CN114317386B - Genetic engineering strain for producing inosine and construction method and application thereof - Google Patents
Genetic engineering strain for producing inosine and construction method and application thereof Download PDFInfo
- Publication number
- CN114317386B CN114317386B CN202111481366.1A CN202111481366A CN114317386B CN 114317386 B CN114317386 B CN 114317386B CN 202111481366 A CN202111481366 A CN 202111481366A CN 114317386 B CN114317386 B CN 114317386B
- Authority
- CN
- China
- Prior art keywords
- gene
- fragment
- strain
- homology arm
- inosine
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229930010555 Inosine Natural products 0.000 title claims abstract description 63
- UGQMRVRMYYASKQ-KQYNXXCUSA-N Inosine Chemical compound O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1N1C2=NC=NC(O)=C2N=C1 UGQMRVRMYYASKQ-KQYNXXCUSA-N 0.000 title claims abstract description 63
- 229960003786 inosine Drugs 0.000 title claims abstract description 63
- 238000010276 construction Methods 0.000 title claims abstract description 40
- 238000010353 genetic engineering Methods 0.000 title claims abstract description 12
- 101150076045 purF gene Proteins 0.000 claims abstract description 76
- 108090000623 proteins and genes Proteins 0.000 claims abstract description 64
- 241000588724 Escherichia coli Species 0.000 claims abstract description 47
- 101150002764 purA gene Proteins 0.000 claims abstract description 36
- OIRDTQYFTABQOQ-KQYNXXCUSA-N adenosine Chemical compound C1=NC=2C(N)=NC=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O OIRDTQYFTABQOQ-KQYNXXCUSA-N 0.000 claims abstract description 34
- KDCGOANMDULRCW-UHFFFAOYSA-N 7H-purine Chemical compound N1=CNC2=NC=NC2=C1 KDCGOANMDULRCW-UHFFFAOYSA-N 0.000 claims abstract description 32
- PQGCEDQWHSBAJP-TXICZTDVSA-N 5-O-phosphono-alpha-D-ribofuranosyl diphosphate Chemical compound O[C@H]1[C@@H](O)[C@@H](O[P@](O)(=O)OP(O)(O)=O)O[C@@H]1COP(O)(O)=O PQGCEDQWHSBAJP-TXICZTDVSA-N 0.000 claims abstract description 22
- 101800000628 PDH precursor-related peptide Proteins 0.000 claims abstract description 22
- 239000002126 C01EB10 - Adenosine Substances 0.000 claims abstract description 17
- 229960005305 adenosine Drugs 0.000 claims abstract description 17
- 101150072043 deoD gene Proteins 0.000 claims abstract description 16
- 101150033174 ppnP gene Proteins 0.000 claims abstract description 13
- 101150042478 punA gene Proteins 0.000 claims abstract description 12
- 101150031659 rihB gene Proteins 0.000 claims abstract description 11
- 101150093992 rihA gene Proteins 0.000 claims abstract description 10
- 101150091327 rihC gene Proteins 0.000 claims abstract description 10
- 108091006527 nucleoside transporters Proteins 0.000 claims abstract description 9
- 108010063372 N-Glycosyl Hydrolases Proteins 0.000 claims abstract description 8
- 101710101148 Probable 6-oxopurine nucleoside phosphorylase Proteins 0.000 claims abstract description 8
- KDYFGRWQOYBRFD-UHFFFAOYSA-L succinate(2-) Chemical compound [O-]C(=O)CCC([O-])=O KDYFGRWQOYBRFD-UHFFFAOYSA-L 0.000 claims abstract description 6
- 239000012634 fragment Substances 0.000 claims description 222
- 230000010354 integration Effects 0.000 claims description 43
- 238000000034 method Methods 0.000 claims description 34
- 239000002773 nucleotide Substances 0.000 claims description 18
- 125000003729 nucleotide group Chemical group 0.000 claims description 18
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 claims description 13
- 239000008103 glucose Substances 0.000 claims description 13
- 229930024421 Adenine Natural products 0.000 claims description 11
- GFFGJBXGBJISGV-UHFFFAOYSA-N Adenine Chemical compound NC1=NC=NC2=C1N=CN2 GFFGJBXGBJISGV-UHFFFAOYSA-N 0.000 claims description 11
- 229960000643 adenine Drugs 0.000 claims description 11
- 230000004927 fusion Effects 0.000 claims description 9
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 9
- 239000001888 Peptone Substances 0.000 claims description 8
- 108010080698 Peptones Proteins 0.000 claims description 8
- 240000004808 Saccharomyces cerevisiae Species 0.000 claims description 8
- 239000001963 growth medium Substances 0.000 claims description 8
- 235000019319 peptone Nutrition 0.000 claims description 8
- 239000000843 powder Substances 0.000 claims description 8
- 238000012258 culturing Methods 0.000 claims description 7
- 239000013530 defoamer Substances 0.000 claims description 6
- 101100320446 Escherichia coli (strain K12) yghE gene Proteins 0.000 claims description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 4
- 229910052760 oxygen Inorganic materials 0.000 claims description 4
- 239000001301 oxygen Substances 0.000 claims description 4
- 239000001509 sodium citrate Substances 0.000 claims description 4
- NLJMYIDDQXHKNR-UHFFFAOYSA-K sodium citrate Chemical compound O.O.[Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O NLJMYIDDQXHKNR-UHFFFAOYSA-K 0.000 claims description 4
- 101100431984 Escherichia coli (strain K12) yeeP gene Proteins 0.000 claims description 3
- 101100160180 Escherichia coli (strain K12) yjiT gene Proteins 0.000 claims description 3
- 238000012262 fermentative production Methods 0.000 claims 1
- 238000003786 synthesis reaction Methods 0.000 abstract description 27
- 238000000855 fermentation Methods 0.000 abstract description 25
- 230000004151 fermentation Effects 0.000 abstract description 25
- 230000015572 biosynthetic process Effects 0.000 abstract description 23
- 230000037361 pathway Effects 0.000 abstract description 16
- 238000000354 decomposition reaction Methods 0.000 abstract description 4
- 238000012269 metabolic engineering Methods 0.000 abstract description 4
- 230000037353 metabolic pathway Effects 0.000 abstract description 4
- 230000009897 systematic effect Effects 0.000 abstract description 3
- 238000009395 breeding Methods 0.000 abstract description 2
- 230000001488 breeding effect Effects 0.000 abstract description 2
- 244000005700 microbiome Species 0.000 abstract description 2
- 238000005457 optimization Methods 0.000 abstract description 2
- 238000011144 upstream manufacturing Methods 0.000 description 104
- 239000013612 plasmid Substances 0.000 description 37
- 241000894006 Bacteria Species 0.000 description 33
- 238000012795 verification Methods 0.000 description 28
- 238000001962 electrophoresis Methods 0.000 description 23
- 239000003550 marker Substances 0.000 description 16
- 239000013642 negative control Substances 0.000 description 16
- 238000000137 annealing Methods 0.000 description 15
- 238000004519 manufacturing process Methods 0.000 description 14
- 241000869594 Bacillus amyloliquefaciens TA208 Species 0.000 description 12
- 238000013461 design Methods 0.000 description 12
- 125000003275 alpha amino acid group Chemical group 0.000 description 11
- 101710146400 Myc-associated zinc finger protein Proteins 0.000 description 10
- 235000014469 Bacillus subtilis Nutrition 0.000 description 8
- 102100038750 Myc-associated zinc finger protein Human genes 0.000 description 7
- 230000014509 gene expression Effects 0.000 description 7
- 238000011218 seed culture Methods 0.000 description 7
- 101150110708 yghE gene Proteins 0.000 description 7
- 241000193744 Bacillus amyloliquefaciens Species 0.000 description 6
- 230000000903 blocking effect Effects 0.000 description 6
- 239000002609 medium Substances 0.000 description 6
- 230000008569 process Effects 0.000 description 6
- 238000006467 substitution reaction Methods 0.000 description 6
- 101150092510 yeeP gene Proteins 0.000 description 6
- 244000063299 Bacillus subtilis Species 0.000 description 5
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 5
- 239000004472 Lysine Substances 0.000 description 5
- 235000001014 amino acid Nutrition 0.000 description 5
- 230000003321 amplification Effects 0.000 description 5
- 230000006652 catabolic pathway Effects 0.000 description 5
- ZDXPYRJPNDTMRX-UHFFFAOYSA-N glutamine Natural products OC(=O)C(N)CCC(N)=O ZDXPYRJPNDTMRX-UHFFFAOYSA-N 0.000 description 5
- 238000003199 nucleic acid amplification method Methods 0.000 description 5
- 101100072646 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) INO4 gene Proteins 0.000 description 4
- 229940024606 amino acid Drugs 0.000 description 4
- 230000002708 enhancing effect Effects 0.000 description 4
- 238000013467 fragmentation Methods 0.000 description 4
- 238000006062 fragmentation reaction Methods 0.000 description 4
- 238000003209 gene knockout Methods 0.000 description 4
- 230000001965 increasing effect Effects 0.000 description 4
- 230000035772 mutation Effects 0.000 description 4
- 101150013480 pbuE gene Proteins 0.000 description 4
- 238000012216 screening Methods 0.000 description 4
- 102000003960 Ligases Human genes 0.000 description 3
- 108090000364 Ligases Proteins 0.000 description 3
- 238000009825 accumulation Methods 0.000 description 3
- 150000001413 amino acids Chemical group 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000004907 flux Effects 0.000 description 3
- 230000002068 genetic effect Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 239000002243 precursor Substances 0.000 description 3
- 230000003313 weakening effect Effects 0.000 description 3
- FWMNVWWHGCHHJJ-SKKKGAJSSA-N 4-amino-1-[(2r)-6-amino-2-[[(2r)-2-[[(2r)-2-[[(2r)-2-amino-3-phenylpropanoyl]amino]-3-phenylpropanoyl]amino]-4-methylpentanoyl]amino]hexanoyl]piperidine-4-carboxylic acid Chemical compound C([C@H](C(=O)N[C@H](CC(C)C)C(=O)N[C@H](CCCCN)C(=O)N1CCC(N)(CC1)C(O)=O)NC(=O)[C@H](N)CC=1C=CC=CC=1)C1=CC=CC=C1 FWMNVWWHGCHHJJ-SKKKGAJSSA-N 0.000 description 2
- 229920001817 Agar Polymers 0.000 description 2
- NYHBQMYGNKIUIF-UUOKFMHZSA-N Guanosine Chemical compound C1=NC=2C(=O)NC(N)=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O NYHBQMYGNKIUIF-UUOKFMHZSA-N 0.000 description 2
- PUFNQIPSRXVLQJ-IHRRRGAJSA-N His-Val-Lys Chemical compound CC(C)[C@@H](C(=O)N[C@@H](CCCCN)C(=O)O)NC(=O)[C@H](CC1=CN=CN1)N PUFNQIPSRXVLQJ-IHRRRGAJSA-N 0.000 description 2
- AFFKUNVPPLQUGA-DCAQKATOSA-N Met-Leu-Ala Chemical compound [H]N[C@@H](CCSC)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](C)C(O)=O AFFKUNVPPLQUGA-DCAQKATOSA-N 0.000 description 2
- SITLTJHOQZFJGG-UHFFFAOYSA-N N-L-alpha-glutamyl-L-valine Natural products CC(C)C(C(O)=O)NC(=O)C(N)CCC(O)=O SITLTJHOQZFJGG-UHFFFAOYSA-N 0.000 description 2
- XZFYRXDAULDNFX-UHFFFAOYSA-N N-L-cysteinyl-L-phenylalanine Natural products SCC(N)C(=O)NC(C(O)=O)CC1=CC=CC=C1 XZFYRXDAULDNFX-UHFFFAOYSA-N 0.000 description 2
- 101100248653 Oryza sativa subsp. japonica RINO1 gene Proteins 0.000 description 2
- 101100248654 Oryza sativa subsp. japonica RINO2 gene Proteins 0.000 description 2
- ZCXQTRXYZOSGJR-FXQIFTODSA-N Pro-Asp-Ser Chemical compound [H]N1CCC[C@H]1C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CO)C(O)=O ZCXQTRXYZOSGJR-FXQIFTODSA-N 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 230000004913 activation Effects 0.000 description 2
- 239000008272 agar Substances 0.000 description 2
- 108010070944 alanylhistidine Proteins 0.000 description 2
- 235000015278 beef Nutrition 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 238000006731 degradation reaction Methods 0.000 description 2
- 238000010362 genome editing Methods 0.000 description 2
- 108010049041 glutamylalanine Proteins 0.000 description 2
- 239000002054 inoculum Substances 0.000 description 2
- CCJHDZZUWZIVJF-UHFFFAOYSA-N iodo nitrate Chemical compound [O-][N+](=O)OI CCJHDZZUWZIVJF-UHFFFAOYSA-N 0.000 description 2
- 108010044374 isoleucyl-tyrosine Proteins 0.000 description 2
- 125000003588 lysine group Chemical class [H]N([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])(N([H])[H])C(*)=O 0.000 description 2
- 108010064235 lysylglycine Proteins 0.000 description 2
- 230000002503 metabolic effect Effects 0.000 description 2
- 238000002703 mutagenesis Methods 0.000 description 2
- 231100000350 mutagenesis Toxicity 0.000 description 2
- 230000002018 overexpression Effects 0.000 description 2
- 101150044736 purQ gene Proteins 0.000 description 2
- 101150106935 purR gene Proteins 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- 230000000087 stabilizing effect Effects 0.000 description 2
- 230000002103 transcriptional effect Effects 0.000 description 2
- LWUWMHIOBPTZBA-DCAQKATOSA-N Ala-Arg-Lys Chemical compound NC(=N)NCCC[C@H](NC(=O)[C@@H](N)C)C(=O)N[C@@H](CCCCN)C(O)=O LWUWMHIOBPTZBA-DCAQKATOSA-N 0.000 description 1
- IKKVASZHTMKJIR-ZKWXMUAHSA-N Ala-Asp-Val Chemical compound [H]N[C@@H](C)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](C(C)C)C(O)=O IKKVASZHTMKJIR-ZKWXMUAHSA-N 0.000 description 1
- ZVFVBBGVOILKPO-WHFBIAKZSA-N Ala-Gly-Ala Chemical compound C[C@H](N)C(=O)NCC(=O)N[C@@H](C)C(O)=O ZVFVBBGVOILKPO-WHFBIAKZSA-N 0.000 description 1
- VGPWRRFOPXVGOH-BYPYZUCNSA-N Ala-Gly-Gly Chemical compound C[C@H](N)C(=O)NCC(=O)NCC(O)=O VGPWRRFOPXVGOH-BYPYZUCNSA-N 0.000 description 1
- LMFXXZPPZDCPTA-ZKWXMUAHSA-N Ala-Gly-Ile Chemical compound CC[C@H](C)[C@@H](C(O)=O)NC(=O)CNC(=O)[C@H](C)N LMFXXZPPZDCPTA-ZKWXMUAHSA-N 0.000 description 1
- DVJSJDDYCYSMFR-ZKWXMUAHSA-N Ala-Ile-Gly Chemical compound [H]N[C@@H](C)C(=O)N[C@@H]([C@@H](C)CC)C(=O)NCC(O)=O DVJSJDDYCYSMFR-ZKWXMUAHSA-N 0.000 description 1
- YHKANGMVQWRMAP-DCAQKATOSA-N Ala-Leu-Arg Chemical compound C[C@H](N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@H](C(O)=O)CCCN=C(N)N YHKANGMVQWRMAP-DCAQKATOSA-N 0.000 description 1
- ZBLQIYPCUWZSRZ-QEJZJMRPSA-N Ala-Phe-Leu Chemical compound CC(C)C[C@@H](C(O)=O)NC(=O)[C@@H](NC(=O)[C@H](C)N)CC1=CC=CC=C1 ZBLQIYPCUWZSRZ-QEJZJMRPSA-N 0.000 description 1
- FEGOCLZUJUFCHP-CIUDSAMLSA-N Ala-Pro-Gln Chemical compound [H]N[C@@H](C)C(=O)N1CCC[C@H]1C(=O)N[C@@H](CCC(N)=O)C(O)=O FEGOCLZUJUFCHP-CIUDSAMLSA-N 0.000 description 1
- NCQMBSJGJMYKCK-ZLUOBGJFSA-N Ala-Ser-Ser Chemical compound [H]N[C@@H](C)C(=O)N[C@@H](CO)C(=O)N[C@@H](CO)C(O)=O NCQMBSJGJMYKCK-ZLUOBGJFSA-N 0.000 description 1
- HCBKAOZYACJUEF-XQXXSGGOSA-N Ala-Thr-Gln Chemical compound N[C@@H](C)C(=O)N[C@@H]([C@H](O)C)C(=O)N[C@@H](CCC(N)=O)C(=O)O HCBKAOZYACJUEF-XQXXSGGOSA-N 0.000 description 1
- WNHNMKOFKCHKKD-BFHQHQDPSA-N Ala-Thr-Gly Chemical compound [H]N[C@@H](C)C(=O)N[C@@H]([C@@H](C)O)C(=O)NCC(O)=O WNHNMKOFKCHKKD-BFHQHQDPSA-N 0.000 description 1
- YEBZNKPPOHFZJM-BPNCWPANSA-N Ala-Tyr-Val Chemical compound [H]N[C@@H](C)C(=O)N[C@@H](CC1=CC=C(O)C=C1)C(=O)N[C@@H](C(C)C)C(O)=O YEBZNKPPOHFZJM-BPNCWPANSA-N 0.000 description 1
- YJHKTAMKPGFJCT-NRPADANISA-N Ala-Val-Glu Chemical compound [H]N[C@@H](C)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CCC(O)=O)C(O)=O YJHKTAMKPGFJCT-NRPADANISA-N 0.000 description 1
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- VXXHDZKEQNGXNU-QXEWZRGKSA-N Arg-Asp-Val Chemical compound CC(C)[C@@H](C(O)=O)NC(=O)[C@H](CC(O)=O)NC(=O)[C@@H](N)CCCN=C(N)N VXXHDZKEQNGXNU-QXEWZRGKSA-N 0.000 description 1
- AOHKLEBWKMKITA-IHRRRGAJSA-N Arg-Phe-Ser Chemical compound C1=CC=C(C=C1)C[C@@H](C(=O)N[C@@H](CO)C(=O)O)NC(=O)[C@H](CCCN=C(N)N)N AOHKLEBWKMKITA-IHRRRGAJSA-N 0.000 description 1
- NGYHSXDNNOFHNE-AVGNSLFASA-N Arg-Pro-Leu Chemical compound [H]N[C@@H](CCCNC(N)=N)C(=O)N1CCC[C@H]1C(=O)N[C@@H](CC(C)C)C(O)=O NGYHSXDNNOFHNE-AVGNSLFASA-N 0.000 description 1
- DNLQVHBBMPZUGJ-BQBZGAKWSA-N Arg-Ser-Gly Chemical compound [H]N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CO)C(=O)NCC(O)=O DNLQVHBBMPZUGJ-BQBZGAKWSA-N 0.000 description 1
- URAUIUGLHBRPMF-NAKRPEOUSA-N Arg-Ser-Ile Chemical compound [H]N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CO)C(=O)N[C@@H]([C@@H](C)CC)C(O)=O URAUIUGLHBRPMF-NAKRPEOUSA-N 0.000 description 1
- UVTGNSWSRSCPLP-UHFFFAOYSA-N Arg-Tyr Natural products NC(CCNC(=N)N)C(=O)NC(Cc1ccc(O)cc1)C(=O)O UVTGNSWSRSCPLP-UHFFFAOYSA-N 0.000 description 1
- DNYRZPOWBTYFAF-IHRRRGAJSA-N Asn-Arg-Tyr Chemical compound C1=CC(=CC=C1C[C@@H](C(=O)O)NC(=O)[C@H](CCCN=C(N)N)NC(=O)[C@H](CC(=O)N)N)O DNYRZPOWBTYFAF-IHRRRGAJSA-N 0.000 description 1
- DXVMJJNAOVECBA-WHFBIAKZSA-N Asn-Gly-Asn Chemical compound NC(=O)C[C@H](N)C(=O)NCC(=O)N[C@@H](CC(N)=O)C(O)=O DXVMJJNAOVECBA-WHFBIAKZSA-N 0.000 description 1
- HYQYLOSCICEYTR-YUMQZZPRSA-N Asn-Gly-Leu Chemical compound [H]N[C@@H](CC(N)=O)C(=O)NCC(=O)N[C@@H](CC(C)C)C(O)=O HYQYLOSCICEYTR-YUMQZZPRSA-N 0.000 description 1
- PTSDPWIHOYMRGR-UGYAYLCHSA-N Asn-Ile-Asn Chemical compound [H]N[C@@H](CC(N)=O)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CC(N)=O)C(O)=O PTSDPWIHOYMRGR-UGYAYLCHSA-N 0.000 description 1
- ANPFQTJEPONRPL-UGYAYLCHSA-N Asn-Ile-Asp Chemical compound NC(=O)C[C@H](N)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CC(O)=O)C(O)=O ANPFQTJEPONRPL-UGYAYLCHSA-N 0.000 description 1
- UTLCRGFJFSZWAW-OLHMAJIHSA-N Asp-Thr-Asn Chemical compound C[C@H]([C@@H](C(=O)N[C@@H](CC(=O)N)C(=O)O)NC(=O)[C@H](CC(=O)O)N)O UTLCRGFJFSZWAW-OLHMAJIHSA-N 0.000 description 1
- GWWSUMLEWKQHLR-NUMRIWBASA-N Asp-Thr-Glu Chemical compound C[C@H]([C@@H](C(=O)N[C@@H](CCC(=O)O)C(=O)O)NC(=O)[C@H](CC(=O)O)N)O GWWSUMLEWKQHLR-NUMRIWBASA-N 0.000 description 1
- DCXYFEDJOCDNAF-UHFFFAOYSA-N Asparagine Natural products OC(=O)C(N)CC(N)=O DCXYFEDJOCDNAF-UHFFFAOYSA-N 0.000 description 1
- 238000010356 CRISPR-Cas9 genome editing Methods 0.000 description 1
- 108010078791 Carrier Proteins Proteins 0.000 description 1
- MIKUYHXYGGJMLM-GIMIYPNGSA-N Crotonoside Natural products C1=NC2=C(N)NC(=O)N=C2N1[C@H]1O[C@@H](CO)[C@H](O)[C@@H]1O MIKUYHXYGGJMLM-GIMIYPNGSA-N 0.000 description 1
- VCIIDXDOPGHMDQ-WDSKDSINSA-N Cys-Gly-Gln Chemical compound [H]N[C@@H](CS)C(=O)NCC(=O)N[C@@H](CCC(N)=O)C(O)=O VCIIDXDOPGHMDQ-WDSKDSINSA-N 0.000 description 1
- VCPHQVQGVSKDHY-FXQIFTODSA-N Cys-Ser-Met Chemical compound [H]N[C@@H](CS)C(=O)N[C@@H](CO)C(=O)N[C@@H](CCSC)C(O)=O VCPHQVQGVSKDHY-FXQIFTODSA-N 0.000 description 1
- NYHBQMYGNKIUIF-UHFFFAOYSA-N D-guanosine Natural products C1=2NC(N)=NC(=O)C=2N=CN1C1OC(CO)C(O)C1O NYHBQMYGNKIUIF-UHFFFAOYSA-N 0.000 description 1
- KTVPXOYAKDPRHY-SOOFDHNKSA-N D-ribofuranose 5-phosphate Chemical compound OC1O[C@H](COP(O)(O)=O)[C@@H](O)[C@H]1O KTVPXOYAKDPRHY-SOOFDHNKSA-N 0.000 description 1
- 101100126053 Dictyostelium discoideum impdh gene Proteins 0.000 description 1
- 101100410642 Dictyostelium discoideum purC/E gene Proteins 0.000 description 1
- 206010059866 Drug resistance Diseases 0.000 description 1
- 241000588722 Escherichia Species 0.000 description 1
- 101100103043 Escherichia coli (strain K12) xapA gene Proteins 0.000 description 1
- KCJJFESQRXGTGC-BQBZGAKWSA-N Gln-Glu-Gly Chemical compound [H]N[C@@H](CCC(N)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)NCC(O)=O KCJJFESQRXGTGC-BQBZGAKWSA-N 0.000 description 1
- ZNZPKVQURDQFFS-FXQIFTODSA-N Gln-Glu-Ser Chemical compound [H]N[C@@H](CCC(N)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CO)C(O)=O ZNZPKVQURDQFFS-FXQIFTODSA-N 0.000 description 1
- FGYPOQPQTUNESW-IUCAKERBSA-N Gln-Gly-Leu Chemical compound CC(C)C[C@@H](C(=O)O)NC(=O)CNC(=O)[C@H](CCC(=O)N)N FGYPOQPQTUNESW-IUCAKERBSA-N 0.000 description 1
- SMLDOQHTOAAFJQ-WDSKDSINSA-N Gln-Gly-Ser Chemical compound [H]N[C@@H](CCC(N)=O)C(=O)NCC(=O)N[C@@H](CO)C(O)=O SMLDOQHTOAAFJQ-WDSKDSINSA-N 0.000 description 1
- RGAOLBZBLOJUTP-GRLWGSQLSA-N Gln-Ile-Ile Chemical compound CC[C@H](C)[C@@H](C(=O)N[C@@H]([C@@H](C)CC)C(=O)O)NC(=O)[C@H](CCC(=O)N)N RGAOLBZBLOJUTP-GRLWGSQLSA-N 0.000 description 1
- MTCXQQINVAFZKW-MNXVOIDGSA-N Gln-Ile-Lys Chemical compound CC[C@H](C)[C@@H](C(=O)N[C@@H](CCCCN)C(=O)O)NC(=O)[C@H](CCC(=O)N)N MTCXQQINVAFZKW-MNXVOIDGSA-N 0.000 description 1
- QKCZZAZNMMVICF-DCAQKATOSA-N Gln-Leu-Glu Chemical compound NC(=O)CC[C@H](N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(O)=O)C(O)=O QKCZZAZNMMVICF-DCAQKATOSA-N 0.000 description 1
- NCWOMXABNYEPLY-NRPADANISA-N Glu-Ala-Val Chemical compound [H]N[C@@H](CCC(O)=O)C(=O)N[C@@H](C)C(=O)N[C@@H](C(C)C)C(O)=O NCWOMXABNYEPLY-NRPADANISA-N 0.000 description 1
- PCBBLFVHTYNQGG-LAEOZQHASA-N Glu-Asn-Val Chemical compound CC(C)[C@@H](C(=O)O)NC(=O)[C@H](CC(=O)N)NC(=O)[C@H](CCC(=O)O)N PCBBLFVHTYNQGG-LAEOZQHASA-N 0.000 description 1
- PXHABOCPJVTGEK-BQBZGAKWSA-N Glu-Gln-Gly Chemical compound [H]N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCC(N)=O)C(=O)NCC(O)=O PXHABOCPJVTGEK-BQBZGAKWSA-N 0.000 description 1
- NUSWUSKZRCGFEX-FXQIFTODSA-N Glu-Glu-Cys Chemical compound OC(=O)CC[C@H](N)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CS)C(O)=O NUSWUSKZRCGFEX-FXQIFTODSA-N 0.000 description 1
- AUTNXSQEVVHSJK-YVNDNENWSA-N Glu-Glu-Ile Chemical compound CC[C@H](C)[C@@H](C(O)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@@H](N)CCC(O)=O AUTNXSQEVVHSJK-YVNDNENWSA-N 0.000 description 1
- LRPXYSGPOBVBEH-IUCAKERBSA-N Glu-Gly-Leu Chemical compound [H]N[C@@H](CCC(O)=O)C(=O)NCC(=O)N[C@@H](CC(C)C)C(O)=O LRPXYSGPOBVBEH-IUCAKERBSA-N 0.000 description 1
- XTZDZAXYPDISRR-MNXVOIDGSA-N Glu-Ile-Lys Chemical compound CC[C@H](C)[C@@H](C(=O)N[C@@H](CCCCN)C(=O)O)NC(=O)[C@H](CCC(=O)O)N XTZDZAXYPDISRR-MNXVOIDGSA-N 0.000 description 1
- ATVYZJGOZLVXDK-IUCAKERBSA-N Glu-Leu-Gly Chemical compound [H]N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)NCC(O)=O ATVYZJGOZLVXDK-IUCAKERBSA-N 0.000 description 1
- VGBSZQSKQRMLHD-MNXVOIDGSA-N Glu-Leu-Ile Chemical compound [H]N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H]([C@@H](C)CC)C(O)=O VGBSZQSKQRMLHD-MNXVOIDGSA-N 0.000 description 1
- CQAHWYDHKUWYIX-YUMQZZPRSA-N Glu-Pro-Gly Chemical compound OC(=O)CC[C@H](N)C(=O)N1CCC[C@H]1C(=O)NCC(O)=O CQAHWYDHKUWYIX-YUMQZZPRSA-N 0.000 description 1
- LWYUQLZOIORFFJ-XKBZYTNZSA-N Glu-Thr-Cys Chemical compound C[C@H]([C@@H](C(=O)N[C@@H](CS)C(=O)O)NC(=O)[C@H](CCC(=O)O)N)O LWYUQLZOIORFFJ-XKBZYTNZSA-N 0.000 description 1
- HJTSRYLPAYGEEC-SIUGBPQLSA-N Glu-Tyr-Ile Chemical compound CC[C@H](C)[C@@H](C(=O)O)NC(=O)[C@H](CC1=CC=C(C=C1)O)NC(=O)[C@H](CCC(=O)O)N HJTSRYLPAYGEEC-SIUGBPQLSA-N 0.000 description 1
- RLFSBAPJTYKSLG-WHFBIAKZSA-N Gly-Ala-Asp Chemical compound NCC(=O)N[C@@H](C)C(=O)N[C@@H](CC(O)=O)C(O)=O RLFSBAPJTYKSLG-WHFBIAKZSA-N 0.000 description 1
- YMUFWNJHVPQNQD-ZKWXMUAHSA-N Gly-Ala-Ile Chemical compound CC[C@H](C)[C@@H](C(O)=O)NC(=O)[C@H](C)NC(=O)CN YMUFWNJHVPQNQD-ZKWXMUAHSA-N 0.000 description 1
- QIZJOTQTCAGKPU-KWQFWETISA-N Gly-Ala-Tyr Chemical compound [NH3+]CC(=O)N[C@@H](C)C(=O)N[C@H](C([O-])=O)CC1=CC=C(O)C=C1 QIZJOTQTCAGKPU-KWQFWETISA-N 0.000 description 1
- DTPOVRRYXPJJAZ-FJXKBIBVSA-N Gly-Arg-Thr Chemical compound C[C@@H](O)[C@@H](C(O)=O)NC(=O)[C@@H](NC(=O)CN)CCCN=C(N)N DTPOVRRYXPJJAZ-FJXKBIBVSA-N 0.000 description 1
- AQLHORCVPGXDJW-IUCAKERBSA-N Gly-Gln-Lys Chemical compound C(CCN)C[C@@H](C(=O)O)NC(=O)[C@H](CCC(=O)N)NC(=O)CN AQLHORCVPGXDJW-IUCAKERBSA-N 0.000 description 1
- YYPFZVIXAVDHIK-IUCAKERBSA-N Gly-Glu-Leu Chemical compound CC(C)C[C@@H](C(O)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)CN YYPFZVIXAVDHIK-IUCAKERBSA-N 0.000 description 1
- INLIXXRWNUKVCF-JTQLQIEISA-N Gly-Gly-Tyr Chemical compound NCC(=O)NCC(=O)N[C@H](C(O)=O)CC1=CC=C(O)C=C1 INLIXXRWNUKVCF-JTQLQIEISA-N 0.000 description 1
- DGKBSGNCMCLDSL-BYULHYEWSA-N Gly-Ile-Asn Chemical compound CC[C@H](C)[C@@H](C(=O)N[C@@H](CC(=O)N)C(=O)O)NC(=O)CN DGKBSGNCMCLDSL-BYULHYEWSA-N 0.000 description 1
- IUZGUFAJDBHQQV-YUMQZZPRSA-N Gly-Leu-Asn Chemical compound NCC(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(N)=O)C(O)=O IUZGUFAJDBHQQV-YUMQZZPRSA-N 0.000 description 1
- BNMRSWQOHIQTFL-JSGCOSHPSA-N Gly-Val-Phe Chemical compound NCC(=O)N[C@@H](C(C)C)C(=O)N[C@H](C(O)=O)CC1=CC=CC=C1 BNMRSWQOHIQTFL-JSGCOSHPSA-N 0.000 description 1
- ZIMTWPHIKZEHSE-UWVGGRQHSA-N His-Arg-Gly Chemical compound [H]N[C@@H](CC1=CNC=N1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)NCC(O)=O ZIMTWPHIKZEHSE-UWVGGRQHSA-N 0.000 description 1
- TXLQHACKRLWYCM-DCAQKATOSA-N His-Glu-Glu Chemical compound [H]N[C@@H](CC1=CNC=N1)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCC(O)=O)C(O)=O TXLQHACKRLWYCM-DCAQKATOSA-N 0.000 description 1
- XKIYNCLILDLGRS-QWRGUYRKSA-N His-Lys-Gly Chemical compound NCCCC[C@@H](C(=O)NCC(O)=O)NC(=O)[C@@H](N)CC1=CN=CN1 XKIYNCLILDLGRS-QWRGUYRKSA-N 0.000 description 1
- HYWZHNUGAYVEEW-KKUMJFAQSA-N His-Phe-Ser Chemical compound C1=CC=C(C=C1)C[C@@H](C(=O)N[C@@H](CO)C(=O)O)NC(=O)[C@H](CC2=CN=CN2)N HYWZHNUGAYVEEW-KKUMJFAQSA-N 0.000 description 1
- HBGKOLSGLYMWSW-DCAQKATOSA-N His-Pro-Cys Chemical compound C1C[C@H](N(C1)C(=O)[C@H](CC2=CN=CN2)N)C(=O)N[C@@H](CS)C(=O)O HBGKOLSGLYMWSW-DCAQKATOSA-N 0.000 description 1
- JGFWUKYIQAEYAH-DCAQKATOSA-N His-Ser-Val Chemical compound [H]N[C@@H](CC1=CNC=N1)C(=O)N[C@@H](CO)C(=O)N[C@@H](C(C)C)C(O)=O JGFWUKYIQAEYAH-DCAQKATOSA-N 0.000 description 1
- WYKXJGWSJUULSL-AVGNSLFASA-N His-Val-Arg Chemical compound CC(C)[C@H](NC(=O)[C@@H](N)Cc1cnc[nH]1)C(=O)N[C@@H](CCCNC(=N)N)C(=O)O WYKXJGWSJUULSL-AVGNSLFASA-N 0.000 description 1
- HZMLFETXHFHGBB-UGYAYLCHSA-N Ile-Asn-Asp Chemical compound CC[C@H](C)[C@@H](C(=O)N[C@@H](CC(=O)N)C(=O)N[C@@H](CC(=O)O)C(=O)O)N HZMLFETXHFHGBB-UGYAYLCHSA-N 0.000 description 1
- GYAFMRQGWHXMII-IUKAMOBKSA-N Ile-Asp-Thr Chemical compound CC[C@H](C)[C@@H](C(=O)N[C@@H](CC(=O)O)C(=O)N[C@@H]([C@@H](C)O)C(=O)O)N GYAFMRQGWHXMII-IUKAMOBKSA-N 0.000 description 1
- OVPYIUNCVSOVNF-ZPFDUUQYSA-N Ile-Gln-Pro Natural products CC[C@H](C)[C@H](N)C(=O)N[C@@H](CCC(N)=O)C(=O)N1CCC[C@H]1C(O)=O OVPYIUNCVSOVNF-ZPFDUUQYSA-N 0.000 description 1
- BKPPWVSPSIUXHZ-OSUNSFLBSA-N Ile-Met-Thr Chemical compound CC[C@H](C)[C@@H](C(=O)N[C@@H](CCSC)C(=O)N[C@@H]([C@@H](C)O)C(=O)O)N BKPPWVSPSIUXHZ-OSUNSFLBSA-N 0.000 description 1
- VOCZPDONPURUHV-QEWYBTABSA-N Ile-Phe-Gln Chemical compound CC[C@H](C)[C@@H](C(=O)N[C@@H](CC1=CC=CC=C1)C(=O)N[C@@H](CCC(=O)N)C(=O)O)N VOCZPDONPURUHV-QEWYBTABSA-N 0.000 description 1
- XOZOSAUOGRPCES-STECZYCISA-N Ile-Pro-Tyr Chemical compound CC[C@H](C)[C@H](N)C(=O)N1CCC[C@H]1C(=O)N[C@H](C(O)=O)CC1=CC=C(O)C=C1 XOZOSAUOGRPCES-STECZYCISA-N 0.000 description 1
- COWHUQXTSYTKQC-RWRJDSDZSA-N Ile-Thr-Glu Chemical compound CC[C@H](C)[C@@H](C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CCC(=O)O)C(=O)O)N COWHUQXTSYTKQC-RWRJDSDZSA-N 0.000 description 1
- DGTOKVBDZXJHNZ-WZLNRYEVSA-N Ile-Thr-Tyr Chemical compound CC[C@H](C)[C@@H](C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC1=CC=C(C=C1)O)C(=O)O)N DGTOKVBDZXJHNZ-WZLNRYEVSA-N 0.000 description 1
- WKSHBPRUIRGWRZ-KCTSRDHCSA-N Ile-Trp-Gly Chemical compound CC[C@H](C)[C@@H](C(=O)N[C@@H](CC1=CNC2=CC=CC=C21)C(=O)NCC(=O)O)N WKSHBPRUIRGWRZ-KCTSRDHCSA-N 0.000 description 1
- YJRSIJZUIUANHO-NAKRPEOUSA-N Ile-Val-Ala Chemical compound CC[C@H](C)[C@@H](C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](C)C(=O)O)N YJRSIJZUIUANHO-NAKRPEOUSA-N 0.000 description 1
- IBMVEYRWAWIOTN-UHFFFAOYSA-N L-Leucyl-L-Arginyl-L-Proline Natural products CC(C)CC(N)C(=O)NC(CCCN=C(N)N)C(=O)N1CCCC1C(O)=O IBMVEYRWAWIOTN-UHFFFAOYSA-N 0.000 description 1
- DCXYFEDJOCDNAF-REOHCLBHSA-N L-asparagine Chemical compound OC(=O)[C@@H](N)CC(N)=O DCXYFEDJOCDNAF-REOHCLBHSA-N 0.000 description 1
- 108091026898 Leader sequence (mRNA) Proteins 0.000 description 1
- 241000880493 Leptailurus serval Species 0.000 description 1
- KVRKAGGMEWNURO-CIUDSAMLSA-N Leu-Ala-Cys Chemical compound C[C@@H](C(=O)N[C@@H](CS)C(=O)O)NC(=O)[C@H](CC(C)C)N KVRKAGGMEWNURO-CIUDSAMLSA-N 0.000 description 1
- PBCHMHROGNUXMK-DLOVCJGASA-N Leu-Ala-His Chemical compound CC(C)C[C@H](N)C(=O)N[C@@H](C)C(=O)N[C@H](C(O)=O)CC1=CN=CN1 PBCHMHROGNUXMK-DLOVCJGASA-N 0.000 description 1
- HASRFYOMVPJRPU-SRVKXCTJSA-N Leu-Arg-Glu Chemical compound CC(C)C[C@H](N)C(=O)N[C@@H](CCCN=C(N)N)C(=O)N[C@@H](CCC(O)=O)C(O)=O HASRFYOMVPJRPU-SRVKXCTJSA-N 0.000 description 1
- MMEDVBWCMGRKKC-GARJFASQSA-N Leu-Asp-Pro Chemical compound CC(C)C[C@@H](C(=O)N[C@@H](CC(=O)O)C(=O)N1CCC[C@@H]1C(=O)O)N MMEDVBWCMGRKKC-GARJFASQSA-N 0.000 description 1
- LAPSXOAUPNOINL-YUMQZZPRSA-N Leu-Gly-Asp Chemical compound CC(C)C[C@H](N)C(=O)NCC(=O)N[C@H](C(O)=O)CC(O)=O LAPSXOAUPNOINL-YUMQZZPRSA-N 0.000 description 1
- APFJUBGRZGMQFF-QWRGUYRKSA-N Leu-Gly-Lys Chemical compound CC(C)C[C@H](N)C(=O)NCC(=O)N[C@H](C(O)=O)CCCCN APFJUBGRZGMQFF-QWRGUYRKSA-N 0.000 description 1
- QPXBPQUGXHURGP-UWVGGRQHSA-N Leu-Gly-Met Chemical compound CC(C)C[C@@H](C(=O)NCC(=O)N[C@@H](CCSC)C(=O)O)N QPXBPQUGXHURGP-UWVGGRQHSA-N 0.000 description 1
- AUBMZAMQCOYSIC-MNXVOIDGSA-N Leu-Ile-Gln Chemical compound [H]N[C@@H](CC(C)C)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CCC(N)=O)C(O)=O AUBMZAMQCOYSIC-MNXVOIDGSA-N 0.000 description 1
- HNDWYLYAYNBWMP-AJNGGQMLSA-N Leu-Ile-Lys Chemical compound CC[C@H](C)[C@@H](C(=O)N[C@@H](CCCCN)C(=O)O)NC(=O)[C@H](CC(C)C)N HNDWYLYAYNBWMP-AJNGGQMLSA-N 0.000 description 1
- RZXLZBIUTDQHJQ-SRVKXCTJSA-N Leu-Lys-Asp Chemical compound [H]N[C@@H](CC(C)C)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(O)=O)C(O)=O RZXLZBIUTDQHJQ-SRVKXCTJSA-N 0.000 description 1
- ZGUMORRUBUCXEH-AVGNSLFASA-N Leu-Lys-Gln Chemical compound [H]N[C@@H](CC(C)C)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCC(N)=O)C(O)=O ZGUMORRUBUCXEH-AVGNSLFASA-N 0.000 description 1
- LVTJJOJKDCVZGP-QWRGUYRKSA-N Leu-Lys-Gly Chemical compound [H]N[C@@H](CC(C)C)C(=O)N[C@@H](CCCCN)C(=O)NCC(O)=O LVTJJOJKDCVZGP-QWRGUYRKSA-N 0.000 description 1
- ZJZNLRVCZWUONM-JXUBOQSCSA-N Leu-Thr-Ala Chemical compound CC(C)C[C@H](N)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](C)C(O)=O ZJZNLRVCZWUONM-JXUBOQSCSA-N 0.000 description 1
- DAYQSYGBCUKVKT-VOAKCMCISA-N Leu-Thr-Lys Chemical compound CC(C)C[C@H](N)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CCCCN)C(O)=O DAYQSYGBCUKVKT-VOAKCMCISA-N 0.000 description 1
- XZNJZXJZBMBGGS-NHCYSSNCSA-N Leu-Val-Asn Chemical compound [H]N[C@@H](CC(C)C)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CC(N)=O)C(O)=O XZNJZXJZBMBGGS-NHCYSSNCSA-N 0.000 description 1
- NKKFVJRLCCUJNA-QWRGUYRKSA-N Lys-Gly-Lys Chemical compound NCCCC[C@H](N)C(=O)NCC(=O)N[C@H](C(O)=O)CCCCN NKKFVJRLCCUJNA-QWRGUYRKSA-N 0.000 description 1
- ZJSZPXISKMDJKQ-JYJNAYRXSA-N Lys-Phe-Glu Chemical compound NCCCC[C@H](N)C(=O)N[C@H](C(=O)N[C@@H](CCC(O)=O)C(O)=O)CC1=CC=CC=C1 ZJSZPXISKMDJKQ-JYJNAYRXSA-N 0.000 description 1
- JMNRXRPBHFGXQX-GUBZILKMSA-N Lys-Ser-Glu Chemical compound NCCCC[C@H](N)C(=O)N[C@@H](CO)C(=O)N[C@H](C(O)=O)CCC(O)=O JMNRXRPBHFGXQX-GUBZILKMSA-N 0.000 description 1
- IEIHKHYMBIYQTH-YESZJQIVSA-N Lys-Tyr-Pro Chemical compound C1C[C@@H](N(C1)C(=O)[C@H](CC2=CC=C(C=C2)O)NC(=O)[C@H](CCCCN)N)C(=O)O IEIHKHYMBIYQTH-YESZJQIVSA-N 0.000 description 1
- OSZTUONKUMCWEP-XUXIUFHCSA-N Met-Leu-Ile Chemical compound CC[C@H](C)[C@@H](C(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](N)CCSC OSZTUONKUMCWEP-XUXIUFHCSA-N 0.000 description 1
- KMSMNUFBNCHMII-IHRRRGAJSA-N Met-Leu-Lys Chemical compound CSCC[C@H](N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@H](C(O)=O)CCCCN KMSMNUFBNCHMII-IHRRRGAJSA-N 0.000 description 1
- OFBHPPMPBOJXRT-DPXQIYNJSA-N N(6)-(1,2-dicarboxyethyl)-AMP Chemical compound O[C@@H]1[C@H](O)[C@@H](COP(O)(O)=O)O[C@H]1N1C2=NC=NC(NC(CC(O)=O)C(O)=O)=C2N=C1 OFBHPPMPBOJXRT-DPXQIYNJSA-N 0.000 description 1
- 108010079364 N-glycylalanine Proteins 0.000 description 1
- FRPVPGRXUKFEQE-YDHLFZDLSA-N Phe-Asp-Val Chemical compound [H]N[C@@H](CC1=CC=CC=C1)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](C(C)C)C(O)=O FRPVPGRXUKFEQE-YDHLFZDLSA-N 0.000 description 1
- UMKYAYXCMYYNHI-AVGNSLFASA-N Phe-Gln-Asn Chemical compound C1=CC=C(C=C1)C[C@@H](C(=O)N[C@@H](CCC(=O)N)C(=O)N[C@@H](CC(=O)N)C(=O)O)N UMKYAYXCMYYNHI-AVGNSLFASA-N 0.000 description 1
- MIICYIIBVYQNKE-QEWYBTABSA-N Phe-Ile-Gln Chemical compound CC[C@H](C)[C@@H](C(=O)N[C@@H](CCC(=O)N)C(=O)O)NC(=O)[C@H](CC1=CC=CC=C1)N MIICYIIBVYQNKE-QEWYBTABSA-N 0.000 description 1
- YCCUXNNKXDGMAM-KKUMJFAQSA-N Phe-Leu-Ser Chemical compound [H]N[C@@H](CC1=CC=CC=C1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CO)C(O)=O YCCUXNNKXDGMAM-KKUMJFAQSA-N 0.000 description 1
- BSKMOCNNLNDIMU-CDMKHQONSA-N Phe-Thr-Gly Chemical compound [H]N[C@@H](CC1=CC=CC=C1)C(=O)N[C@@H]([C@@H](C)O)C(=O)NCC(O)=O BSKMOCNNLNDIMU-CDMKHQONSA-N 0.000 description 1
- GCFNFKNPCMBHNT-IRXDYDNUSA-N Phe-Tyr-Gly Chemical compound C1=CC=C(C=C1)C[C@@H](C(=O)N[C@@H](CC2=CC=C(C=C2)O)C(=O)NCC(=O)O)N GCFNFKNPCMBHNT-IRXDYDNUSA-N 0.000 description 1
- IBGCFJDLCYTKPW-NAKRPEOUSA-N Pro-Ile-Ala Chemical compound OC(=O)[C@H](C)NC(=O)[C@H]([C@@H](C)CC)NC(=O)[C@@H]1CCCN1 IBGCFJDLCYTKPW-NAKRPEOUSA-N 0.000 description 1
- SEZGGSHLMROBFX-CIUDSAMLSA-N Pro-Ser-Gln Chemical compound [H]N1CCC[C@H]1C(=O)N[C@@H](CO)C(=O)N[C@@H](CCC(N)=O)C(O)=O SEZGGSHLMROBFX-CIUDSAMLSA-N 0.000 description 1
- ONIBWKKTOPOVIA-UHFFFAOYSA-N Proline Natural products OC(=O)C1CCCN1 ONIBWKKTOPOVIA-UHFFFAOYSA-N 0.000 description 1
- 108010079005 RDV peptide Proteins 0.000 description 1
- UIPXCLNLUUAMJU-JBDRJPRFSA-N Ser-Ile-Ser Chemical compound [H]N[C@@H](CO)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CO)C(O)=O UIPXCLNLUUAMJU-JBDRJPRFSA-N 0.000 description 1
- GJFYFGOEWLDQGW-GUBZILKMSA-N Ser-Leu-Gln Chemical compound CC(C)C[C@@H](C(=O)N[C@@H](CCC(=O)N)C(=O)O)NC(=O)[C@H](CO)N GJFYFGOEWLDQGW-GUBZILKMSA-N 0.000 description 1
- YUJLIIRMIAGMCQ-CIUDSAMLSA-N Ser-Leu-Ser Chemical compound [H]N[C@@H](CO)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CO)C(O)=O YUJLIIRMIAGMCQ-CIUDSAMLSA-N 0.000 description 1
- PMCMLDNPAZUYGI-DCAQKATOSA-N Ser-Lys-Val Chemical compound [H]N[C@@H](CO)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](C(C)C)C(O)=O PMCMLDNPAZUYGI-DCAQKATOSA-N 0.000 description 1
- CUXJENOFJXOSOZ-BIIVOSGPSA-N Ser-Ser-Pro Chemical compound C1C[C@@H](N(C1)C(=O)[C@H](CO)NC(=O)[C@H](CO)N)C(=O)O CUXJENOFJXOSOZ-BIIVOSGPSA-N 0.000 description 1
- 244000061458 Solanum melongena Species 0.000 description 1
- 235000002597 Solanum melongena Nutrition 0.000 description 1
- KDYFGRWQOYBRFD-UHFFFAOYSA-N Succinic acid Natural products OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 1
- JMGJDTNUMAZNLX-RWRJDSDZSA-N Thr-Glu-Ile Chemical compound [H]N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H]([C@@H](C)CC)C(O)=O JMGJDTNUMAZNLX-RWRJDSDZSA-N 0.000 description 1
- BIENEHRYNODTLP-HJGDQZAQSA-N Thr-Glu-Met Chemical compound C[C@H]([C@@H](C(=O)N[C@@H](CCC(=O)O)C(=O)N[C@@H](CCSC)C(=O)O)N)O BIENEHRYNODTLP-HJGDQZAQSA-N 0.000 description 1
- BNGDYRRHRGOPHX-IFFSRLJSSA-N Thr-Glu-Val Chemical compound CC(C)[C@H](NC(=O)[C@H](CCC(O)=O)NC(=O)[C@@H](N)[C@@H](C)O)C(O)=O BNGDYRRHRGOPHX-IFFSRLJSSA-N 0.000 description 1
- JKGGPMOUIAAJAA-YEPSODPASA-N Thr-Gly-Val Chemical compound [H]N[C@@H]([C@@H](C)O)C(=O)NCC(=O)N[C@@H](C(C)C)C(O)=O JKGGPMOUIAAJAA-YEPSODPASA-N 0.000 description 1
- WPSDXXQRIVKBAY-NKIYYHGXSA-N Thr-His-Glu Chemical compound C[C@H]([C@@H](C(=O)N[C@@H](CC1=CN=CN1)C(=O)N[C@@H](CCC(=O)O)C(=O)O)N)O WPSDXXQRIVKBAY-NKIYYHGXSA-N 0.000 description 1
- YOOAQCZYZHGUAZ-KATARQTJSA-N Thr-Leu-Ser Chemical compound [H]N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CO)C(O)=O YOOAQCZYZHGUAZ-KATARQTJSA-N 0.000 description 1
- WPSKTVVMQCXPRO-BWBBJGPYSA-N Thr-Ser-Ser Chemical compound [H]N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CO)C(=O)N[C@@H](CO)C(O)=O WPSKTVVMQCXPRO-BWBBJGPYSA-N 0.000 description 1
- JAWUQFCGNVEDRN-MEYUZBJRSA-N Thr-Tyr-Leu Chemical compound C[C@H]([C@@H](C(=O)N[C@@H](CC1=CC=C(C=C1)O)C(=O)N[C@@H](CC(C)C)C(=O)O)N)O JAWUQFCGNVEDRN-MEYUZBJRSA-N 0.000 description 1
- IELISNUVHBKYBX-XDTLVQLUSA-N Tyr-Ala-Glu Chemical compound OC(=O)CC[C@@H](C(O)=O)NC(=O)[C@H](C)NC(=O)[C@@H](N)CC1=CC=C(O)C=C1 IELISNUVHBKYBX-XDTLVQLUSA-N 0.000 description 1
- NOXKHHXSHQFSGJ-FQPOAREZSA-N Tyr-Ala-Thr Chemical compound C[C@@H](O)[C@@H](C(O)=O)NC(=O)[C@H](C)NC(=O)[C@@H](N)CC1=CC=C(O)C=C1 NOXKHHXSHQFSGJ-FQPOAREZSA-N 0.000 description 1
- NGALWFGCOMHUSN-AVGNSLFASA-N Tyr-Gln-Asp Chemical compound [H]N[C@@H](CC1=CC=C(O)C=C1)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC(O)=O)C(O)=O NGALWFGCOMHUSN-AVGNSLFASA-N 0.000 description 1
- KCPFDGNYAMKZQP-KBPBESRZSA-N Tyr-Gly-Leu Chemical compound [H]N[C@@H](CC1=CC=C(O)C=C1)C(=O)NCC(=O)N[C@@H](CC(C)C)C(O)=O KCPFDGNYAMKZQP-KBPBESRZSA-N 0.000 description 1
- NVZVJIUDICCMHZ-BZSNNMDCSA-N Tyr-Phe-Ser Chemical compound [H]N[C@@H](CC1=CC=C(O)C=C1)C(=O)N[C@@H](CC1=CC=CC=C1)C(=O)N[C@@H](CO)C(O)=O NVZVJIUDICCMHZ-BZSNNMDCSA-N 0.000 description 1
- AZSHAZJLOZQYAY-FXQIFTODSA-N Val-Ala-Ser Chemical compound CC(C)[C@H](N)C(=O)N[C@@H](C)C(=O)N[C@@H](CO)C(O)=O AZSHAZJLOZQYAY-FXQIFTODSA-N 0.000 description 1
- SLLKXDSRVAOREO-KZVJFYERSA-N Val-Ala-Thr Chemical compound C[C@H]([C@@H](C(=O)O)NC(=O)[C@H](C)NC(=O)[C@H](C(C)C)N)O SLLKXDSRVAOREO-KZVJFYERSA-N 0.000 description 1
- QHDXUYOYTPWCSK-RCOVLWMOSA-N Val-Asp-Gly Chemical compound CC(C)[C@@H](C(=O)N[C@@H](CC(=O)O)C(=O)NCC(=O)O)N QHDXUYOYTPWCSK-RCOVLWMOSA-N 0.000 description 1
- CELJCNRXKZPTCX-XPUUQOCRSA-N Val-Gly-Ala Chemical compound CC(C)[C@H](N)C(=O)NCC(=O)N[C@@H](C)C(O)=O CELJCNRXKZPTCX-XPUUQOCRSA-N 0.000 description 1
- JTWIMNMUYLQNPI-WPRPVWTQSA-N Val-Gly-Arg Chemical compound CC(C)[C@H](N)C(=O)NCC(=O)N[C@H](C(O)=O)CCCNC(N)=N JTWIMNMUYLQNPI-WPRPVWTQSA-N 0.000 description 1
- HQYVQDRYODWONX-DCAQKATOSA-N Val-His-Ser Chemical compound CC(C)[C@@H](C(=O)N[C@@H](CC1=CN=CN1)C(=O)N[C@@H](CO)C(=O)O)N HQYVQDRYODWONX-DCAQKATOSA-N 0.000 description 1
- ZHQWPWQNVRCXAX-XQQFMLRXSA-N Val-Leu-Pro Chemical compound CC(C)C[C@@H](C(=O)N1CCC[C@@H]1C(=O)O)NC(=O)[C@H](C(C)C)N ZHQWPWQNVRCXAX-XQQFMLRXSA-N 0.000 description 1
- USXYVSTVPHELAF-RCWTZXSCSA-N Val-Thr-Met Chemical compound C[C@H]([C@@H](C(=O)N[C@@H](CCSC)C(=O)O)NC(=O)[C@H](C(C)C)N)O USXYVSTVPHELAF-RCWTZXSCSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 108010076324 alanyl-glycyl-glycine Proteins 0.000 description 1
- 108010005233 alanylglutamic acid Proteins 0.000 description 1
- 108010044940 alanylglutamine Proteins 0.000 description 1
- YXJDFQJKERBOBM-TXICZTDVSA-N alpha-D-ribose 1-phosphate Chemical compound OC[C@H]1O[C@H](OP(O)(O)=O)[C@H](O)[C@@H]1O YXJDFQJKERBOBM-TXICZTDVSA-N 0.000 description 1
- KOSRFJWDECSPRO-UHFFFAOYSA-N alpha-L-glutamyl-L-glutamic acid Natural products OC(=O)CCC(N)C(=O)NC(CCC(O)=O)C(O)=O KOSRFJWDECSPRO-UHFFFAOYSA-N 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 125000000539 amino acid group Chemical group 0.000 description 1
- 235000011114 ammonium hydroxide Nutrition 0.000 description 1
- 230000001195 anabolic effect Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 239000003242 anti bacterial agent Substances 0.000 description 1
- 229940088710 antibiotic agent Drugs 0.000 description 1
- 108010059459 arginyl-threonyl-phenylalanine Proteins 0.000 description 1
- 108010062796 arginyllysine Proteins 0.000 description 1
- 229960001230 asparagine Drugs 0.000 description 1
- 235000009582 asparagine Nutrition 0.000 description 1
- 108010038633 aspartylglutamate Proteins 0.000 description 1
- 108010047857 aspartylglycine Proteins 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000012136 culture method Methods 0.000 description 1
- 108010016616 cysteinylglycine Proteins 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 101150105561 drm gene Proteins 0.000 description 1
- 230000037149 energy metabolism Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 125000000404 glutamine group Chemical group N[C@@H](CCC(N)=O)C(=O)* 0.000 description 1
- 108010055341 glutamyl-glutamic acid Proteins 0.000 description 1
- VPZXBVLAVMBEQI-UHFFFAOYSA-N glycyl-DL-alpha-alanine Natural products OC(=O)C(C)NC(=O)CN VPZXBVLAVMBEQI-UHFFFAOYSA-N 0.000 description 1
- HPAIKDPJURGQLN-UHFFFAOYSA-N glycyl-L-histidyl-L-phenylalanine Natural products C=1C=CC=CC=1CC(C(O)=O)NC(=O)C(NC(=O)CN)CC1=CN=CN1 HPAIKDPJURGQLN-UHFFFAOYSA-N 0.000 description 1
- XKUKSGPZAADMRA-UHFFFAOYSA-N glycyl-glycyl-glycine Natural products NCC(=O)NCC(=O)NCC(O)=O XKUKSGPZAADMRA-UHFFFAOYSA-N 0.000 description 1
- 108010010096 glycyl-glycyl-tyrosine Proteins 0.000 description 1
- 108010048994 glycyl-tyrosyl-alanine Proteins 0.000 description 1
- 108010010147 glycylglutamine Proteins 0.000 description 1
- 108010037850 glycylvaline Proteins 0.000 description 1
- 101150035744 guaB gene Proteins 0.000 description 1
- 229940029575 guanosine Drugs 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000000415 inactivating effect Effects 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 108010027338 isoleucylcysteine Proteins 0.000 description 1
- 108010078274 isoleucylvaline Proteins 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000001404 mediated effect Effects 0.000 description 1
- 230000008558 metabolic pathway by substance Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 230000000813 microbial effect Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000002715 modification method Methods 0.000 description 1
- MRWXACSTFXYYMV-FDDDBJFASA-N nebularine Chemical group O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1N1C2=NC=NC=C2N=C1 MRWXACSTFXYYMV-FDDDBJFASA-N 0.000 description 1
- 150000003147 proline derivatives Chemical class 0.000 description 1
- -1 purB Proteins 0.000 description 1
- 101150028995 purC gene Proteins 0.000 description 1
- 101150105087 purC1 gene Proteins 0.000 description 1
- 101150084005 purD gene Proteins 0.000 description 1
- 101150103875 purH gene Proteins 0.000 description 1
- 101150035806 purK gene Proteins 0.000 description 1
- 101150092531 purL gene Proteins 0.000 description 1
- 101150056177 purM gene Proteins 0.000 description 1
- 101150112726 purN gene Proteins 0.000 description 1
- 101150074424 purS gene Proteins 0.000 description 1
- 239000002212 purine nucleoside Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000007790 scraping Methods 0.000 description 1
- 108010048818 seryl-histidine Proteins 0.000 description 1
- 108010071207 serylmethionine Proteins 0.000 description 1
- 238000012807 shake-flask culturing Methods 0.000 description 1
- 239000008223 sterile water Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000001384 succinic acid Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 238000013518 transcription Methods 0.000 description 1
- 230000035897 transcription Effects 0.000 description 1
- 108010073452 tryptophyl-glycyl-histidyl-glutamic acid Proteins 0.000 description 1
- 108010003137 tyrosyltyrosine Proteins 0.000 description 1
- 101150063727 yjiT gene Proteins 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A50/00—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
- Y02A50/30—Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change
Landscapes
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
Abstract
The invention belongs to the technical field of genetic engineering, relates to breeding of industrial microorganisms, and in particular relates to a genetic engineering strain for producing inosine, and a construction method and application thereof. The gene engineering strain heterogenous over-expressed nucleoside transporter gene pfuE and purine operon mutant gene purEKBCSQLF K316Q MNCD and PRPP transamidase mutant gene purF K316Q And the gene purA is mutated by heterologous adenosine succinate synthase P242N The purA gene was replaced, and purine nucleoside phosphorylase genes deoD, ppnP and nucleoside hydrolase gene rihA, rihB, rihC were not expressed. The invention starts from the genome level of escherichia coli, and mainly carries out systematic comprehensive combination optimization on all modules of an inosine decomposition pathway, an inosine synthesis pathway, an inosine transport system and a branch metabolic pathway by metabolic engineering technical means, thereby improving the inosine fermentation performance of the strain.
Description
Technical Field
The invention belongs to the technical field of genetic engineering, relates to breeding of industrial microorganisms, and in particular relates to a genetic engineering strain for producing inosine, and a construction method and application thereof.
Background
Inosine is purine nucleoside, participates in organism substance metabolism and energy metabolism, and has important application value. Microbial fermentation is the main method for industrial production of inosine at present, but the production level of inosine produced by the fermentation method is still lower due to the poor fermentation performance of the existing strain, and high-performance strain is needed to meet the industrial requirement of inosine. The traditional inosine producing strain is obtained by screening structural analogue resistant strains through mutagenesis, however, the continuous improvement of the performance of the strain obtained through mutagenesis is not facilitated due to unclear genetic background and accumulation of a large number of negative mutations. With the development of system biology, a method for rationally constructing metabolic engineering becomes a preferred method for constructing and continuously improving inosine producing strains from scratch. The prior research results provide important references for the rational construction of inosine engineering strains, but a plurality of problems still exist and are not solved. The specific expression is as follows: (1) At present, the inosine production performance of a rationally constructed strain is generally low, the highest yield is only 14g/L, the production period is longer, and the production period is generally as long as 72 hours or even longer. (2) The strain carries plasmids, the strain is heavy in load, and the plasmids are easy to lose, so that production is unstable. Antibiotics are added to maintain the stable existence of plasmids, so that the production cost is increased, and potential safety hazards such as drug resistance are increased. (3) In terms of construction strategies, the existing strains are limited to modification of individual nodes such as degradation pathways, de novo synthesis pathways, precursor synthesis pathways and branch metabolic pathways, and lack of systematic combination of all modules of the whole inosine metabolic network. (4) Most of the strains are defective in adenine, adenine needs to be added in the fermentation process, the cost of raw materials is high, the fermentation process is complex, and the production stability is reduced.
Common strategies for de novo construction of inosine producing strains mainly include blocking the degradation pathway, enhancing the de novo synthesis pathway, enhancing the precursor synthesis pathway, and blocking the branching metabolic pathway. Shimaoka M et al (Effect of amplification of desensitized purF and prs on inosine accumulation in Escherichia coll. Journal of bioscience and bioengineering,2007,103 (3): 255-261.) block the inosine degradation pathway by knocking out deoD and xapA genes with E.coli W3110 as the starting strain; by knocking out purR gene and over-expressing purF K326Q,P410W Genes, which enhance the pathway of de novo synthesis; by knocking out pgi and edd genes and over-expressing prs D128A Genes, which enhance the precursor synthesis pathway; by knocking out purA gene, the adenosine synthesis branch is blocked. The obtained strain IAfter 72h fermentation, the yield of the inosine reaches 7.5g/L. Asahara T et al (Accumulation of gene-targeted Bacillus subtilis mutations that enhance fermentative inosine production. Appl Microbiol Biotechnol,2010,87 (6): 2195-2207.) by taking Bacillus subtilis W168 as an initial strain, blocking the inosine degradation pathway by knocking out deoD and punA genes; the de novo synthesis pathway is enhanced by knocking out purR gene, 5' -UTR region of purine operon and optimizing-10 region of purine operon promoter; by knocking out purA and guaB genes, the adenosine synthesis branch and the guanosine synthesis branch are blocked. The obtained strain KMBS375 is fermented for 72 hours, and the yield of inosine reaches 6g/L. Lijian et al (De novo engineering and metabolic flux analysis of inosine biosynthesis in Bacillus subtilis. Biotechnol Lett,2011,33 (8): 1575-1580.) blocked the inosine degradation pathway by knocking out the deoD gene with Bacillus subtilis W168 as the starting strain; by knocking out purA gene, the adenosine synthesis branch is blocked. The strain BS019 is fermented for 72 hours, and the inosine yield reaches 7.6g/L. Wen Tingyi et al (CN 106906174A) blocked the adenosine synthesis branch by knocking out purA gene with Bacillus subtilis W168 as the starting strain; by knocking out the drm gene, the degradation path from ribose 1-phosphate to ribose 5-phosphate is blocked. The obtained strain IR-2 was fermented for 72 hours, and the inosine yield reached 14g/L, which was the highest yield of inosine in the rational construction strain so far.
Disclosure of Invention
Aiming at the problems, the invention aims to construct an engineering strain for efficiently and stably producing inosine and utilize the strain to ferment and produce the inosine.
In order to achieve the above purpose, the present invention adopts the following technical scheme:
in a first aspect, the present invention provides a genetically engineered E.coli strain that heterologously overexpresses the nucleoside transporter gene pfuE, the purine operon mutant genepurEKBCSQLF K316Q MNCD and PRPP transamidase mutant gene purF K316Q And the gene purA is mutated by heterologous adenosine succinate synthase P242N The purA gene was replaced, and purine nucleoside phosphorylase genes deoD, ppnP and nucleoside hydrolase gene rihA, rihB, rihC were not expressed.
In a second aspect, the invention provides a method for constructing the escherichia coli genetic engineering strain, which comprises the following steps: introducing nucleoside transporter gene pfue, purine operon mutant gene purEKBCSQLF into original strain escherichia coli K316Q MNCD and PRPP transamidase mutant gene purF K316Q And the gene purA is mutated by heterologous adenosine succinate synthase P242N The purA gene was replaced, and purine nucleoside phosphorylase genes deoD, ppnP and nucleoside hydrolase gene rihA, rihB, rihC were knocked out or inactivated.
In a third aspect, the invention provides the use of the genetically engineered strain of E.coli as described above in high inosine production.
The beneficial effects of the invention are as follows:
the invention obtains the engineering strain which has clear genetic background, does not contain plasmid and efficiently produces inosine by utilizing a rational metabolic engineering modification method. From the production phenotype, the strain is fermented for 48 hours on a 5L tank, the inosine yield reaches 20.16g/L, and compared with the highest yield of the prior art rationally constructed strain, the production period is shortened by 1/3, and the strain does not contain plasmids. From the construction strategy, the invention carries out systematic and comprehensive combination optimization on the inosine decomposition pathway, the inosine synthesis pathway, the inosine transport system and the branch metabolic pathway by the metabolic engineering technical means through the split modules, and the strain has clear genetic background and higher and more stable production performance. In particular, compared with other inosine producing strains, the method of the invention not only ensures enough inosine branch flux, but also maintains a certain growth level of the strain by weakening rather than directly blocking the adenosine synthesis branch. The strain obtained finally can stably and efficiently produce inosine and has good industrial application prospect.
Drawings
Fig. 1A: construction of deoD gene knockout fragment and verification of electrophoresis pattern. Wherein M: a Marker;1: an upstream homology arm; 2: a downstream homology arm; 3: overlapping the segments; 4: positive bacteria identification fragment 5: negative control.
Fig. 1B: construction of ppnP knockout fragment and verification of electrophoresis pattern. Wherein M: a Marker;1: an upstream homology arm; 2: a downstream homology arm; 3: overlapping the segments; 4: positive bacteria identification fragment 5: negative control.
Fig. 1C: construction and verification of an rihA gene knockout fragment. Wherein M: a Marker;1: an upstream homology arm; 2: a downstream homology arm; 3: overlapping the segments; 4: positive bacteria identification fragment 5: negative control.
Fig. 1D: construction of a rihB gene knockout fragment and verification of an electrophoresis pattern. Wherein M: a Marker;1: an upstream homology arm; 2: a downstream homology arm; 3: overlapping the segments; 4: positive bacteria identification fragment 5: negative control.
Fig. 1E: construction and verification of an rihC gene knockout fragment and an electrophoresis chart. Wherein M: a Marker;1: an upstream homology arm; 2: a downstream homology arm; 3: overlapping the segments; 4: positive bacteria identification fragment 5: negative control.
Fig. 2A: and (3) constructing and verifying an electrophoresis chart by pur1 integration fragment. Wherein: m: a marker;1: an upstream homology arm; 2: pur1 fragment; 3: a downstream homology arm; 4: overlapping the segments; 5: identifying fragments of positive bacteria; 6: negative control.
Fig. 2B: and (3) constructing and verifying an electrophoresis chart by pur2 integration fragments. Wherein: m: a marker;1: : pur2 upstream fragment-pur 2 fragment; 2: a downstream homology arm; 3: overlapping the segments; 4: identifying fragments of positive bacteria; 5: negative control.
Fig. 2C: and (3) constructing and verifying an electrophoresis chart by pur3 integration fragments. Wherein: m: a marker;1: : pur3 upstream fragment-pur 3 fragment; 2: a downstream homology arm; 3: overlapping the segments; 4: identifying fragments of positive bacteria; 5: negative control.
Fig. 2D: and (3) constructing and verifying an electrophoresis chart by pur4 integration fragment. Wherein: m: a marker;1: : pur4 upstream fragment-pur 4 fragment; 2: a downstream homology arm; 3: overlapping the segments; 4: identifying fragments of positive bacteria; 5: negative control.
Fig. 2E: and (5) constructing and verifying an electrophoresis chart by pur5 integration fragments. Wherein: m: a marker;1: : pur5 upstream fragment-pur 5 fragment; 2: a downstream homology arm; 3: overlapping the segments; 4: identifying fragments of positive bacteria; 5: negative control.
Fig. 2F: and (3) constructing and verifying an electrophoresis chart by pur6 integration fragment. Wherein: m: a marker;1: : pur6 upstream fragment-pur 6 fragment; 2: a downstream homology arm; 3: overlapping the segments; 4: identifying fragments of positive bacteria; 5: negative control.
Fig. 2G: purF (PurF) K326Q,P410W And (5) integrating fragment construction and verification of an electrophoresis chart. Wherein: m: a marker;1: an upstream homology arm; 2: purF (PurF) K326Q,P410W A gene fragment; 3: a downstream homology arm; 4: overlapping the segments; 5: identifying fragments of positive bacteria; 6: negative control.
Fig. 2H: purF (PurF) D293V,K316Q,S400W And (5) integrating fragment construction and verification of an electrophoresis chart. Wherein: m: a marker;1: an upstream homology arm; 2: purF (PurF) D293V,K316Q,S400W A gene fragment; 3: a downstream homology arm; 4: overlapping the segments; 5: identifying fragments of positive bacteria; 6: negative control.
Fig. 2I: purF (PurF) K316Q And (5) integrating fragment construction and verification of an electrophoresis chart. Wherein: m: a marker;1: an upstream homology arm; 2: purF (PurF) K316Q A gene fragment; 3: a downstream homology arm; 4: overlapping the segments; 5: identifying fragments of positive bacteria; 6: negative control.
Fig. 3: construction of the pbuE integration fragment and verification of the electropherogram. Wherein: m: a marker;1: an upstream homology arm; 2: a pbuE gene fragment; 3: a downstream homology arm; 4: overlapping the segments; 5: identifying fragments of positive bacteria; 6: negative control.
Fig. 4: purA (PurA) P242N And (5) integrating fragment construction and verification of an electrophoresis chart. Wherein: m: a marker;1: an upstream homology arm; 2: purA (PurA) P242N A gene fragment; 3: a downstream homology arm; 4: overlapping the segments; 5: identifying fragments of positive bacteria; 6: negative control.
Fig. 5: overexpression of the different PurF mutants effect on inosine yield.
Fig. 6: strain INO4 fed-batch fermentation curve in a 5L fermenter.
Fig. 7: the technical scheme principle of the invention is schematically shown.
Detailed Description
The invention is described below by means of specific embodiments. The technical means used in the present invention are methods well known to those skilled in the art unless specifically stated. Further, the embodiments should be construed as illustrative, and not limiting the scope of the invention, which is defined solely by the claims. Various changes or modifications to the materials ingredients and amounts used in these embodiments will be apparent to those skilled in the art without departing from the spirit and scope of the invention.
In a first aspect, the present invention provides an E.coli genetically engineered strain that heterologously overexpresses the nucleoside transporter gene pfue, the purine operon mutant gene purEKBCSQLF K316Q MNCD and PRPP transamidase mutant gene purF K316Q Wherein purF K316Q Is prepared through substituting glutamine for 316 th lysine in the coding amino acid sequence of purF gene and mutating purA with adenosine succinic acid synthetase P242N The purA gene was replaced, and purine nucleoside phosphorylase genes deoD, ppnP and nucleoside hydrolase gene rihA, rihB, rihC were not expressed.
Preferably, the nucleotide sequence of the nucleoside transporter gene pfue is shown in SEQ ID NO:1, NCBI-GeneID:12132461.
preferably, the PRPP transamidase mutant gene purF K316Q The nucleotide sequence of (2) is shown as SEQ ID NO: 2. Wherein purF K316Q Is the substitution of lysine (K) at position 316 of the amino acid sequence encoded by purF gene with glutamine (Q). The numbering of the positions corresponds to the positions of the amino acid sequence of the parent PRPP transamidase.
Preferably, the purine operon mutant gene purEKBCSQLF K316Q The nucleotide sequence of MNCD is shown as SEQ ID NO: 3. Wherein purF is contained K316Q Is a mutant purF gene, and represents that lysine (K) at position 316 of the amino acid sequence encoded by purF gene is replaced by glutamine (Q).
Preferably, the method comprises the steps of,the mutant gene purA of the adenosine succinate synthetase P242N The nucleotide sequence of (2) is shown as SEQ ID NO: 4. Wherein purA P242N Is the substitution of proline (P) at position 128 of the amino acid sequence encoded by the purA gene with asparagine (N). The numbering of positions corresponds to the amino acid sequence of the parent adenosine succinate synthase.
The manner in which the above-described gene is not expressed according to the present invention may be by conventional means in the art, for example, by inactivating the gene or knocking out the gene by conventional means in the art.
According to the invention, non-expression means that the amount of the gene expression product is significantly lower than the original level, e.g. significantly reduced by at least 50%, 60%, 70%, 80%, 90%, 100%.
The manner in which the above-described genes are overexpressed according to the present invention may be by conventional means in the art, for example, by increasing the copy number of the genes or by ligating the genes to a strong promoter.
According to the invention, the overexpression means that the amount of the gene expression product is significantly higher than the original level.
According to a preferred embodiment of the invention, the nucleoside transporter gene pfue is linked to a promoter P trc The method comprises the steps of carrying out a first treatment on the surface of the And/or said purine operon mutant gene purEKBCSQLF K316Q MNCD is connected with promoter P trc The method comprises the steps of carrying out a first treatment on the surface of the And/or said PRPP transamidase mutant gene purF K316Q Is connected with a promoter P trc The method comprises the steps of carrying out a first treatment on the surface of the Preferably, the promoter P trc The nucleotide sequence of (2) is shown as SEQ ID NO: shown at 5.
According to the present invention, the starting strain used for constructing the E.coli genetically engineered strain may be any E.coli, and according to a preferred embodiment of the present invention, the starting strain is E.coli MG1655.
In a second aspect, the invention provides a method for constructing the escherichia coli genetic engineering strain, which comprises the following steps: introducing nucleoside transporter gene pfue, purine operon mutant gene purEKBCSQLF into original strain escherichia coli K316Q MNCD and PRPP transamidase mutant gene purF K316Q Wherein purF K316Q Is the substitution of lysine at position 316 of amino acid sequence with glutamine, and the mutation of gene purA with adenosine succinate synthetase P242N The purA gene was replaced, and purine nucleoside phosphorylase genes deoD, ppnP and nucleoside hydrolase gene rihA, rihB, rihC were knocked out or inactivated.
The selection of the above genes, the selection of the promoter, the selection of the starting strain, etc. have been described in detail in the first aspect of the present invention, and the details of the description of the first aspect will not be repeated here.
According to a specific embodiment of the invention, the method comprises:
(1) Blocking inosine decomposition pathway
Starting from the genome of the strain E.coli MG1655, knocking out purine nucleoside phosphorylase genes deoD and ppnP and knocking out nucleoside hydrolase gene rihA, rihB, rihC; this step blocked the degradation of inosine;
(2) Enhancing inosine synthesis pathway
The purine operon purEKBCSQLF of Bacillus amyloliquefaciens TA208 K316Q MNCD and promoter P trc Fusion fragment P of (C) trc -purEKBCSQLF K316Q MNHD is integrated at the yghE pseudogene locus; this step enhances the de novo purine anabolic flux while simultaneously relieving feedback inhibition of PRPP transamidase by AMP and GMP;
The PRPP transamidase mutant gene purF of Bacillus amyloliquefaciens TA208 K316Q And promoter P trc Fusion fragment P of (C) trc -purF K316Q Integration at the yeeP pseudogene locus; the step further strengthens the transcriptional expression of PRPP transamidase and promotes the synthesis of inosine;
(3) Modifying inosine transport systems
The nucleotide transporter gene pfue of Bacillus amyloliquefaciens TA and the promoter P are added trc Fusion fragment P of (C) trc -pbuE integration at the yjiT pseudogene locus; this step enhances the ability of inosine to migrate extracellular;
(4) Weakening an adenosine synthesis branch
Substitution of the purA Gene of the adenylsuccinic acid synthase with B.subilis W168 mutant purA of 168 P242N The method comprises the steps of carrying out a first treatment on the surface of the This step weakens the adenosine synthesis branch in the inosine competition pathway.
The principle of the above construction process of the present invention can be illustrated with reference to fig. 7.
In a third aspect, the invention provides an application of the escherichia coli genetic engineering strain in high-yield inosine, comprising the following steps: culturing the genetically engineered strain under suitable conditions and collecting inosine from the culture thereof.
According to a preferred embodiment of the invention, the suitable conditions are a culture temperature of 35 ℃, a pH of around 7.0, a dissolved oxygen of between 25 and 35% and a culture medium composition of: 15-25g/L glucose, 1-4g/L yeast powder, 1-5g/L peptone, 0.1-2g/L sodium citrate, 0.1-0.3g/L adenine and KH 2 PO 4 ·3H 2 O 0.1-2g/L,MgSO 4 ·7H 2 O 0.1-2g/L,FeSO 4 ·7H 2 O 5-20mg/L,MnSO 4 ·H 2 O 5-20mg/L,V B1 、V B3 、V B5 、V B12 And V H 0.1-2mg/L each, 2 drops of defoamer, the balance of water, and pH 7.0-7.2.
The present invention will be described in more detail with reference to specific examples. In the following examples:
unless otherwise indicated, the methods of gene editing according to the examples of the present invention are described in reference to the literature (Li Y, lin Z, huang C, et al, metal engineering of Escherichia coli using CRISPR-Cas9 mediated genome engineering,2015, 31:13-21.) and other specific procedures for molecular biology, genetic engineering, etc. may be carried out according to technical manuals, textbooks or literature reports readily available to those skilled in the art.
Example 1: construction of E.coli INO4 as a genetically engineered E.coli strain
1. Blocking inosine decomposition pathway
1.1 knockout of deoD Gene:
using the E.coli MG1655 genome as a template, an upstream homology arm primer (UP-deoD-S, UP-deoD-A) and a downstream homology arm primer (DN-deoD-S, DN-deoD-A) were designed based on the upstream and downstream sequences of the deoD gene (NCBI-GeneID: 945654), and the upstream and downstream homology arm fragments were PCR amplified. The above fragments were fused by overlap PCR to obtain a knockout fragment of deoD gene (upstream homology arm-downstream homology arm). The DNA fragment containing the target sequence used for constructing pGRB-deoD was prepared by annealing the primers gRNA-deoD-S and gRNA-deoD-A. The recombinant fragment and plasmid pGRB-deoD are electrically transferred to competent cells of E.coli MG1655, positive strains are screened, and then the plasmid is eliminated to obtain the strain INO1-1. Construction of deoD knockout fragment and PCR verification of positive strain are shown in FIG. 1A. Wherein the length of the upstream homology arm is 458bp, the length of the downstream homology arm is 613bp, and the total length of the overlapped fragments is 1029bp. When the PCR is verified, the length of the PCR amplified fragment of the positive bacterium is 1029bp, and the length of the PCR amplified fragment of the original bacterium is 1630bp.
1.2 knockdown of ppnP Gene:
using the E.coli MG1655 genome as a template, an upstream homology arm primer (UP-ppnP-S, UP-ppnP-A) and a downstream homology arm primer (DN-ppnP-S, DN-ppnP-A) were designed based on the upstream and downstream sequences of its ppnP gene (NCBI-GeneID: 945048), and the upstream and downstream homology arm fragments thereof were PCR amplified. The above fragments were fused by overlap PCR to obtain a knocked-out fragment of the ppnP gene (upstream homology arm-downstream homology arm). The DNA fragment containing the target sequence used for constructing pGRB-ppnP was prepared by annealing the primers gRNA-ppnP-S and gRNA-ppnP-A. The recombinant fragment and plasmid pGRB-ppnP are electrically transferred to competent cells of INO1-1, and the plasmid is eliminated after positive strains are screened to obtain the strain INO1-2. Construction of ppnP knockout fragment and PCR-verified electrophoresis of positive strains are shown in FIG. 1B. Wherein the length of the upstream homology arm is 394bp, the length of the downstream homology arm is 690bp, and the total length of the overlapped fragment is 1040bp. When the PCR is verified, the length of the PCR amplified fragment of the positive bacterium is 1040bp, and the length of the PCR amplified fragment of the original bacterium is 1361bp.
1.3 knockout of the rilA Gene:
using the E.coli MG1655 genome as a template, an upstream homology arm primer (UP-rihA-S, UP-rihA-a) and a downstream homology arm primer (DN-rihA-S, DN-rihA-a) were designed based on the upstream and downstream sequences of its rihA gene (NCBI-GeneID: 945503), and the upstream and downstream homology arm fragments thereof were PCR amplified. The above fragments were fused by overlap PCR to obtain a knockout fragment of the rilA gene (upstream homology arm-downstream homology arm). The DNA fragment containing the target sequence used for constructing pGRB-rihA was prepared by annealing the primers gRNA-rihA-S and gRNA-rihA-a. The recombinant fragment and plasmid pGRB-rihA are electrotransferred to competent cells of INO1-2, and the plasmid is eliminated after screening positive strains to obtain the strain INO1-3. Construction of the rilA knockout fragment and PCR-verified electrophoresis of the positive strain are shown in FIG. 1C. Wherein the length of the upstream homology arm is 547bp, the length of the downstream homology arm is 536bp, and the total length of the overlapped fragments is 1042bp. When the PCR is verified, the length of the PCR amplified fragment of the positive bacterium is 1042bp, and the length of the PCR amplified fragment of the original bacterium is 1857bp.
1.4 knockout of the rihB gene:
using the E.coli MG1655 genome as ase:Sub>A template, an upstream homology arm primer (UP-rib-S, UP-rib-A) and ase:Sub>A downstream homology arm primer (DN-rib-S, DN-rib-A) were designed based on the upstream and downstream sequences of its rib gene (NCBI-GeneID: 946646), and the upstream and downstream homology arm fragments thereof were PCR amplified. The above fragments were fused by overlap PCR to obtain a knockout fragment of the rihB gene (upstream homology arm-downstream homology arm). The DNA fragment containing the target sequence used for constructing pGRB-rihB was prepared by annealing the primers gRNA-rihB-S and gRNA-rihB-A. The recombinant fragment and plasmid pGRB-rihB are electrotransferred to competent cells of INO1-3, and the plasmid is eliminated after positive strains are screened to obtain the strain INO1-4. Construction of the rib knockout fragment and PCR-verified electrophoresis of the positive strain are shown in FIG. 1D. Wherein the length of the upstream homology arm is 494bp, the length of the downstream homology arm is 459bp, and the total length of the overlapped fragment is 912bp. When the PCR is verified, the length of the PCR amplified fragment of the positive bacterium is 912bp, and the length of the PCR amplified fragment of the original bacterium is 1789bp.
1.5 knockout of the rilc gene:
using the E.coli MG1655 genome as se:Sub>A template, an upstream homology arm primer (UP-rihC-S, UP-rihC-A) and se:Sub>A downstream homology arm primer (DN-rihC-S, DN-rihC-A) were designed based on the upstream and downstream sequences of the rihC gene (NCBI-GeneID: 944796), and the upstream and downstream homology arm fragments thereof were PCR amplified. The above fragments were fused by overlap PCR to obtain a knockout fragment of the rilC gene (upstream homology arm-downstream homology arm). The DNA fragment containing the target sequence used for constructing pGRB-rihC was prepared by annealing the primers gRNA-rihC-S and gRNA-rihC-A. The recombinant fragment and plasmid pGRB-rihC are electrically transferred to competent cells of INO1-4, and the plasmid is eliminated after positive strains are screened to obtain the strain INO1-5. Construction of the rilc knockout fragment and PCR verification of the positive strain are shown in fig. 1E. Wherein the length of the upstream homology arm is 539bp, the length of the downstream homology arm is 475bp, and the total length of the overlapped fragments is 975bp. When the PCR is verified, the length of the PCR amplified fragment of the positive bacterium is 975bp, and the length of the PCR amplified fragment of the original bacterium is 1787bp.
2. Enhancing inosine synthesis pathway
2.1 purine operon mutant Gene purEKBCSQLF of Bacillus amyloliquefaciens K316Q MNCHD integration at the yghE Gene locus of E.coli INO1-5
The purine operon purEKBCSQLFMNCD (comprising purE, purK, purB, purC, purS, purQ, purL, purF, purM, purN, purH, purD twelve genes) of Bacillus amyloliquefaciens (Bacillus amyloliquefaciens TA) is 12797bp in total, and six segments pur1, pur2, pur3, pur4, pur5, pur6 are sequentially integrated into the gene locus of E.coli yghE in this example (wherein the contained purF is replaced by a mutant gene purF) K316Q ) And is composed of promoter P trc The transcription expression of the exogenous operon is started, and the strain E.coli INO2-6 is constructed. The method specifically comprises the following steps:
2.1.1P trc integration of pur 1:
designing an upstream homology arm primer (UP-yghE-S, UP-yghE-A) and a downstream homology arm primer (DN-yghE-S1, DN-yghE-A) according to the upstream and downstream sequences of the yghE gene by taking the E.coli MG1655 genome as a template, and amplifying the upstream and downstream homology arm fragments by PCR; designing primers (UP-pur 1-S, UP-pur 1-A) according to pur1 (1 st-2113 rd position of the nucleotide sequence shown in SEQ ID NO: 3) by taking Bacillus amyloliquefaciens TA208 genome as a template, and amplifying pur1 fragment by PCR; promoter P trc Then the design is made in the downstream primer of the upstream homology arm and the upstream primer of pur1 gene. The above fragments are fused by overlapping PCR to obtain an integrated fragment of pur1 gene (upstream homology arm-P trc Pur 1-downstream homology arm), the DNA fragment containing the target sequence used for constructing pGRB-yghE was prepared byAnnealing of the primers gRNA-yghE-S and gRNA-yghE-A. The recombinant fragment and plasmid pGRB-yghE are electrically transferred to competent cells of INO1-5, and the plasmid is eliminated after screening positive strains to obtain the strain INO2-1.P (P) trc During integration of the pur1 fragment, the construction of the integrated fragment and the PCR-verified electrophoresis of the positive strain are shown in FIG. 2A. Wherein the length of the upstream homology arm is 559bp, the length of pur1 gene fragment is 2236bp, the length of the downstream homology arm is 554bp, and the length of the overlapped fragment is 3244bp. During PCR verification, the length of the amplified fragment of the identification primer should be 1188bp, and the primordium should be free of bands.
2.1.2 integration of pur2:
using Bacillus amyloliquefaciens TA208 genome as template, designing upstream homology arm primer (UP-pur 2-S, UP-pur 2-A) according to pur2 (nucleotide sequence 1603-4203 shown in SEQ ID NO: 3) and upstream sequence thereof, and PCR amplifying upstream homology arm fragment; the E.coli MG1655 genome was used as a template, and downstream homology arm primers (DN-yghE-S2, DN-yghE-A) were designed based on the downstream sequence of the yghE gene, and the downstream homology arm fragments were amplified by PCR. The above fragments were fused by overlap PCR to obtain an integrated fragment of pur2 (upstream fragment of pur 2-downstream homology arm). The DNA fragment containing the target sequence used for constructing pGRB-pur2 was prepared by annealing the primers gRNA-pur2-S and gRNA-pur 2-A. The recombinant fragment and plasmid pGRB-pur2 are electrically transferred to competent cells of INO2-1, and the plasmid is eliminated after positive strains are screened to obtain the strain INO2-2. In the pur2 fragment integration process, the construction of the integrated fragment and the PCR verification of the positive strain are shown in the figure 2B. Wherein the total length of the upstream fragment of pur2, is 2664bp, the length of the downstream homology arm is 554bp, and the length of the overlapping fragment is 3155bp. During PCR verification, the length of the amplified fragment of the identification primer should be 1513bp, and the primordium should be free of bands.
2.1.3 integration of pur3:
using Bacillus amyloliquefaciens TA208 genome as template, designing upstream homology arm primer (UP-pur 3-S, UP-pur 3-A) according to pur3 (nucleotide sequence shown in SEQ ID NO:3 at 3494-6132) and upstream sequence thereof, and PCR amplifying upstream homology arm fragment; the E.coli MG1655 genome was used as a template, and downstream homology arm primers (DN-yghE-S1, DN-yghE-A) were designed based on the downstream sequence of the yghE gene, and the downstream homology arm fragments were amplified by PCR. The above fragments were fused by overlap PCR to obtain an integrated fragment of pur3 (upstream fragment of pur 3-downstream homology arm). The DNA fragment containing the target sequence used for constructing pGRB-pur3 was prepared by annealing the primers gRNA-pur3-S and gRNA-pur 3-A. The recombinant fragment and plasmid pGRB-pur3 are electrically transferred to competent cells of INO2-2, and the plasmid is eliminated after positive strains are screened to obtain the strain INO2-3. In the pur3 fragment integration process, the construction of the integrated fragment and the PCR verification of the positive strain are shown in the figure 2C. Wherein the total length of the upstream fragment of pur3, is 2702bp, the length of the downstream homology arm is 554bp, and the length of the overlapped fragment is 3193bp. During PCR verification, the length of the amplified fragment of the identification primer is 1393bp, and the primordium is free of bands.
2.1.4 integration of pur4:
based on Bacillus amyloliquefaciens TA208 genome, obtaining pur4 fragment (5543-8228 site of nucleotide sequence shown in SEQ ID NO: 3) by chemical synthesis method, designing primer (UP-pur 4-S, UP-pur 4-A) according to pur4 fragment, and amplifying pur4 fragment; the E.coli MG1655 genome was used as a template, and downstream homology arm primers (DN-yghE-S2, DN-yghE-A) were designed based on the downstream sequence of the yghE gene, and the downstream homology arm fragments were amplified by PCR. The above fragments were fused by overlap PCR to obtain an integrated fragment of pur4 (upstream fragment of pur 4-downstream homology arm). The DNA fragment containing the target sequence used for constructing pGRB-pur2 was prepared by annealing the primers gRNA-pur2-S and gRNA-pur 2-A. The recombinant fragment and plasmid pGRB-pur2 are electrically transferred to competent cells of INO2-3, and the plasmid is eliminated after positive strains are screened to obtain the strain INO2-4. In the pur4 fragment integration process, the construction of the integrated fragment and the PCR verification of the positive strain are shown in the figure 2D. Wherein the total length of the upstream fragment of pur4, pur3, is 2749bp, the length of the downstream homology arm is 554bp, and the length of the overlapped fragment is 3240bp. During PCR verification, the length of the amplified fragment of the identification primer should be 1328bp, and the primordium should be free of bands.
2.1.5 integration of pur5:
based on Bacillus amyloliquefaciens TA208 genome, obtaining pur5 fragment (7704-10592 site of nucleotide sequence shown in SEQ ID NO: 3) by chemical synthesis method, designing primer (UP-pur 5-S, UP-pur 5-A) according to pur5 fragment, and amplifying pur5 fragment; the E.coli MG1655 genome was used as a template, and downstream homology arm primers (DN-yghE-S2, DN-yghE-A) were designed based on the downstream sequence of the yghE gene, and the downstream homology arm fragments were amplified by PCR. The above fragments were fused by overlap PCR to obtain an integrated fragment of pur5 (upstream fragment of pur 5-downstream homology arm). The DNA fragment containing the target sequence used for constructing pGRB-pur3 was prepared by annealing the primers gRNA-pur3-S and gRNA-pur 3-A. The recombinant fragment and plasmid pGRB-pur3 are electrically transferred to competent cells of INO2-4, and the plasmid is eliminated after positive strains are screened to obtain the strain INO2-5. In the pur5 fragment integration process, the construction of the integrated fragment and the PCR verification of the positive strain are shown in the figure 2E. Wherein the total length of the upstream fragment of pur5, is 2952bp, the length of the downstream homology arm is 554bp, and the length of the overlapped fragment is 3443bp. During PCR verification, the length of the amplified fragment of the identification primer should be 1308bp, and the primordium should be free of bands.
2.1.6 integration of pur6:
using Bacillus amyloliquefaciens TA208 genome as template, designing upstream homology arm primer (UP-pur 6-S, UP-pur 6-A) according to pur6 (nucleotide sequence 10088-12797 shown in SEQ ID NO: 3) and upstream sequence thereof, and PCR amplifying upstream homology arm fragment; the E.coli MG1655 genome was used as a template, and downstream homology arm primers (DN-yghE-S3, DN-yghE-A) were designed based on the downstream sequence of the yghE gene, and the downstream homology arm fragments were amplified by PCR. The above fragments were fused by overlap PCR to obtain an integrated fragment of pur6 (upstream fragment of pur 6-downstream homology arm). The DNA fragment containing the target sequence used for constructing pGRB-pur2 was prepared by annealing the primers gRNA-pur2-S and gRNA-pur 2-A. The recombinant fragment and plasmid pGRB-pur2 are electrically transferred to competent cells of INO2-5, and the plasmid is eliminated after positive strains are screened to obtain the strain INO2-6. In the process of pur6 integration, the construction of the integration fragment and the PCR verification of the positive strain are shown in FIG. 2F. Wherein the total length of the upstream fragment of pur6 is 2773bp, the length of the downstream homology arm is 554bp, and the total length of the overlapped fragment is 3288bp. During PCR verification, the length of the amplified fragment of the identification primer should be 1114bp, and the primordium should be free of bands.
2.2 integration of PRPP Transamidase mutant Gene
To enhance the transcriptional expression of PRPP transamidase, purF was selected K326Q,P410W ,purF D293V,K316Q,S400W ,purF K316Q Several PRPP transamidase mutant genes from different sources are integrated and over-expressed.
Identification of mutants: amino acid residues are indicated by single letter symbols using accepted IUPAC nomenclature. "amino acid substituted at the original amino acid position" is used to refer to the mutated amino acid in the PRPP transamidase mutant. Such as purF K316Q The amino acid at position 316 is replaced by the parent lysine (K) with glutamine (Q), the numbering of the position corresponding to the amino acid sequence numbering of the parent PRPP transamidase. Such as purF K326Q,P410W Indicating that both amino acids 326 and 410 were mutated. The method comprises the following steps:
2.2.1 mutant PRPP transamidase Gene purF of E.coli MG1655 K326Q,P410W Integration at the yeeP gene locus of E.coli INO 2-6:
designing an upstream homology arm primer (UP-yeeP-S, UP-yeeP-A) and a downstream homology arm primer (DN-yeeP-S, DN-yeeP-A) according to the upstream and downstream sequences of the yeeP gene by taking the E.coli MG1655 genome as a template, and amplifying the upstream and downstream homology arm fragments by PCR; based on E.coli MG1655 genome, purF is obtained by chemical synthesis method K326Q,P410W Gene according to purF K326Q,P410W Gene design primer (ecoF-S, ecoF-A), amplification purF K326Q,P410W Gene fragment, promoter P trc Then design of the downstream primer of the upstream homology arm and purF K326Q,P410W In the upstream primer of the gene, terminator T trc Then design of the upstream primer and purF at the downstream homology arm K326Q,P410W In the downstream primer of the gene. Fusion of the fragments by means of overlap PCR to obtain purF K326Q,P410W Integration fragment of gene(upstream homology arm-P) trc -purF K326Q,P410W -T trc Downstream homology arms), the DNA fragment containing the target sequence used for constructing pGRB-yeeP was prepared by annealing the primers gRNA-yeeP-S and gRNA-yeeP-A. The recombinant fragment and plasmid pGRB-yeeP are electrically transferred to competent cells of INO2-6, and the plasmid is eliminated after positive strains are screened to obtain the strain INO2-7.purF (PurF) K326Q,P410W Construction of the integration fragment and PCR-verified electrophoresis of the positive strain are shown in FIG. 2G. Wherein the upstream homology arm has a length of 618 bp and purF K326Q,P410W The length of the gene fragment is 1641bp, the length of the downstream homology arm is 576bp, and the total length of the integration fragment is 2704bp. When the PCR is verified, the length of the PCR amplified fragment of the positive bacterium is 2704bp, and the length of the PCR amplified fragment of the original bacterium is 1396bp.
2.2.2 PRPP transamidase mutant Gene purF of B.subilis W168 D293V,K316Q,S400W Integration at the yeeP gene locus of E.coli INO 2-6:
designing an upstream homology arm primer (UP-yeeP-S, UP-yeeP-A) and a downstream homology arm primer (DN-yeeP-S, DN-yeeP-A) according to the upstream and downstream sequences of the yeeP gene by taking the E.coli MG1655 genome as a template, and amplifying the upstream and downstream homology arm fragments by PCR; based on B.subtilis W168 genome, purF is obtained by chemical synthesis method D293V ,K316Q,S400W Gene according to purF D293V,K316Q,S400W Gene design primer (bsuF-S, bsuF-Sub>A), amplification of purF D293V ,K316Q,S400W Gene fragment, promoter P trc Then design of the downstream primer of the upstream homology arm and purF D293V,K316Q,S400W In the upstream primer of the gene, terminator T trc Then design of the upstream primer and purF at the downstream homology arm D293V,K316Q,S400W In the downstream primer of the gene. Fusion of the fragments by means of overlap PCR to obtain purF D293V,K316Q,S400W Integration fragment of Gene (upstream homology arm-P trc -purF D293V,K316Q,S400W -T trc Downstream homology arms), the DNA fragment containing the target sequence used for constructing pGRB-yeeP was prepared by annealing the primers gRNA-yeeP-S and gRNA-yeeP-A. Electrotransformation of the recombinant fragment and plasmid pGRB-yeeP into competent cells of INO2-6, screening of positive strains and plasmid eliminationExcept that strain INO2-8 was obtained. purF (PurF) D293V,K316Q,S400W Construction of the integration fragment and PCR-verified electrophoresis of the positive strain are shown in FIG. 2H. Wherein the upstream homology arm has a length of 618 bp and purF D293V,K316Q,S400W The length of the gene fragment is 1554bp, the length of the downstream homology arm is 576bp, and the total length of the integration fragment is 2617bp. During PCR verification, the length of the PCR amplified fragment of the positive bacteria is 2617bp, and the length of the PCR amplified fragment of the original bacteria is 1396bp.
2.2.3 mutant PRPP transamidase Gene purF of Bacillus amyloliquefaciens TA208 K316Q Integration at the yeeP gene locus of E.coli INO 2-6:
Designing an upstream homology arm primer (UP-yeeP-S, UP-yeeP-A) and a downstream homology arm primer (DN-yeeP-S, DN-yeeP-A) according to the upstream and downstream sequences of the yeeP gene by taking the E.coli MG1655 genome as a template, and amplifying the upstream and downstream homology arm fragments by PCR; purF is obtained by chemical synthesis based on Bacillus amyloliquefaciens TA208 genome K316Q Gene (SEQ ID NO: 2) according to purF K316Q Gene design primer (bazF-S, bazF-A), amplification purF K316Q Gene fragment, promoter P trc Then design of the downstream primer of the upstream homology arm and purF K316Q In the upstream primer of the gene, terminator T trc Then design of the upstream primer and purF at the downstream homology arm K316Q In the downstream primer of the gene. Fusion of the fragments by means of overlap PCR to obtain purF K316Q Integration fragment of Gene (upstream homology arm-P trc -purF K316Q -T trc Downstream homology arms), the DNA fragment containing the target sequence used for constructing pGRB-yeeP was prepared by annealing the primers gRNA-yeeP-S and gRNA-yeeP-A. The recombinant fragment and plasmid pGRB-yeeP are electrically transferred to competent cells of INO2-6, and the plasmid is eliminated after positive strains are screened to obtain the strain INO2-9.purF (PurF) K316Q Construction of the integration fragment and PCR-verified electrophoresis of the positive strain are shown in FIG. 2I. Wherein the upstream homology arm has a length of 618 bp and purF K316Q The length of the gene fragment is 1552bp, the length of the downstream homology arm is 576bp, and the total length of the integration fragment is 2615bp. During PCR verification, the length of the PCR amplified fragment of the positive bacteria is 2615bp, and the length of the PCR amplified fragment of the original bacteriaThe degree should be 1396bp.
3. Modifying inosine transport systems
The pbuE gene of Bacillus amyloliquefaciens TA was integrated at the yjiT pseudogene locus of e.coli INO 2-9:
designing an upstream homology arm primer (UP-yjiT-S, UP-yjiT-A) and a downstream homology arm primer (DN-yjiT-S, DN-yjiT-A) according to the upstream and downstream sequences of the yjiT gene by taking the E.coli MG1655 genome as a template, and amplifying the upstream and downstream homology arm fragments by PCR; the genome of Bacillus amyloliquefaciens TA was used as a template, and a primer (pfuE-S, pbuE-A) was designed based on the pfuE gene (SEQ ID NO: 1) to amplify the pfuE gene fragment. Promoter P trc Then the terminator T is designed in the downstream primer of the upstream homology arm and the upstream primer of the pfuE gene trc Then the design is in the upstream primer of the downstream homology arm and the downstream primer of the pfue gene. The above fragments are fused by overlapping PCR to obtain an integrated fragment of the pfue gene (upstream homology arm-P) trc -pbuE-T trc Downstream homology arms), the DNA fragment containing the target sequence used for constructing pGRB-yjiT was prepared by annealing the primers gRNA-yjiT-S and gRNA-yjiT-A. The recombinant fragment and plasmid pGRB-yjiT are electrotransformed into competent cells of INO2-9, and the plasmid is eliminated after positive strains are screened to obtain the strain INO3. Construction of the pbuE integration fragment and PCR-verified electrophoresis patterns of positive strains are shown in fig. 3. Wherein the length of the upstream homology arm is 373bp, the length of the pbue gene fragment is 1284bp, the length of the downstream homology arm is 530bp, and the total length of the integration fragment is 2108bp. During PCR verification, the length of the PCR amplified fragment of the positive bacterium should be 2108bp, and the length of the PCR amplified fragment of the original bacterium should be 1873bp.
4. Weakening an adenosine synthesis branch
Substitution of the purA Gene of E.coli MG1655 with the mutant PurA Gene of the adenosine succinate synthase of B.subtilis W168 P242N . The method comprises the following steps:
designing an upstream homology arm primer (UP-purA-S, UP-purA-a) and a downstream homology arm primer (DN-purA-S, DN-purA-a) according to the upstream and downstream sequences of the purA gene by taking the E.coli MG1655 genome as a template, and amplifying the upstream and downstream homology arm fragments by PCR; based on the B.subtilis W168 genome by chemical synthesispurA is obtained by the method P242N Gene (SEQ ID NO: 4) according to purA P242N Gene design primer (bsuA-S, bsuA-a), amplification purA P242N A gene fragment. The fragment is fused by an overlapping PCR method to obtain purA P242N Integration fragment of mutant Gene (upstream homology arm-purA P242N Downstream homology arms), the DNA fragment containing the target sequence used for constructing pGRB-purA was prepared by annealing the primers gRNA-purA-S and gRNA-purA-a. The recombinant fragment and plasmid pGRB-purA are electrically transferred to competent cells of INO3, and the plasmid is eliminated after positive strains are screened to obtain the strain INO4.purA (PurA) P242N Construction of the integration fragment and PCR verification of the positive strain are shown in FIG. 4. Wherein the length of the upstream homology arm is 515bp, purA P242N The length of the mutant gene fragment is 1337bp, the length of the downstream homology arm is 511bp, and the total length of the integrated fragment is 2275bp. During PCR verification, the length of the amplified fragment of the identification primer should be 1879bp, and the primordium should be free of bands.
5. The primers involved in the above construction are shown in the following table:
example 2: the experimental shake flask culture method for producing inosine by shake flask fermentation of strains INO2-6, INO2-7, INO2-8 and INO2-9 is as follows:
slant activation culture: inoculating the preserved strain at-80deg.C on the activated slant, culturing at 37deg.C for 12 hr, and passaging once again;
seed culture: scraping a ring of inclined seeds by an inoculating loop, inoculating the inclined seeds into a 500mL triangular flask filled with 30mL of seed culture medium, sealing a nine-layer gauze, and culturing at 37 ℃ for 7-10h at 200 rpm;
fermentation culture: inoculating into 500mL triangular flask (final volume of 30 mL) filled with fermentation medium according to inoculum size of 10-15% of seed culture solution volume, sealing nine layers of gauze, shake culturing at 37deg.C at 200r/min, and maintaining pH at 7.0-7.2 by adding ammonia water during fermentation; adding 60% (m/v) glucose solution to maintain fermentation; the fermentation period is 24 hours.
Slant culture medium: glucose 1-5g/L, peptone 5-10g/L, yeast powder 1-5g/L, beef extract 5-10g/L, adenine 0.1-0.3g/L, naCl 1-2.5g/L, agar 15-20g/L, and water in balance, and pH 7.0-7.2.
Seed culture medium: : 15-30g/L glucose, 1-5g/L yeast powder, 1-3g/L peptone, 0.1-0.3g/L adenine and KH 2 PO 4 ·3H 2 O 0.1-1.2g/L,MgSO 4 ·7H 2 O 0.1-0.5g/L,FeSO 4 ·7H 2 O 2-10mg/L,MnSO 4 ·H 2 O 2-10mg/L,V B1 、V B3 、V B5 、V B12 And V H 0.1-1mg/L each, 2 drops of defoamer, and the balance of water, and the pH is 7.0-7.2.
Fermentation medium: 15-25g/L glucose, 1-4g/L yeast powder, 1-5g/L peptone, 0.1-2g/L sodium citrate, 0.1-0.3g/L adenine and KH 2 PO 4 ·3H 2 O 0.1-2g/L,MgSO 4 ·7H 2 O 0.1-2g/L,FeSO 4 ·7H 2 O 5-20mg/L,MnSO 4 ·H 2 O 5-20mg/L,V B1 、V B3 、V B5 、V B12 And V H 0.1-2mg/L each, 2 drops of defoamer, the balance of water, and pH 7.0-7.2.
Shaking the flask fermentation result:
respectively overexpressing purF by taking INO2-6 as an initial strain K326Q,P410W 、purF D293V,K316Q,S400W 、purF K316Q After mutation of the genes, strains INO2-7, INO2-8, INO2-9 were obtained. Shake flask fermentation results (fig. 5), OD of three strains 600 The inosine yield is improved to different degrees without obvious change. Wherein the yield of the inosine of INO2-9 is highest and reaches 1.3g/L, and is improved by 85.7 percent compared with INO 2-6. INO2-7 increased 14.3% and 71.4% compared to INO2-8 inosine yield, respectively, for INO2-6. We speculate that Bacillus amyloliquefaciens TA208 derived PurF K316Q The mutant (the amino acid sequence is shown as SEQ ID NO: 6) has better feedback effect, and further brings the highest inosine yield.
Example 3: experiment for producing inosine by fermenting INO4 on 5-L tank
The fermentation tank culture method comprises the following steps:
slant activation culture: inoculating the preserved strain at-80deg.C on the activating slant, culturing at 37deg.C for 12 hr, and transferring to eggplant bottle for continuous culture for 12-16 hr;
seed culture: taking a proper amount of sterile water in an eggplant-shaped bottle, inoculating the bacterial suspension into a seed culture medium, stabilizing the pH at about 7.0, stabilizing the temperature at 37 ℃, and culturing until the dry weight of cells reaches 5-6g/L with dissolved oxygen between 25 and 35%;
Fermentation culture: inoculating fresh fermentation medium according to 15-20% inoculum size, starting fermentation, controlling pH at 7.0, maintaining temperature at 35deg.C, and dissolving oxygen at 25-35%; after the glucose in the medium was consumed, 80% (m/v) glucose solution (containing 1g/L adenine) was fed in, and the glucose concentration in the fermentation medium was maintained at 0.1-2g/L.
Slant culture medium: glucose 1-5g/L, peptone 5-10g/L, yeast powder 1-5g/L, beef extract 5-10g/L, adenine 0.1-0.3g/L, naCl 1-2.5g/L, agar 15-20g/L, and water in balance, and pH 7.0-7.2.
Seed culture medium: : 15-30g/L glucose, 1-5g/L yeast powder, 1-3g/L peptone, 0.1-0.3g/L adenine and KH 2 PO 4 ·3H 2 O 0.1-1.2g/L,MgSO 4 ·7H 2 O 0.1-0.5g/L,FeSO 4 ·7H 2 O 2-10mg/L,MnSO 4 ·H 2 O 2-10mg/L,V B1 、V B3 、V B5 、V B12 And V H 0.1-1mg/L each, 2 drops of defoamer, and the balance of water, and the pH is 7.0-7.2.
Fermentation medium: 15-25g/L glucose, 1-4g/L yeast powder, 1-5g/L peptone, 0.1-2g/L sodium citrate, 0.1-0.3g/L adenine and KH 2 PO 4 ·3H 2 O 0.1-2g/L,MgSO 4 ·7H 2 O 0.1-2g/L,FeSO 4 ·7H 2 O 5-20mg/L,MnSO 4 ·H 2 O 5-20mg/L,V B1 、V B3 、V B5 、V B12 And V H 0.1-2mg/L each, 2 drops of defoamer, the balance of water, and pH 7.0-7.2.
Fed-batch fermentation results in 5L fermentor: as shown in FIG. 6, the strain grew rapidly at the initial stage of fermentation at an OD of 16h 600 The value reaches a maximum and then gradually decreases. The inosine keeps higher synthesis rate within 12-32 hours, the yield within 48 hours reaches 20.16g/L, and the sugar acid conversion rate and the production strength reach 0.114g/g glucose and 0.42g/L/h respectively.
Although the present invention has been described with reference to preferred embodiments, it is not intended to be limited to the embodiments shown, but rather, it will be understood by those skilled in the art that various changes, modifications, substitutions and alterations in form and details can be made therein without departing from the spirit and principles of the invention, the scope of which is defined by the appended claims and their equivalents.
SEQUENCE LISTING
<110> university of Tianjin science and technology
<120> a genetically engineered strain for producing inosine, construction method and application thereof
<160> 6
<170> PatentIn version 3.5
<210> 1
<211> 1161
<212> DNA
<213> Bacillus amyloliquefaciens TA208
<400> 1
atgaatttca aagtatttct gcttgcagca tctactattg cagtcggatt ggttgaatta 60
attgtgggcg gtattctccc gcaaatcgct tccgacttag acatatcgat cgtcagcgcc 120
gggcagctga tcagcgtgtt cgcgctcggt tacgcggtat caggccctct gcttttggca 180
gtgacggcaa aagctgaacg aaagcggctt tatttaatcg cactttttgt tttcttcctg 240
agtaatctgg tcgcttactt cagtcccaat ttcgccgtac ttatggtgtc acgagtgctc 300
gcttccatga gcacagggct gattgtcgtc ctttctttaa cgattgctcc taaaatcgtg 360
gcgccggaat acagagcgcg ggcgatcggc atcattttca tgggcttcag ctccgcaatc 420
gctttaggcg tgcctgtcgg cattatcatc agcaatgcct tcggatggcg cgtgctgttt 480
ttgggaatcg gcgtattatc tctggtttcc atgctgatta tcagcgtctt ttttgaaaaa 540
atacctgctg aaaaaatgat cccgttccgt gagcagatta aaacgattgg gaacgccaag 600
attgccagcg cgcatcttgt taccttattt acattggcgg ggcattacac actatatgcc 660
tactttgcgc cttttttgga aacaacgctt catttgagtt ctgtttgggt cagtgtatgc 720
tactttttgt tcggcctgtc agcggtatgc ggcggcccgt tcggaggctg gctgtatgac 780
cgtttaggat catttaaaag catcatgctt gtgaccgttt ctttcgcttt gatcctgttt 840
atccttccgc tgtcaacggt ttctttaatc gttttcctgc ctgcgatggt catttgggga 900
ttgctcagct ggagccttgc gccggcgcag caaagctatt tgatcaaaat cgcgcctgag 960
tcttccgata ttcagcaaag cttcaatacg tccgctttgc aaatcggcat tgcgctcggg 1020
tcagccatcg gcggcggcgt gatcggacaa acgggttctg tcacagcaac cgcctggtgc 1080
ggcggtttga ttgtcattat cgcagtcagc ttagccgtat tctctttaac gagacccgct 1140
ttgaaaagaa aatccgcata a 1161
<210> 2
<211> 1431
<212> DNA
<213> artificial sequence
<400> 2
atgcttgctg aaatcaaagg cctgaatgaa gaatgcggtg tgtttggcat ctgggggcat 60
gaagaggctc cgcagattac gtattacggc ctgcacagcc tgcagcacag agggcaggag 120
ggcgccggca tcgtggcgac cgacggccaa aaactgacgg ctcataaagg gcaggggctt 180
attaccgagg tttttcaaaa cggcgaactg agcaaagtga aaggcaaagg cgcgatcggt 240
cacgtccgct atgcgacggc cggcggcggc ggatatgaaa atgtccagcc gctcctgttc 300
cgttcgcaaa acaacggcag tctcgcgctc gcccataacg gcaacctggt caatgccaca 360
caattgaaac agcagcttga aaaccaaggg agcatctttc agacttcctc cgatacggaa 420
gtgctggctc atctgattaa acgcagcggc cacttttcac tgaaggatca gatcaaaaat 480
tcgctatcca tgctgaaagg cgcttacgcc tttttaatca tgacagaaac agaaatgatt 540
gtagcgcttg acccgaacgg actcagaccg ctttcactcg gcatgctcgg cgacgcttac 600
gtcgtcgcat cagaaacatg cgcatttgat gtggtcggcg ccacgtacct tcgtgacgta 660
gaaccgggcg aaatgcttat cataaacgat gaaggcttga aatcagagcg tttctccatg 720
aatatcaacc gttctatctg cagcatggag tatatctatt tttcccgtcc ggacagcaat 780
atcgacggca ttaacgtgca cagcgcccgg aagagcctcg ggaaaatgct tgcccaagag 840
tccgctgttg aagcggatgt cgtcacaggc gtgcctgatt ccagtatttc cgcggccatc 900
ggctatgccg aggcaacggg cattccgtac gaactcggtc tcattcaaaa ccgttacgtc 960
ggcagaacgt ttatccagcc gtctcaagct cttcgtgagc aaggagtaag aatgaagctg 1020
tccgccgtcc gcggtgttgt tgaaggaaaa cgggtcgtca tggttgatga ttccatcgtg 1080
cgcgggacga caagccgccg gatcgtcaca atgctccgag aagcgggagc gacagaggtg 1140
catgtaaaga tcagttcgcc tccgatcgcc catccttgct tctacggcat cgacacatca 1200
acccatgagg agctgatcgc ttcctcgcat tcagtggaag aaatccgcca gattatcggc 1260
gccgacacgc tttctttctt aagtgtagac ggattgttaa aaggagtcgg ccgaaaattt 1320
gaagacacca attgcggaca atgcctcgct tgttttacgg gcaaatatcc gacggaaatt 1380
tatcaggata cagtgcttcc tcacgtaaaa gaagcagtgc tgacaaaata a 1431
<210> 3
<211> 12797
<212> DNA
<213> artificial sequence
<400> 3
atgcagccgc tagcaggaat catcatggga agcacctccg attgggagac aatgaaacat 60
gcatgcgaca tacttgacga acttcacatt ccttatgaaa aacaggtggt atccgcgcat 120
cggacgcctg atttgatgtt tgaatatgca gaaagcgcca ggagcagagg cttaaaagtc 180
attattgccg gagccggagg agcggcgcat ctgccgggaa tgacggcggc caaaacgaca 240
ctgccggtga tcggtgttcc ggttcagaca aaatcgctta acgggcttga ttctcttttg 300
tctatcgtac agatgcccgg cggcgtgccg gtcgcgacga cagcgatcgg aaaagcgggc 360
gcagtgaacg cgggtctgtt agccgcgcaa attttgtcgg catttgacga tgacattgcg 420
gataaactag aggcgagaag aaatgcgaca aaacaaacgg tgctggaaag cagtgatcag 480
cttgtctgat aaaaaaacga tttttcccgg cgccgtcatc ggcattatcg gaggcggaca 540
gctcggaaaa atgatggctg tcgccgcaaa acagatgggg tataaagtcg cagtcgtcga 600
tcccgtaaaa gactcgccat gcggacagat cgccgatatt gagattaccg cccagtacaa 660
tgaccgtgaa gcgattcaaa aattggccgg agtcagtgac atcattacct acgaatttga 720
aaatatcgat tacgaggcgc tcaactggct caaagaacat gcatatcttc cccagggaag 780
cgagctgctg ctcatcaccc aaaacaggga aacggaaaaa aaggcgatcc agtcagccgg 840
atgtcaggtc gctccttatc ggatcgtaaa cagcagacgg gagcttgagg aagccgttca 900
gtcattgggt cttccggcgg tgctgaaaac atgccggggc ggatatgacg gcaaaggtca 960
atttgtcatt aaggaagaag gacagacaga tgaagcggcc gcactgttag aaaacggcgc 1020
gtgcatactt gaaagctggg tgtcattccg aatggagctt tccgttatcg tgacgagatc 1080
ggtgcacgga gagatttcaa cctttcccgc tgctgaaaat atccaccacc ataatattct 1140
gttccaaagc atcgtgcccg cgagagcgga ggaaacggtt caaaagcggg cagaggcgct 1200
tgccgttcag ctcgcggaga aactggagct cgtcgggccg cttgcggtgg aaatgttcgt 1260
cacggaagac ggagaccttt tgattaatga attggcgccg cgtcctcaca attcagggca 1320
ttatacgctc gatctttgtg aaacgagcca gttcgaacag cacatcagag cggtctgcgg 1380
acttcctctc ggcagaaccg atctgcttaa accgggaatg atggtgaatc ttctcggtga 1440
cgaagtgaag ctggcggagg agcatacgga gcttttaaag gaagccaaac tgtacctgta 1500
cggaaaacat gagattaaaa aaggccgcaa aatggggcat atgacatttt tgcgggagcc 1560
tgatgaaaaa tggattcagg acatcacgaa catatggatg aaaagagacg gaggacgagc 1620
ataatgatcg aacgttattc aagacctgaa atgtccgcga tctggacgga cgaaaacaga 1680
taccaggcat ggctggaagt cgagatttta gcctgtgaag cctgggctga acttggcgtc 1740
attccgaaag aagacgtcaa agtcatgcga gaaaacgcgt ctttcgacat taaccgcatt 1800
ttagaaatcg agcaggatac gcgccatgac gtcgtggcat tcacacgcgc ggtttcagaa 1860
tcattgggcg aagaaagaaa atgggttcac tacggcctga cgtcaacaga tgtcgtggat 1920
accgctcttt cctatctatt aaaacaggcg aatgagattt tactcaagga cattgagaga 1980
tttgttgaca ttataaaaga aaaagcgaaa gaacataaat acacggtcat gatgggccgc 2040
acacacggcg tacacgcaga accaacgaca ttcggcctga agctcgcgct gtggcacgaa 2100
gaaatgaaac gcaaccttga acgtttcaag caggcaaaag aaggaatcga agtcgggaag 2160
ctttccggag cggtcggcac atatgcaaat attgatccgt tcgtagagca gtatgtctgt 2220
gaaaaactcg gcctgaaagc ggcgccgatc tccactcaga cattacagcg cgaccgtcat 2280
gcggattaca tggcggcact tgccctgatc gcgacgagca ttgaaaaatt cgcagtggaa 2340
atccgcggtc tgcaaaagag tgaaacacgg gaagtggaag agttttttgc aaaaggacaa 2400
aaaggctcat cagctatgcc acataaacgg aatccgatcg ggtctgaaaa tatgacgggg 2460
atggcgcgcg tgatccgcgg atacatgctg acggcatacg aaaatgttcc gttatggcat 2520
gagcgtgata tttctcattc atcagctgag cgcatcattc ttcctgacgc gacaaccgcg 2580
ctgaattaca tgctgaaccg tttcagcaat atcgtcaaaa acttaacggt attcccggaa 2640
aatatgaaac gcaacatgga ccgcacactg ggtctaatct attctcagcg cgtgctgctc 2700
gctttaattg acacgggtct gcctcgtgaa gaagcatatg acacggttca gccgaaagcg 2760
atggaagcgt gggaaaaaca agtgccgttc cgtcagcttg tcgaagcgga ggaaaaaatc 2820
acgtcccgtc ttacaccgga acagattgcc gattgctttg actacaatta tcatttgaaa 2880
aacgtcgact tgatctttga tcgtttaggt ttatagaaga agccagccgg aggcggcttc 2940
ttcagccgcc atagattgaa tattcccaac attcgggtta ggaggccttc cgtgaatatt 3000
gtgaaaagta atcttcttta tgaaggaaaa gcgaaacgaa tttatcaaac tgaggacgaa 3060
cagattctcc gtgtggtcta caaggattcc gcaacagcct ttaacggcga gaaaaaagcg 3120
gagatcactg gaaagggccg tctgaacaat gaaatttcaa gcctgatctt caaacatctg 3180
cacgccaaag gaattgacaa ccattttgtg gagcgtgttt cagaatcaga gcagcttatc 3240
aaaaaagtaa gcatcgttcc gcttgaagtc gtggtcagaa acattgccgc cggaagcatg 3300
tcgaaacgcc tcggcatccc ggaaggaaca gagcttccgc agccgattat cgaattttac 3360
tataaagatg acgcactcgg tgatccgctc ataaccgaag atcatatctg gctgttaaaa 3420
gcagcttcat ccgaacaggt ggaaacgatc aaatcaatta caagacaggt gaataaagag 3480
ctgcagctta tttttgaaga ctgcggtgtc agattaatag attttaagct ggaattcggc 3540
ttagacgcag agggacgggt gcttttagcg gatgagattt ctcctgacac gtgccgtctg 3600
tgggacaaag acacgaacga aaagctcgat aaagatttgt tcagacggaa cctgggaagc 3660
ttaaccgacg catatgaaga gattttcaaa agactgggag gcatttcata atgtataaag 3720
tgaaagttta tgtcagctta aaagaaagtg tgcttgatcc tcaaggaagc gcggtgcagc 3780
atgcattgca cagcatgacc tacaatgaag tgcaggatgt gcgcatcgga aaatacatgg 3840
agctgacgct ggaaaaatca gaccgcgatc ttgatgaact cgtgaaagaa atgtgtgaga 3900
agctccttgc caatacagtc attgaagact accgatatga agttgaggag gttgtcgcac 3960
agtgaaattt gcggtgattg tgttaccagg ctctaactgc gatattgata tgtatcacgc 4020
cgtaaaggac gaactcggcg aagaagtgga gtatgtctgg cacgaggaaa caagccttga 4080
cggatttgac ggcgtgctca tccccggcgg cttttcttac ggcgactacc tgagatgcgg 4140
cgccatcgcc agattcgcca acatcatgcc ggccgtgaaa aaagcggctg ctgaaggaaa 4200
accggttctc ggcgtctgca acggattcca gattttgcag gagctcggtc tgctgcccgg 4260
cgccatgaga cgcaataaag atttaaaatt catttgccgc ccggttgaat taatcgtgca 4320
gaacggtgaa acaatgttca cttcttccta caaagaggga caatcaatta cgattcccgt 4380
tgcccacggc gaaggcaatt tctactgtga tgacgaaacg cttgaaagat taaaagaaaa 4440
caatcaaatc gctttcacat acggcggcga tattaacgga agcgtcagcg gcattgccgg 4500
cgtcgtgaat gagaaaggca acgtattagg catgatgcct cacccggagc gcgcggtcga 4560
tgaactgctc ggcagcgcag acggtcttac attgttccag tctatcgtga aaaattggag 4620
ggaaattcat gtcgctactg cttgaaccaa gtaaagaaca aataaaagaa gagaaactct 4680
atcagcaaat gggtgtcagt gatgacgagt tcgcactcat tgaatctatt atcggaagat 4740
tgccaaacta cacggaaatc gggatttttt ccgtgatgtg gtcagagcac tgcagctata 4800
aaaattctaa gccgatttta cgcaaattcc cgacaagcgg cgaacgcgtg ctgcaaggtc 4860
ccggggaagg cgcggggatc gttgacatcg gtgacaatca ggcggttgtg ttcaaaattg 4920
aatcgcataa ccacccgtca gcgcttgagc cataccaggg tgctgcgacg ggagtgggcg 4980
gcatcatccg tgacgttttc tcaatgggcg cccgtccgat agctgtatta aactctcttc 5040
gatttggtga actcacttca ccgcgtgtga agtacttgtt tgaagaagta gtggctggaa 5100
tcgcgggata cggaaactgt atcggcattc cgacggtcgg cggggaagtt cagtttgacg 5160
caagctatga gggcaatccg cttgtcaatg ccatgtgcgt cggcctaatt gatcataagg 5220
atattaaaaa aggccaggcg aaaggtgtcg gcaacacggt tatgtacgtc ggcgctaaga 5280
cgggacgcga cggcattcac ggcgctactt tcgcatcaga agaaatgtca gattcatctg 5340
aagaaaaacg ctccgcggtg caggtcggcg atcctttcat ggaaaagctt cttcttgaag 5400
cctgcctgga agtcatccag tgcgacgcgt tagtcggcat tcaggatatg ggagcggccg 5460
gtctgacaag ttcaagcgct gaaatggcaa gtaaagccgg atcaggcatt gaaatgaacc 5520
ttgatctcat tccgcagcgg gaaacgggta tgaccgctta tgaaatgatg ctttccgaat 5580
ctcaggaacg catgcttctc gttattgaac gcgggcgtga acaggaaatt gtcgatattt 5640
ttaataaata tgatcttgaa gcggtttccg tgggtcatgt cacggatgat aaaatgctcc 5700
gcctccgcca taacggagag gttgtttgcg agcttccggt tgacgcgctg gcggaagaag 5760
cccctgtata tcataagccg tcagcagaac ccgcgtacta ccgcgagttt caggaaactg 5820
aagttcccgc gcctgaagta aaagacgcga cagagacgct ttttgccctg ctgcagcagc 5880
cgacaattgc gagcaaagag tgggtgtacg atcaatatga ttacatggtg cgcacgaaca 5940
cggtggtggc tccgggctct gacgcgggag tgctcagaat ccgcggcacg aaaaaggcgc 6000
tggcaatgac gacggattgc aacgcccgct atttgtatct cgatcctgaa gaaggcggaa 6060
aaatcgccgt tgccgaagcg gcgcgcaaca tcgtttgctc cggtgccgag ccgcttgcgg 6120
tcacggataa tctgaatttc ggaaacccgg aaaaacctga aattttctgg cagatcgaaa 6180
aagcggccga cggcatcagc gaggcatgca atgttctcag cacacctgtc atcggcggaa 6240
acgtatcact ttataatgaa tcgaacggaa cggccatcta tccgacgccg gtcatcggta 6300
tggtcgggtt aatcgaagat acggctcata ttacgacaca gcatgtcaaa gcggcgggag 6360
acttgattta cgtcatcggt gaaacgaagc ctgagtatgc aggaagtgaa cttcagaaaa 6420
tgactgaagg gaaaatctat ggcaaagcgc ctgaaattga tcttgacgtt gaaaaagccc 6480
gccaaacatc gcttctgaac gccattaaac aaggtctggt ccaatctgcg catgacgtgt 6540
cagaaggcgg attgggtgtg gcgattgcag aaagcgtcat gacgacagac ggactcggcg 6600
caaacatcac ggcatttaat gaagcggctc ttttgttcag tgagtctcaa tcccgcttcg 6660
tcgtttccgt aaaggaagaa aacaaggcgg cgtttgaagc ggctgcggca gatgccgttc 6720
atatcggtga agtgacaggg gacggacagt tgacgatccg aagccaagaa ggacaacaat 6780
tggttcacgc gcaaacgaaa gaacttgagc gcgcgtggaa aggagctatt ccatgcttgc 6840
tgaaatcaaa ggcctgaatg aagaatgcgg tgtgtttggc atctgggggc atgaagaggc 6900
tccgcagatt acgtattacg gcctgcacag cctgcagcac agagggcagg agggcgccgg 6960
catcgtggcg accgacggcc aaaaactgac ggctcataaa gggcaggggc ttattaccga 7020
ggtttttcaa aacggcgaac tgagcaaagt gaaaggcaaa ggcgcgatcg gtcacgtccg 7080
ctatgcgacg gccggcggcg gcggatatga aaatgtccag ccgctcctgt tccgttcgca 7140
aaacaacggc agtctcgcgc tcgcccataa cggcaacctg gtcaatgcca cacaattgaa 7200
acagcagctt gaaaaccaag ggagcatctt tcagacttcc tccgatacgg aagtgctggc 7260
tcatctgatt aaacgcagcg gccacttttc actgaaggat cagatcaaaa attcgctatc 7320
catgctgaaa ggcgcttacg cctttttaat catgacagaa acagaaatga ttgtagcgct 7380
tgacccgaac ggactcagac cgctttcact cggcatgctc ggcgacgctt acgtcgtcgc 7440
atcagaaaca tgcgcatttg atgtggtcgg cgccacgtac cttcgtgacg tagaaccggg 7500
cgaaatgctt atcataaacg atgaaggctt gaaatcagag cgtttctcca tgaatatcaa 7560
ccgttctatc tgcagcatgg agtatatcta tttttcccgt ccggacagca atatcgacgg 7620
cattaacgtg cacagcgccc ggaagagcct cgggaaaatg cttgcccaag agtccgctgt 7680
tgaagcggat gtcgtcacag gcgtgcctga ttccagtatt tccgcggcca tcggctatgc 7740
cgaggcaacg ggcattccgt acgaactcgg tctcattcaa aaccgttacg tcggcagaac 7800
gtttatccag ccgtctcaag ctcttcgtga gcaaggagta agaatgaagc tgtccgccgt 7860
ccgcggtgtt gttgaaggaa aacgggtcgt catggttgat gattccatcg tgcgcgggac 7920
gacaagccgc cggatcgtca caatgctccg agaagcggga gcgacagagg tgcatgtaaa 7980
gatcagttcg cctccgatcg cccatccttg cttctacggc atcgacacat caacccatga 8040
ggagctgatc gcttcctcgc attcagtgga agaaatccgc cagattatcg gcgccgacac 8100
gctttctttc ttaagtgtag acggattgtt aaaaggagtc ggccgaaaat ttgaagacac 8160
caattgcgga caatgcctcg cttgttttac gggcaaatat ccgacggaaa tttatcagga 8220
tacagtgctt cctcacgtaa aagaagcagt gctgacaaaa taaagtctga aaatgatata 8280
aaggcagcgc gatttcaggc tgcctttctc tttctgcctt ttgaggagaa acgaattgac 8340
aaggagtgat agggatgtct gatgcttata aaaatgccgg agttgacatt gaagccggat 8400
atgaagccgt caaacgaatg aaaaaacatg tggagcgcac gaaaaggctc ggcgttatgg 8460
gaagcttggg cggttttggc ggaatgtttg atctgtcaga gctcccgtat caaaagcctg 8520
ttttaatttc cggaacagac ggtgtcggca ccaagctgaa actcgctttt tcaatggata 8580
agcatgacac gatcggcgta gatgcggtgg cgatgtgtgt aaatgatgtg ctcgcccaag 8640
gagcggagcc gctgtttttc cttgattatt tagcagtcgg caaggccgat ccggtaaaaa 8700
ttgagcagat cgttcagggc gtggcagatg gctgcgagca gtcaggatca gcgcttatcg 8760
gcggtgagac ggcggaaatg ccggggctct atacggctga tgaatacgat attgccggct 8820
tttcagtcgg agtcgcggaa aaagacgaaa tcgtcaccgg tgaacatatc gaagaggggc 8880
atctcttaat cggacttact tcaagcggcc ttcacagcaa cggattttcc cttgtgagaa 8940
aggtgcttct tgatgacggc ggacttgatt tggatactgt ctatgaaccc ttcgcgcggc 9000
cgctcggaga agaattgctg gaaccgacga gaatatatgt gaagccggtg cttgaagcgg 9060
tgaaaagcgg taaggtggac ggcatggcgc atgtgacagg cggaggattc atcgagaaca 9120
ttccgcggat gctgccggac ggattgagcg cggaaattga tcacgggtca tggccgatcc 9180
cgccgatttt tccgtttttg caggagcacg gcaagctgaa agaagaagaa atgttcaacg 9240
tctttaacat gggcatcggt tttgtccttg ccgttaaaga agaaaacctg acagacgtca 9300
tcgacacgct tgaagctaag ggcgagaagg cttatttgat cgggcgggtc aagcagggcg 9360
aaggcatttc tttcggcggt gcggctcttt catgaaaaaa tttgcagtat ttgcttcagg 9420
aaacggatcg aacttcgagg ccattgccaa acgcatgaga gaagagaagt gggacgcgga 9480
gctatcgctt ctcgtgacgg acaagcctca ggcgaaggcg gtggaaaggg ccgaggcttt 9540
acaaatcccg tcattcgcct ttgaaccgtc agcttttgaa aacaaggccg cctttgaacg 9600
ggccattatt gagcagcttc gccttcacgg ggttgaatta atcgttctcg ccggctatat 9660
gagactgatc ggagatacgc tgcttgaagc atacggaggc aggattatca atatacatcc 9720
gtcgcttctc ccggcgtttc cgggcattga cgctgtcgga caagcgcatc gtgccggtgt 9780
gaaagtggcg ggcattaccg ttcattacgt cgacgaaggc atggacaccg gaccgattat 9840
cgcgcaaaaa gcattcgaga tacaggaaaa cgatacgctt gaagatatgg aacatacaat 9900
acacgagctt gagcacaaat ggtatccgag cgttgtgaaa cagctgctgg gactaaataa 9960
cagaggtgaa aaggcatgac aatcaaacgc gcactaatca gtgtttctga taaaacaaat 10020
cttgtacctt tcgtaaagga actgacagag ctcggcgtcg aagtcatttc gaccggagga 10080
acaaaaaaac ttctccagga aaacggtgtg gatgtcatcg gcatttcgga agtgactgga 10140
tttcctgaaa ttatggacgg acggttaaaa acgctccatc ctaatattca cggcggcctg 10200
cttgccgtaa gagacaatga agagcatatg gcgcagatca atgaacacgg cattgcaccc 10260
attgatcttg tggtcgtcaa cctttacccg tttaaagaaa cgatttcaaa agaagacgta 10320
acatacgatg aagcgataga aaacattgat atcggcggtc ccggcatgct gcgcgccgca 10380
tcgaaaaacc atcaggatgt gacggtcatc acggacccgg ccgattacag ctccgtgctc 10440
aatgagatta aagaatacgg cggcgtttcg cttaaaagaa aacgcgagct tgcggccaaa 10500
gtattccgcc acaccgcggc atacgacgca ttaattgctg attacttaac acacgaggcc 10560
ggtgagaaag accctgagca attcaccgtt acatttgaga aaaaacaatc gctccgctac 10620
ggcgaaaacc ctcaccaaga ggctgttttc taccaaagcg cactgcctgt ctccggttcc 10680
attgcggcgg caaaacagct tcacggcaaa gagctttctt acaacaacat taaagacgcg 10740
gatgcggccg ttcaaatcgt ccgggaattt acagaacccg ccgctgttgc cgttaaacat 10800
atgaacccat gcggagtcgg tacgggagcc acaattgagg aagcgttcaa taaagcgtat 10860
gaagcggaca aaacgtccat tttcggcggc atcatcgcgc tcaaccgtga agttgatcag 10920
gcaacggccg aagcccttca cggcatcttt ttagaaatca tcatcgcccc ttctttcagt 10980
gaagaagcgc tgaatgtgct gacgtcgaag aaaaaccttc gtctgctcac gcttgacgtg 11040
aatgcagcag ggaagaaaga aaaacagctg acttccgtac agggcggcct tttgattcaa 11100
gatttagacg tgcacggatt tgatgacgca aaaatcagca ttccgacaaa aagagagccg 11160
agcgagcagg agtgggaaga tctgaagctg gcttggaaag tcgtcaaaca cgtgaaatca 11220
aacgcgatcg ttcttgcaaa agaccatatg acggtcggtg tgggtgcagg acagatgaat 11280
cgcgtcggtt cggccaaaat cgccatcgag caggccggag aaaaagcaaa aggcagcgcg 11340
ctcggatcag acgcgttttt cccgatgccg gatacagtcg aagaagccgc aaaagcgggc 11400
gtcacggcga tcatccagcc cggcggatcg gtccgcgacg aagattcaat taaaaaagcg 11460
gatgaatacg gcatcgccat ggtcttcaca ggcatcagac atttcaaaca ttaagggagg 11520
aacgaagcgt gaatgtattg attatcggta aaggcggcag agagcataca ttggcttgga 11580
aagcggcgca aagtccgctt actgacacgg tgtacgccgc gcccggaaat gacggtatgg 11640
cagactgcgc gacgctggtc agcatcgaag aaagcgatca tgccggactc attgcctttg 11700
cgaaagaaca tcatgtcggc ctgacgatta tcggtcccga ggttcctctc attgaaggga 11760
tagcggacga gtttgaaaaa gccggactcc ttgttttcgg gccgtccgaa caagcggcaa 11820
tcattgaagg aagcaaacag tttgcgaagg atttaatgaa aaaatacggt ataccgacgg 11880
cggagtatga gacgtttact tcatttgaag aggcgaaagc atatgtgcag cagaaaggcg 11940
cgccgattgt cattaaagcg gacgggcttg ccgccggaaa aggtgtgacg gtcgcgatga 12000
cggaagagga agcgattgaa tgccttcatg attttctcga ggatgagaaa ttcggcgagg 12060
cgagcgcatc cgtggtcatt gaagaatttc tcgccggtga agaattttcc ttaatggcgt 12120
ttgtaaaagg ggagaccgtc tatccgatgg tgatcgccca agaccataaa cgcgccttcg 12180
acggagacaa agggccgaat acgggcggaa tgggcgccta ctcaccggtg ccgcacattt 12240
ccgatgacat cgtcaaaagc gctgtcgaaa cgattgtgaa gccggcggca aaagctatgg 12300
tgaaagaggg acgctccttc acaggcgtgc tgtacgcggg gctgattctg acggaaaacg 12360
gatcaaaagt cattgaattc aacgcgcgct tcggtgatcc ggaaacacag gttgtggtgc 12420
cgagaatgga atcagacctc attcaggtgc ttttggatct gcttcatgag aaggatgttg 12480
acctaaggtg gaaggatacg gccgctgtca gcgttgtgct ggcttctgag ggctatcctg 12540
aaggctatgc gaaagggaca ccgatcggca gtttgacatc cgctgaagac gggatcgccg 12600
tttttcatgc cggaacgaaa aaagacggcg atcaatttgt cacaaacggc ggccgggtcg 12660
ccaatgtcac ggcatttgct gagacatttg aagaggcgag agataaagtg tacagcgccg 12720
tttccggtct gacaaaaccc ggactgtttt acagaagcga tatcggcgtc cgtgcgctga 12780
aagcatcgct gcgataa 12797
<210> 4
<211> 1293
<212> DNA
<213> artificial sequence
<400> 4
atgtcttcag tagttgtagt aggtacgcaa tggggcgatg aaggaaaagg taaaattaca 60
gatttcctat cagaaaatgc agaagtgatc gcccgttatc aaggcggaaa taacgcaggg 120
catacaatca agtttgacgg aatcacatat aagcttcact taatcccgtc tggaattttc 180
tataaggata aaacgtgtgt aatcggaaac ggaatggttg tagatccgaa agcattagtc 240
acagagcttg cgtatcttca tgagcgcaac gtgagtacag ataacctgag aatcagcaac 300
agagctcacg tcattctgcc gtatcatttg aaattggatg aagtggaaga agagcgtaaa 360
ggggctaaca agatcggcac aacgaaaaaa ggaatcggcc ctgcttacat ggataaagca 420
gcccgcatcg gaattcgcat cgcggatctg ttagaccgtg acgcgtttgc ggaaaagctt 480
gagcgcaatc ttgaagaaaa aaaccgtctt ctcgagaaaa tgtacgagac agaagggttt 540
aaacttgagg atatcttaga cgaatattat gagtacggac agcagattaa aaagtatgtt 600
tgcgatacat ctgttgtctt aaacgatgct cttgatgaag ggcgccgtgt attatttgaa 660
ggcgcacaag gggttatgct cgatatcgac caaggaacat acccgtttgt tacgtcatct 720
aacaatgttg ccggcggtgt cacgatcggt tctggtgtcg gcccgaccaa aatcaagcac 780
gttgtcggtg tatcaaaagc atatacgact cgtgtcggcg acggtccttt tccgactgag 840
ctgaaagatg aaatcggcga tcaaatccgt gaagtcggac gcgaatatgg aacaacaaca 900
ggccgcccgc gccgtgtcgg ctggtttgac agcgttgttg tccgccacgc ccgccgtgtg 960
agcggaatta cagatctttc tctgaactca attgacgtcc tagcaggaat tgaaacgttg 1020
aaaatctgtg tggcgtaccg ctacaaaggc gaaatcattg aagaattccc agcaagtctt 1080
aaggcacttg ctgaatgtga gccggtatat gaagaaatgc cgggctggac tgaggatatt 1140
acaggtgcga agagcttgag cgagcttccg gaaaatgcgc gccattatct tgagcgtgtg 1200
tctcagctga caggcattcc gctttctatt ttctctgtcg gtccagaccg ctcacaaaca 1260
aatgtccttc gcagtgtgta ccgtgcgaac taa 1293
<210> 5
<211> 74
<212> DNA
<213> artificial sequence
<400> 5
ttgacaatta atcatccggc tcgtataatg tgtggaattg tgagcggata acaatttcac 60
acaggaaaca gacc 74
<210> 6
<211> 476
<212> PRT
<213> artificial sequence
<400> 6
Met Leu Ala Glu Ile Lys Gly Leu Asn Glu Glu Cys Gly Val Phe Gly
1 5 10 15
Ile Trp Gly His Glu Glu Ala Pro Gln Ile Thr Tyr Tyr Gly Leu His
20 25 30
Ser Leu Gln His Arg Gly Gln Glu Gly Ala Gly Ile Val Ala Thr Asp
35 40 45
Gly Gln Lys Leu Thr Ala His Lys Gly Gln Gly Leu Ile Thr Glu Val
50 55 60
Phe Gln Asn Gly Glu Leu Ser Lys Val Lys Gly Lys Gly Ala Ile Gly
65 70 75 80
His Val Arg Tyr Ala Thr Ala Gly Gly Gly Gly Tyr Glu Asn Val Gln
85 90 95
Pro Leu Leu Phe Arg Ser Gln Asn Asn Gly Ser Leu Ala Leu Ala His
100 105 110
Asn Gly Asn Leu Val Asn Ala Thr Gln Leu Lys Gln Gln Leu Glu Asn
115 120 125
Gln Gly Ser Ile Phe Gln Thr Ser Ser Asp Thr Glu Val Leu Ala His
130 135 140
Leu Ile Lys Arg Ser Gly His Phe Ser Leu Lys Asp Gln Ile Lys Asn
145 150 155 160
Ser Leu Ser Met Leu Lys Gly Ala Tyr Ala Phe Leu Ile Met Thr Glu
165 170 175
Thr Glu Met Ile Val Ala Leu Asp Pro Asn Gly Leu Arg Pro Leu Ser
180 185 190
Leu Gly Met Leu Gly Asp Ala Tyr Val Val Ala Ser Glu Thr Cys Ala
195 200 205
Phe Asp Val Val Gly Ala Thr Tyr Leu Arg Asp Val Glu Pro Gly Glu
210 215 220
Met Leu Ile Ile Asn Asp Glu Gly Leu Lys Ser Glu Arg Phe Ser Met
225 230 235 240
Asn Ile Asn Arg Ser Ile Cys Ser Met Glu Tyr Ile Tyr Phe Ser Arg
245 250 255
Pro Asp Ser Asn Ile Asp Gly Ile Asn Val His Ser Ala Arg Lys Ser
260 265 270
Leu Gly Lys Met Leu Ala Gln Glu Ser Ala Val Glu Ala Asp Val Val
275 280 285
Thr Gly Val Pro Asp Ser Ser Ile Ser Ala Ala Ile Gly Tyr Ala Glu
290 295 300
Ala Thr Gly Ile Pro Tyr Glu Leu Gly Leu Ile Gln Asn Arg Tyr Val
305 310 315 320
Gly Arg Thr Phe Ile Gln Pro Ser Gln Ala Leu Arg Glu Gln Gly Val
325 330 335
Arg Met Lys Leu Ser Ala Val Arg Gly Val Val Glu Gly Lys Arg Val
340 345 350
Val Met Val Asp Asp Ser Ile Val Arg Gly Thr Thr Ser Arg Arg Ile
355 360 365
Val Thr Met Leu Arg Glu Ala Gly Ala Thr Glu Val His Val Lys Ile
370 375 380
Ser Ser Pro Pro Ile Ala His Pro Cys Phe Tyr Gly Ile Asp Thr Ser
385 390 395 400
Thr His Glu Glu Leu Ile Ala Ser Ser His Ser Val Glu Glu Ile Arg
405 410 415
Gln Ile Ile Gly Ala Asp Thr Leu Ser Phe Leu Ser Val Asp Gly Leu
420 425 430
Leu Lys Gly Val Gly Arg Lys Phe Glu Asp Thr Asn Cys Gly Gln Cys
435 440 445
Leu Ala Cys Phe Thr Gly Lys Tyr Pro Thr Glu Ile Tyr Gln Asp Thr
450 455 460
Val Leu Pro His Val Lys Glu Ala Val Leu Thr Lys
465 470 475
Claims (5)
1. An escherichia coli genetic engineering strain, which is characterized in that:the genetically engineered strain takes E.coli MG1655 as an original strain, and SEQ ID NO:1, integrating the nucleoside transporter gene pfue shown in SEQ ID NO:2, PRPP transamidase mutant gene purF shown in the specification K316Q Integration at the yeeP pseudogene locus, SEQ ID NO:3, purEKBCSQLF as purine operon mutant gene K316Q MNHD is integrated at the yghE pseudogene locus, replacing the adenosine succinate synthase gene purA with SEQ ID NO:4, and the mutant gene purA shown in FIG. 4 P242N And knocks out purine nucleoside phosphorylase genes deoD, ppnP, and nucleoside hydrolase gene rihA, rihB, rihC.
2. The genetically engineered strain of claim 1, wherein: the nucleoside transporter gene pfue is connected with a promoter P trc The method comprises the steps of carrying out a first treatment on the surface of the And/or
Purine operon mutant gene purEKBCSQLF K316Q MNCD is connected with promoter P trc The method comprises the steps of carrying out a first treatment on the surface of the And/or
The PRPP transamidase mutant gene purF K316Q Is connected with a promoter P trc ;
The promoter P trc The nucleotide sequence of (2) is shown as SEQ ID NO: shown at 5.
3. The method for constructing a genetically engineered strain according to claim 1 or 2, characterized in that: the construction method comprises the following steps:
(1) Starting from the genome of the strain E.coli MG1655, knocking out purine nucleoside phosphorylase genes deoD and ppnP and knocking out nucleoside hydrolase gene rihA, rihB, rihC;
(2) The nucleotide sequence is shown as SEQ ID NO:3, the purine operon purEKBCSQLF shown in the specification K316Q MNCD and promoter P trc Fusion fragment P of (C) trc -purEKBCSQLF K316Q MNHD is integrated at the yghE pseudogene locus;
(3) The nucleotide sequence is shown as SEQ ID NO:2, PRPP transamidase mutant gene purF shown in the specification K316Q And promoter P trc Fusion fragment P of (C) trc -purF K316Q Integration at the yeeP pseudogene locus;
(4) The nucleotide sequence is shown as SEQ ID NO:1 and a promoter P trc Fusion fragment P of (C) trc -pbuE integration at the yjiT pseudogene locus;
(5) The nucleotide sequence of the purA gene is replaced by the nucleotide sequence shown as SEQ ID NO:4, and the mutant gene purA shown in FIG. 4 P242N Obtaining the genetic engineering strain.
4. Use of the genetically engineered strain of claim 1 or 2 for the fermentative production of inosine.
5. The application according to claim 4, characterized in that it comprises: culturing the genetically engineered strain under suitable conditions and collecting inosine from the culture thereof; the proper condition is that the culture temperature is 35 ℃, the pH is maintained at about 7.0, the dissolved oxygen is between 25 and 35 percent, and the culture medium comprises the following components: 15-25g/L glucose, 1-4g/L yeast powder, 1-5g/L peptone, 0.1-2g/L sodium citrate, 0.1-0.3g/L adenine and KH 2 PO 4 ·3H 2 O 0.1-2g/L,MgSO 4 ·7H 2 O 0.1-2g/L,FeSO 4 ·7H 2 O 5-20mg/L,MnSO 4 ·H 2 O 5-20mg/L,V B1 、V B3 、V B5 、V B12 And V H 0.1-2mg/L each, 2 drops of defoamer, the balance of water, and pH 7.0-7.2.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111481366.1A CN114317386B (en) | 2021-12-06 | 2021-12-06 | Genetic engineering strain for producing inosine and construction method and application thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111481366.1A CN114317386B (en) | 2021-12-06 | 2021-12-06 | Genetic engineering strain for producing inosine and construction method and application thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114317386A CN114317386A (en) | 2022-04-12 |
CN114317386B true CN114317386B (en) | 2023-12-08 |
Family
ID=81047956
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111481366.1A Active CN114317386B (en) | 2021-12-06 | 2021-12-06 | Genetic engineering strain for producing inosine and construction method and application thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114317386B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110656073B (en) * | 2018-06-28 | 2022-06-28 | 中国科学院青岛生物能源与过程研究所 | Recombinant bacterium for producing xanthine as well as construction method and application thereof |
CN117363553B (en) * | 2023-12-07 | 2024-02-20 | 天津科技大学 | Genetically engineered bacterium for producing 2' -deoxyadenosine, construction method and application thereof |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103952422A (en) * | 2014-04-15 | 2014-07-30 | 天津大学 | Bacillus subtilis-coded PRPP (Phosphoribosyl Pyrophosphate) transamidase mutant gene pruF and application thereof |
WO2019013696A1 (en) * | 2017-07-14 | 2019-01-17 | Biopetrolia Ab | Microbial cells for spermidine production |
CN113278596A (en) * | 2021-05-24 | 2021-08-20 | 廊坊梅花生物技术开发有限公司 | Mutant capable of improving bacillus nucleoside yield and application thereof |
-
2021
- 2021-12-06 CN CN202111481366.1A patent/CN114317386B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103952422A (en) * | 2014-04-15 | 2014-07-30 | 天津大学 | Bacillus subtilis-coded PRPP (Phosphoribosyl Pyrophosphate) transamidase mutant gene pruF and application thereof |
WO2019013696A1 (en) * | 2017-07-14 | 2019-01-17 | Biopetrolia Ab | Microbial cells for spermidine production |
CN111201316A (en) * | 2017-07-14 | 2020-05-26 | 克里希有限公司 | Microbial cells for spermidine production |
CN113278596A (en) * | 2021-05-24 | 2021-08-20 | 廊坊梅花生物技术开发有限公司 | Mutant capable of improving bacillus nucleoside yield and application thereof |
Also Published As
Publication number | Publication date |
---|---|
CN114317386A (en) | 2022-04-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN114317386B (en) | Genetic engineering strain for producing inosine and construction method and application thereof | |
CN106795485A (en) | Produce the microorganism of O phosphoserines and using its production O phosphoserine or the method for L cysteines | |
CN110325642A (en) | The method for generating the corynebacteria microorganism belonging to genus of l-amino acid and producing l-amino acid using it | |
CN117363553B (en) | Genetically engineered bacterium for producing 2' -deoxyadenosine, construction method and application thereof | |
WO2024099089A1 (en) | Genetically engineered strain for producing pseