acid, tannic acid, citric acid, hydrated sodium hypophosphite, glucose, and sodium borohydride; the reducing agent and copper The mass ratio of the elements is 1:1-15.
步骤2)中,十六烷基三甲基溴化铵(CTAB)与铜元素的质量比为1:2~15。In step 2), the mass ratio of cetyltrimethylammonium bromide (CTAB) to copper element is 1:2-15.
步骤2)中,聚乙烯吡咯烷酮(PVP)与铜元素的质量比为1:0.5~5。In step 2), the mass ratio of polyvinylpyrrolidone (PVP) to copper element is 1:0.5-5.
步骤3)中,所述一定温度为120~200℃。In step 3), the certain temperature is 120-200°C.
步骤3)中,所述有机溶剂为甲醇、乙醇或环己烷In step 3), the organic solvent is methanol, ethanol or cyclohexane
相对于现有技术,本发明技术方案取得的有益效果是:Compared with the prior art, the beneficial effects obtained by the technical solution of the present invention are:
本发明采用简便的一锅法合成Cu/Cu2O催化剂,烷基胺或不饱和烃基胺负载在该催化剂上,使其疏水性可调。具有适量烷基胺或不饱和烃基胺层的疏水催化剂,能够降低水对电极的亲和力,促进CO向水电极界面的扩散,从而一定程度上在CO饱和电解质中抑制表面H2的转化。在-0.7V vs RHE时,C2+产物的法拉第效率达到95%,电流密度为151mA cm-2,其中乙醇的法拉第效率为70%。与之前关于CO2/CO电还原的报道相比,本发明乙醇的法拉第效率最高。The invention adopts a simple one-pot method to synthesize a Cu/Cu 2 O catalyst, and the alkylamine or unsaturated hydrocarbon-based amine is supported on the catalyst, so that the hydrophobicity can be adjusted. Hydrophobic catalysts with an appropriate amount of alkylamine or unsaturated hydrocarbon-based amine layers can reduce the affinity of water to the electrode and promote the diffusion of CO to the water-electrode interface, thereby inhibiting the conversion of surface H2 in CO-saturated electrolytes to a certain extent. At −0.7 V vs RHE, the Faradaic efficiency of the C 2+ product reaches 95% with a current density of 151 mA cm −2 , where the Faradaic efficiency of ethanol is 70%. Compared with previous reports on CO 2 /CO electroreduction, the Faradaic efficiency of the ethanol of the present invention is the highest.
本发明中所制备的Cu/Cu2O催化剂由金属铜核和Cu2O壳层组成,外覆一层烷基胺或不饱和烃基胺。还原剂和稳定剂的结合是成功合成Cu/Cu2O催化剂的关键。还原剂可以将Cu(II)还原为Cu(0)或Cu(I)。同时,烷基胺或不饱或烃基胺被吸附在催化剂表面,降低表面能,避免团聚。此外,作为稳定剂的烷基胺或不饱和烃基胺可以抑制Cu或Cu2O的氧化,使催化剂的氧化态具有良好的稳定性,在环境条件下可持续16个月而不发生任何变化。The Cu/Cu 2 O catalyst prepared in the present invention is composed of a metallic copper core and a Cu 2 O shell, and is covered with a layer of alkylamine or unsaturated hydrocarbon-based amine. The combination of reducing agent and stabilizer is the key to the successful synthesis of Cu/Cu 2 O catalyst. The reducing agent can reduce Cu(II) to Cu(0) or Cu(I). At the same time, alkylamines or unsaturated hydrocarbon-based amines are adsorbed on the catalyst surface, reducing the surface energy and avoiding agglomeration. In addition, alkylamines or unsaturated hydrocarbylamines as stabilizers can inhibit the oxidation of Cu or Cu2O, so that the oxidation state of the catalyst has good stability, which can last for 16 months under ambient conditions without any change.
附图说明Description of drawings
图1为Cu/Cu2O催化剂的SEM图;Fig. 1 is the SEM image of Cu/Cu 2 O catalyst;
图2为Cu/Cu2O催化剂的TEM图之一;Figure 2 is one of the TEM images of the Cu/Cu 2 O catalyst;
图3为Cu/Cu2O催化剂的TEM图之二;Figure 3 is the second TEM image of the Cu/Cu 2 O catalyst;
图4为Cu/Cu2O催化剂表面包裹正丁胺的红外吸收谱图;Fig. 4 is the infrared absorption spectrum of n-butylamine coated on the surface of the Cu/Cu 2 O catalyst;
图5为Cu/Cu2O在室温下新鲜暴露于空气中8个月和16个月后的XRD图谱。Figure 5 shows the XRD patterns of Cu/Cu 2 O after fresh exposure to air at room temperature for 8 and 16 months.
具体实施方式Detailed ways
为了使本发明所要解决的技术问题、技术方案及有益效果更加清楚、明白,以下结合附图和实施例,对本发明做进一步详细说明。In order to make the technical problems, technical solutions and beneficial effects to be solved by the present invention clearer and more comprehensible, the present invention will be further described in detail below with reference to the accompanying drawings and embodiments.
本实施例中,电极的制备如下:将20mg Cu/Cu2O和80μL的5wt%全氟磺酸溶液分散到1mL水/乙醇(体积比为4:1)溶液中,超声3h后制得催化剂油墨。In this example, the electrode was prepared as follows: 20 mg Cu/Cu 2 O and 80 μL of 5wt% perfluorosulfonic acid solution were dispersed into 1 mL of water/ethanol (volume ratio 4:1) solution, and the catalyst was prepared after sonicating for 3 h ink.
电催化活性性能测试:CO电还原性能是通过连接到电化学工作站(CHI760 e)的三室电化学流动池进行的。所制备的电极、Ag/AgCl(饱和氯化钾)和镍泡沫材料分别作为工作电极、参比电极和阳极。用去离子水配置的30mL KOH(0.5M、1.0M或2.0M)溶液作为阴极和阳极两侧的电解液,用阴离子交换膜(FFA-3(Fumatech))将阴极室和阳极室分开。使用质量流量控制器(SevenStar D07-7)控制CO气体流量为20mL/min。同时,电解液通过蠕动泵以5mL/min的流量循环。CO可以扩散到阴极和电解液之间的界面。所有电位均用Ag/AgCl作为参比电极(饱和氯化钾)进行测量。气相产物在电解时从连接气相色谱(GC)的CO室出口分析,液相产物在电解后通过1H NMR分析。法拉第效率(FE)由公式(1)计算:Electrocatalytic activity performance test: The CO electroreduction performance was performed by a three-chamber electrochemical flow cell connected to an electrochemical workstation (CHI760 e). The prepared electrode, Ag/AgCl (saturated potassium chloride) and nickel foam material were used as working electrode, reference electrode and anode, respectively. 30 mL of KOH (0.5 M, 1.0 M or 2.0 M) solution in deionized water was used as the electrolyte on both sides of the cathode and anode, and the cathode and anode compartments were separated by an anion exchange membrane (FFA-3 (Fumatech)). The CO gas flow was controlled at 20 mL/min using a mass flow controller (SevenStar D07-7). At the same time, the electrolyte was circulated by a peristaltic pump at a flow rate of 5 mL/min. CO can diffuse to the interface between the cathode and the electrolyte. All potentials were measured with Ag/AgCl as reference electrode (saturated potassium chloride). The gas phase products were analyzed at the time of electrolysis from a CO chamber outlet connected to a gas chromatograph (GC), and the liquid phase products were analyzed by 1 H NMR after electrolysis. Faraday efficiency (FE) is calculated by equation (1):
其中,nprocucts是被测量产物的量(mol),nelectrons是从CO/H2O转移到产物的电子数,F是法拉第常数(C/mo1)。Qt=0是注射点通过的电荷量,Qt=x是注射前x秒内通过的电荷量(C)。x是CO填充GC(气相产物)进样回路所需的时间或者阴极液累积到NMR分析(液相产物)中所用的量所需的时间。where n procucts is the amount of product being measured (mol), n electrons is the number of electrons transferred from CO/H 2 O to the product, and F is the Faraday constant (C/mol). Qt =0 is the amount of charge that passes through the injection point, and Qt =x is the amount of charge (C) that passes through x seconds before injection. x is the time required for CO to fill the GC (gas phase product) injection loop or the time required for the catholyte to accumulate to the amount used in NMR analysis (liquid phase product).
使用公式(2)计算相对于RHE的电势:Use equation (2) to calculate the potential relative to the RHE:
E(RHE) =E (Ag/AgCl)+0.197+ pH×0.0591 (2)E(RHE)=E(Ag/AgCl)+0.197+ pH×0.0591 (2)
电解结束后,用电化学阻抗谱在开路电位下测得的电阻,对施加的电位进行欧姆降校正。本发明涉及的电催化反应都是在常温常压下进行的,本发明涉及的测量都采用85%的欧姆电阻校正。本发明涉及的电位是在GC分析时间点(通常为10min或30min)测得的电位。After electrolysis, the resistance measured at open circuit potential by electrochemical impedance spectroscopy was used to correct the applied potential for ohmic drop. The electrocatalytic reactions involved in the present invention are all carried out at normal temperature and pressure, and the measurements involved in the present invention are all corrected by 85% ohmic resistance. The potential referred to in the present invention is the potential measured at the time point of the GC analysis (usually 10 min or 30 min).
实施例1Example 1
将0.20g Cu(acac)2和0.1g二甲基甲酰胺(DMF)混合均匀。剧烈搅拌10min后,滴加0.04g聚乙烯基吡咯烷酮(PVP),0.015g十六烷基三甲基溴化铵(CTAB),0.04g葡萄糖,20mL30wt%正丁胺水溶液。密封该溶液,在160℃下加热10h。自然冷却至室温,使用乙醇洗涤后得到Cu/Cu2O催化剂。0.20 g Cu(acac) 2 and 0.1 g dimethylformamide (DMF) were mixed well. After vigorous stirring for 10 min, 0.04 g of polyvinyl pyrrolidone (PVP), 0.015 g of cetyltrimethylammonium bromide (CTAB), 0.04 g of glucose, and 20 mL of a 30 wt% n-butylamine aqueous solution were added dropwise. The solution was sealed and heated at 160 °C for 10 h. Naturally cooled to room temperature and washed with ethanol to obtain a Cu/Cu 2 O catalyst.
以KOH为电解液,在流动电池反应器中进行不同电位下的COOR性能测试。在-0.7Vvs RHE时,C2+产物在2.0M KOH中的最大法拉第效率可达95%,乙醇的法拉第效率可达70%。Using KOH as the electrolyte, COOR performance tests at different potentials were carried out in a flow battery reactor. At -0.7Vvs RHE, the C2 + product achieved a maximum Faradaic efficiency of 95% in 2.0M KOH and a Faradaic efficiency of 70% for ethanol.
对制备的Cu/Cu2O催化剂进行扫描电镜表征,如图1所示为Cu/Cu2O催化剂微观形貌图。对制备的Cu/Cu2O催化剂进行透射电镜表征,如图2所示为Cu/Cu2O催化剂Cu的200晶面;图3为Cu/Cu2O催化剂Cu2O的111晶面。The prepared Cu/Cu 2 O catalyst was characterized by scanning electron microscope, as shown in Fig. 1 is the micro-morphology of the Cu/Cu 2 O catalyst. The prepared Cu/Cu 2 O catalyst was characterized by transmission electron microscope, and Figure 2 shows the 200 crystal face of Cu/Cu 2 O catalyst Cu; Figure 3 shows the 111 crystal face of Cu/Cu 2 O catalyst Cu 2 O.
对制备的Cu/Cu2O催化剂进行红外表征。如图4所示,红外表征谱图在3425cm-1和2920cm-1处是强红外吸收波段,其中3425cm-1是N-H伸缩振动区,2920cm-1是C-H伸缩振动区,表明表面丁胺在Cu/Cu2O表面被成功修饰。图5为Cu/Cu2O在室温下新鲜暴露于空气中8个月和16个月后的XRD图谱,图中显示在16个月之后Cu金属X射线衍射峰仍十分明显,其中由于Cu2O含量较低,XRD衍射峰没有很明显,但是并没有出现大量的CuO衍射峰,表明正丁胺修饰后的Cu/Cu2O具有很好的稳定性,且不改变材料原有的特征峰。The prepared Cu/Cu 2 O catalysts were characterized by infrared. As shown in Figure 4, the infrared characterization spectra are strong infrared absorption bands at 3425cm -1 and 2920cm- 1 , of which 3425cm -1 is the NH stretching vibration region, and 2920cm- 1 is the CH stretching vibration region, indicating that the surface butylamine is in the Cu stretching vibration region. /Cu 2 O surface was successfully modified. Figure 5 shows the XRD patterns of Cu/Cu 2 O freshly exposed to air at room temperature for 8 months and 16 months. The figure shows that the Cu metal X - ray diffraction peaks are still very obvious after 16 months. The content of O is low, and the XRD diffraction peaks are not very obvious, but there are not a lot of CuO diffraction peaks, indicating that the Cu/Cu 2 O modified with n-butylamine has good stability and does not change the original characteristic peaks of the material. .
实施例2Example 2
将0.40g Cu(acac)2和0.16g二甲基甲酰胺(DMF)混合均匀。剧烈搅拌10min后,滴加0.2g聚乙烯基吡咯烷酮(PVP),0.04g十六烷基三甲基溴化铵(CTAB),0.04g单宁酸,20mL35wt%十八烷基胺水溶液。密封该溶液,在165℃下加热10h。自然冷却至室温,使用乙醇洗涤后得到Cu/Cu2O催化剂。0.40 g Cu(acac) 2 and 0.16 g dimethylformamide (DMF) were mixed well. After vigorous stirring for 10 min, 0.2 g of polyvinylpyrrolidone (PVP), 0.04 g of cetyltrimethylammonium bromide (CTAB), 0.04 g of tannic acid, and 20 mL of a 35 wt % aqueous solution of octadecylamine were added dropwise. The solution was sealed and heated at 165 °C for 10 h. Naturally cooled to room temperature and washed with ethanol to obtain a Cu/Cu 2 O catalyst.
以KOH为电解液,在流动电池反应器中进行不同电位下的COOR性能测试。在-0.7Vvs RHE时,C2+产物在2.0M KOH中的最大法拉第效率可达90%,乙醇的法拉第效率可达68%。Using KOH as the electrolyte, COOR performance tests at different potentials were carried out in a flow battery reactor. At -0.7Vvs RHE, the maximum Faradaic efficiency of the C2 + product in 2.0M KOH can reach 90%, and the Faradaic efficiency of ethanol can reach 68%.
实施例3Example 3
将0.50g Cu(acac)2和0.08g二甲基甲酰胺(DMF)混合均匀。剧烈搅拌10min后,滴加0.13g聚乙烯基吡咯烷酮(PVP),0.04g十六烷基三甲基溴化铵(CTAB),0.07g水合次亚磷酸钠,20mL 40wt%二亚甲基二胺水溶液。密封该溶液,在160℃下加热10h。自然冷却至室温,使用乙醇洗涤后得到Cu/Cu2O催化剂。0.50 g Cu(acac) 2 and 0.08 g dimethylformamide (DMF) were mixed well. After vigorous stirring for 10min, dropwise add 0.13g polyvinylpyrrolidone (PVP), 0.04g cetyltrimethylammonium bromide (CTAB), 0.07g hydrated sodium hypophosphite, 20mL 40wt% dimethylenediamine aqueous solution. The solution was sealed and heated at 160 °C for 10 h. Naturally cooled to room temperature and washed with ethanol to obtain a Cu/Cu 2 O catalyst.
以KOH为电解液,在流动电池反应器中进行不同电位下的COOR性能测试。在-0.7Vvs RHE时,C2+产物在2.0M KOH中的最大法拉第效率可达89%,乙醇的法拉第效率可达67%。Using KOH as the electrolyte, COOR performance tests at different potentials were carried out in a flow battery reactor. At −0.7Vvs RHE, the maximum Faradaic efficiency of the C2 + product in 2.0M KOH can reach 89%, and the Faradaic efficiency of ethanol can reach 67%.
实施例4Example 4
将0.35g Cu(acac)2和0.12g二甲基甲酰胺(DMF)混合均匀。剧烈搅拌10min后,滴加0.12g聚乙烯基吡咯烷酮(PVP),0.03g十六烷基三甲基溴化铵(CTAB),0.04g抗环六亚甲基四胺,20mL 42wt%十二烷基二甲基叔胺水溶液。密封该溶液,在190℃下加热10h。自然冷却至室温,使用乙醇洗涤后得到Cu/Cu2O催化剂。0.35g Cu(acac) 2 and 0.12g dimethylformamide (DMF) were mixed well. After vigorous stirring for 10min, dropwise add 0.12g polyvinylpyrrolidone (PVP), 0.03g cetyltrimethylammonium bromide (CTAB), 0.04g anticyclohexamethylenetetramine, 20mL 42wt% dodecane Dimethyl tertiary amine aqueous solution. The solution was sealed and heated at 190 °C for 10 h. Naturally cooled to room temperature and washed with ethanol to obtain a Cu/Cu 2 O catalyst.
以KOH为电解液,在流动电池反应器中进行不同电位下的COOR性能测试。在-0.7Vvs RHE时,C2+产物在2.0M KOH中的最大法拉第效率可达87%,乙醇的法拉第效率可达69%。Using KOH as the electrolyte, COOR performance tests at different potentials were carried out in a flow battery reactor. At −0.7V vs RHE, the maximum Faradaic efficiency of the C2 + product in 2.0M KOH can reach 87% and that of ethanol can reach 69%.
实施例5Example 5
将4.5g Cu(acac)2和1.5g二甲基甲酰胺(DMF)混合均匀。剧烈搅拌15min后,滴加1.5g聚乙烯基吡咯烷酮(PVP),0.5g十六烷基三甲基溴化铵(CTAB),0.6g坏血酸,200mL19wt%十二烷基伯胺水溶液。密封该溶液,在160℃下加热10h。自然冷却至室温,使用乙醇洗涤后得到Cu/Cu2O催化剂。4.5 g of Cu(acac) 2 and 1.5 g of dimethylformamide (DMF) were mixed well. After vigorous stirring for 15 min, 1.5 g of polyvinylpyrrolidone (PVP), 0.5 g of cetyltrimethylammonium bromide (CTAB), 0.6 g of ascorbic acid, and 200 mL of 19 wt% aqueous solution of primary dodecylamine were added dropwise. The solution was sealed and heated at 160 °C for 10 h. Naturally cooled to room temperature and washed with ethanol to obtain a Cu/Cu 2 O catalyst.
以KOH为电解液,在流动电池反应器中进行不同电位下的COOR性能测试。在-0.7Vvs RHE时,C2+产物在2.0M KOH中的最大法拉第效率可达93%,乙醇的法拉第效率可达70%。Using KOH as the electrolyte, COOR performance tests at different potentials were carried out in a flow battery reactor. At -0.7Vvs RHE, the C2 + product achieved a maximum Faradaic efficiency of 93% in 2.0M KOH and a Faradaic efficiency of 70% for ethanol.
实施例6Example 6
将25g Cu(acac)2和7g二甲基甲酰胺(DMF)混合均匀。剧烈搅拌10min后,滴加8g聚乙烯基吡咯烷酮(PVP),2g十六烷基三甲基溴化铵(CTAB),3g硼氢化钠,2L 28wt%三乙胺水溶液。密封该溶液,在160℃下加热10h。自然冷却至室温,使用乙醇洗涤后得到Cu/Cu2O催化剂。25g Cu(acac) 2 and 7g dimethylformamide (DMF) were mixed well. After vigorous stirring for 10 min, 8 g of polyvinyl pyrrolidone (PVP), 2 g of cetyltrimethylammonium bromide (CTAB), 3 g of sodium borohydride, and 2 L of 28 wt % triethylamine aqueous solution were added dropwise. The solution was sealed and heated at 160 °C for 10 h. Naturally cooled to room temperature and washed with ethanol to obtain a Cu/Cu 2 O catalyst.
以KOH为电解液,在流动电池反应器中进行不同电位下的COOR性能测试。在-0.7Vvs RHE时,C2+产物在2.0M KOH中的最大法拉第效率可达86%,乙醇的法拉第效率可达65%。Using KOH as the electrolyte, COOR performance tests at different potentials were carried out in a flow battery reactor. At -0.7Vvs RHE, the C2 + product achieved a maximum Faradaic efficiency of 86% in 2.0M KOH and a Faradaic efficiency of 65% for ethanol.
实施例7Example 7
将0.30g Cu(acac)2和0.10g二甲基甲酰胺(DMF)混合均匀。剧烈搅拌10min后,滴加0.10g聚乙烯基吡咯烷酮(PVP),0.02g十六烷基三甲基溴化铵(CTAB),0.10g柠檬酸,20mL16wt%苯胺水溶液。密封该溶液,在140℃下加热10h。自然冷却至室温,使用乙醇洗涤后得到Cu/Cu2O催化剂。0.30 g Cu(acac) 2 and 0.10 g dimethylformamide (DMF) were mixed well. After vigorous stirring for 10 min, 0.10 g of polyvinylpyrrolidone (PVP), 0.02 g of cetyltrimethylammonium bromide (CTAB), 0.10 g of citric acid, and 20 mL of 16 wt % aniline aqueous solution were added dropwise. The solution was sealed and heated at 140 °C for 10 h. Naturally cooled to room temperature and washed with ethanol to obtain a Cu/Cu 2 O catalyst.
以KOH为电解液,在流动电池反应器中进行不同电位下的COOR性能测试。在-0.7Vvs RHE时,C2+产物在2.0M KOH中的最大法拉第效率可达89%,乙醇的法拉第效率可达68%。Using KOH as the electrolyte, COOR performance tests at different potentials were carried out in a flow battery reactor. At −0.7V vs RHE, the maximum Faradaic efficiency of the C2 + product in 2.0M KOH can reach 89% and that of ethanol can reach 68%.
实施例8Example 8
将500g Cu(acac)2和80g二甲基甲酰胺(DMF)混合均匀。剧烈搅拌20min后,滴加140g聚乙烯基吡咯烷酮(PVP),140g十六烷基三甲基溴化铵(CTAB),170g抗环六亚甲基四胺,20L 14wt%甲基乙基环丙胺水溶液。密封该溶液,在160℃下加热10h。自然冷却至室温,使用乙醇洗涤后得到Cu/Cu2O催化剂。500 g of Cu(acac) 2 and 80 g of dimethylformamide (DMF) were mixed well. After vigorous stirring for 20min, dropwise add 140g polyvinylpyrrolidone (PVP), 140g cetyltrimethylammonium bromide (CTAB), 170g anti-cyclohexamethylenetetramine, 20L 14wt% methylethylcyclopropylamine aqueous solution. The solution was sealed and heated at 160 °C for 10 h. Naturally cooled to room temperature and washed with ethanol to obtain a Cu/Cu 2 O catalyst.
以KOH为电解液,在流动电池反应器中进行不同电位下的COOR性能测试。在-0.7Vvs RHE时,C2+产物在2.0M KOH中的最大法拉第效率可达93%,乙醇的法拉第效率可达69%。Using KOH as the electrolyte, COOR performance tests at different potentials were carried out in a flow battery reactor. At −0.7V vs RHE, the maximum Faradaic efficiency of the C2 + product in 2.0M KOH can reach 93% and that of ethanol can reach 69%.
实施例9Example 9
将0.55g Cu(acac)2和0.08g二甲基甲酰胺(DMF)混合均匀。剧烈搅拌10min后,滴加0.16g聚乙烯基吡咯烷酮(PVP),0.10g十六烷基三甲基溴化铵(CTAB),0.18g硼氢化钠,20mL 42wt%二异丙胺水溶液。密封该溶液,在160℃下加热10h。自然冷却至室温,使用乙醇洗涤后得到Cu/Cu2O催化剂。0.55g Cu(acac) 2 and 0.08g dimethylformamide (DMF) were mixed well. After vigorous stirring for 10 min, 0.16 g of polyvinylpyrrolidone (PVP), 0.10 g of cetyltrimethylammonium bromide (CTAB), 0.18 g of sodium borohydride, and 20 mL of a 42 wt % aqueous solution of diisopropylamine were added dropwise. The solution was sealed and heated at 160 °C for 10 h. Naturally cooled to room temperature and washed with ethanol to obtain a Cu/Cu 2 O catalyst.
以KOH为电解液,在流动电池反应器中进行不同电位下的COOR性能测试。在-0.7Vvs RHE时,C2+产物在2.0M KOH中的最大法拉第效率可达88%,乙醇的法拉第效率可达67%。Using KOH as the electrolyte, COOR performance tests at different potentials were carried out in a flow battery reactor. At −0.7V vs RHE, the maximum Faradaic efficiency of the C2 + product in 2.0M KOH can reach 88% and that of ethanol can reach 67%.
实施例10Example 10
将6kg Cu(acac)2和0.9kg二甲基甲酰胺(DMF)混合均匀。剧烈搅拌25min后,滴加1.7kg聚乙烯基吡咯烷酮(PVP),1.1kg十六烷基三甲基溴化铵(CTAB),1.8kg硼氢化钠,200L22wt%二苯甲基胺水溶液。密封该溶液,在180℃下加热10h。自然冷却至室温,使用乙醇洗涤后得到Cu/Cu2O催化剂。6kg Cu(acac) 2 and 0.9kg dimethylformamide (DMF) were mixed well. After vigorous stirring for 25min, 1.7kg of polyvinylpyrrolidone (PVP), 1.1kg of cetyltrimethylammonium bromide (CTAB), 1.8kg of sodium borohydride, and 200L of a 22wt% aqueous solution of benzhydrylamine were added dropwise. The solution was sealed and heated at 180°C for 10h. Naturally cooled to room temperature and washed with ethanol to obtain a Cu/Cu 2 O catalyst.
以KOH为电解液,在流动电池反应器中进行不同电位下的COOR性能测试。在-0.7Vvs RHE时,C2+产物在2.0M KOH中的最大法拉第效率可达86%,乙醇的法拉第效率可达70%。Using KOH as the electrolyte, COOR performance tests at different potentials were carried out in a flow battery reactor. At −0.7Vvs RHE, the maximum Faradaic efficiency of the C2 + product in 2.0M KOH can reach 86% and that of ethanol can reach 70%.
以上所述,仅为本发明的较佳实施例而已,故不能依此限定本发明实施的范围,即依本发明专利范围及说明书内容所作的等效变化与修饰,皆应仍属本发明涵盖的范围内。The above descriptions are only preferred embodiments of the present invention, so the scope of implementation of the present invention cannot be limited accordingly. That is, equivalent changes and modifications made according to the patent scope of the present invention and the contents of the description should still be covered by the present invention. In the range.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111453813.2A CN114318378B (en) | 2021-12-01 | 2021-12-01 | Catalyst for preparing ethanol by electric reduction of CO and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111453813.2A CN114318378B (en) | 2021-12-01 | 2021-12-01 | Catalyst for preparing ethanol by electric reduction of CO and preparation method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114318378A true CN114318378A (en) | 2022-04-12 |
CN114318378B CN114318378B (en) | 2023-06-30 |
Family
ID=81048733
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111453813.2A Active CN114318378B (en) | 2021-12-01 | 2021-12-01 | Catalyst for preparing ethanol by electric reduction of CO and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114318378B (en) |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007136488A2 (en) * | 2006-04-20 | 2007-11-29 | The Trustees Of Columbia University In The City Of New York | Copper oxide nanoparticle system |
CN102350499A (en) * | 2011-09-28 | 2012-02-15 | 河北工业大学 | A kind of Cu/Cu2O core-shell composite microsphere and its preparation method |
CN105836787A (en) * | 2016-05-23 | 2016-08-10 | 常州大学 | Environment-friendly preparation method of cuprous oxide |
CN105854951A (en) * | 2016-05-06 | 2016-08-17 | 江苏金马油脂科技发展有限公司 | Methods for preparing and applying antioxidant nanometer copper-based catalysts |
CN106041120A (en) * | 2016-06-28 | 2016-10-26 | 昆明理工大学 | Preparation method of copper/cuprous oxide core-shell structure nanometer material |
US20160311768A1 (en) * | 2015-04-21 | 2016-10-27 | Pusan National University Industry-University Cooperation Foundation | Method of preparing core-shell copper nanoparticles immobilized on activated carbon and method of preparing chalcogenide compound using nanoparticles as catalyst |
CN106215824A (en) * | 2016-09-07 | 2016-12-14 | 南京理工大学 | A kind of preparation method of Cu2O/Cu composite material |
US20180119296A1 (en) * | 2016-11-01 | 2018-05-03 | King Fahd University Of Petroleum And Minerals | Method for electrochemical reduction of carbon dioxide |
CN109536991A (en) * | 2018-12-14 | 2019-03-29 | 天津大学 | A kind of application of the preparation method and cuprous oxide of loose porous cuprous oxide material in electro-catalysis reduction carbon dioxide |
CN111229261A (en) * | 2020-03-06 | 2020-06-05 | 厦门大学 | Catalyst for electroreduction of carbon dioxide and carbon monoxide to produce multi-carbon products, preparation method and application thereof |
CN111450828A (en) * | 2020-03-20 | 2020-07-28 | 天津理工大学 | A rapid preparation method of copper/cuprous oxide photocatalyst with octahedral structure |
CN112742388A (en) * | 2021-01-15 | 2021-05-04 | 新疆大学 | Preparation method of organic pollutant reduction catalyst |
-
2021
- 2021-12-01 CN CN202111453813.2A patent/CN114318378B/en active Active
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007136488A2 (en) * | 2006-04-20 | 2007-11-29 | The Trustees Of Columbia University In The City Of New York | Copper oxide nanoparticle system |
CN102350499A (en) * | 2011-09-28 | 2012-02-15 | 河北工业大学 | A kind of Cu/Cu2O core-shell composite microsphere and its preparation method |
US20160311768A1 (en) * | 2015-04-21 | 2016-10-27 | Pusan National University Industry-University Cooperation Foundation | Method of preparing core-shell copper nanoparticles immobilized on activated carbon and method of preparing chalcogenide compound using nanoparticles as catalyst |
CN105854951A (en) * | 2016-05-06 | 2016-08-17 | 江苏金马油脂科技发展有限公司 | Methods for preparing and applying antioxidant nanometer copper-based catalysts |
CN105836787A (en) * | 2016-05-23 | 2016-08-10 | 常州大学 | Environment-friendly preparation method of cuprous oxide |
CN106041120A (en) * | 2016-06-28 | 2016-10-26 | 昆明理工大学 | Preparation method of copper/cuprous oxide core-shell structure nanometer material |
CN106215824A (en) * | 2016-09-07 | 2016-12-14 | 南京理工大学 | A kind of preparation method of Cu2O/Cu composite material |
US20180119296A1 (en) * | 2016-11-01 | 2018-05-03 | King Fahd University Of Petroleum And Minerals | Method for electrochemical reduction of carbon dioxide |
CN109536991A (en) * | 2018-12-14 | 2019-03-29 | 天津大学 | A kind of application of the preparation method and cuprous oxide of loose porous cuprous oxide material in electro-catalysis reduction carbon dioxide |
CN111229261A (en) * | 2020-03-06 | 2020-06-05 | 厦门大学 | Catalyst for electroreduction of carbon dioxide and carbon monoxide to produce multi-carbon products, preparation method and application thereof |
CN111450828A (en) * | 2020-03-20 | 2020-07-28 | 天津理工大学 | A rapid preparation method of copper/cuprous oxide photocatalyst with octahedral structure |
CN112742388A (en) * | 2021-01-15 | 2021-05-04 | 新疆大学 | Preparation method of organic pollutant reduction catalyst |
Non-Patent Citations (2)
Title |
---|
LONGMEI SHANG等: "Selective carbon dioxide electroreduction to ethylene and ethanol by core-shell copper/cuprous oxide", JOURNAL OF COLLOID AND INTERFACE SCIENCE, vol. 552, pages 426 - 431 * |
荣子佳;戈丹;王颖;于光辉;: "Cu_2O-QDs/GO复合物的制备及其光催化性能研究", 安徽农业科学, vol. 45, no. 24, pages 62 - 64 * |
Also Published As
Publication number | Publication date |
---|---|
CN114318378B (en) | 2023-06-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN113020614B (en) | Copper-based monatomic alloy catalyst, preparation method and application thereof, and membrane electrode electrolyte battery for preparing formic acid through carbon dioxide electroreduction | |
CN113460964B (en) | Method for obtaining high-purity hydrogen by deep removal of oxygen in hydrogen through electrocatalytic action at normal temperature and normal pressure | |
CN107321379A (en) | A kind of three-dimensional porous nickel oxide and nitrogen-doped graphene quantum dot compound and its preparation method and purposes | |
CN112899723B (en) | Metal organic framework derived iron-nickel metal sulfide catalyst, preparation and application thereof | |
CN113621988B (en) | A kind of high-efficiency oxygen evolution high-entropy amorphous oxide nano-catalyst and preparation method and application thereof | |
CN101667644A (en) | High-performance low-platinum catalyst for methanol fuel cell and preparation method thereof | |
CN111013615A (en) | Preparation method of CoP catalyst with hydrogen precipitation and oxygen precipitation high-efficiency dual functions | |
CN114892199A (en) | Preparation method and application of RuO2 supported Ni-MOF electrode material | |
Liu et al. | Grafting amine-functionalized ligand layer on catalyst for electrochemical CO2 capture and utilization | |
CN115505945A (en) | Process method for co-producing formate by coupling carbon dioxide electroreduction with alcohol oxidation without diaphragm | |
CN113913932B (en) | Polycrystalline copper nanomaterial and preparation method and application thereof | |
CN113769668B (en) | Copper-based gel material and preparation method and application thereof | |
CN111111721A (en) | Preparation and application of a boron-doped carbon shell-wrapped CoNi nanoparticle composite | |
CN112481655B (en) | Preparation method and application of Pd-Ru-Cu alloy type icosahedral nano-catalyst | |
CN111450848A (en) | Preparation method of CuS nanodot material and its application in electrocatalytic carbon dioxide reduction | |
CN115029716B (en) | Ni/Cu adjacent site bimetallic single-atom coordination nitrogen-rich carbon matrix electrocatalyst and preparation method and application thereof | |
CN110961101B (en) | A kind of platinum-based catalyst, its preparation method and application | |
CN115433957A (en) | Transition metal composite copper-based catalyst, its preparation method and application | |
CN114318378B (en) | Catalyst for preparing ethanol by electric reduction of CO and preparation method thereof | |
CN113201762B (en) | Lattice-stretched ruthenium metal nano catalyst and preparation method and application thereof | |
CN112517020A (en) | Preparation method and application of nano Cu-Ce alloy catalyst | |
CN112359378A (en) | Layered double metal hydroxide and preparation method and application thereof | |
CN113814397B (en) | Porous Ag@Cu 2 O nano cell material and preparation method and application thereof | |
CN115786960A (en) | Carbon dioxide electrocatalytic material with interface optimized through reducing atmosphere and preparation method and application thereof | |
CN114318410A (en) | A cobalt-based catalyst for electrolysis of water, its preparation method and application in electrolyzed water |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |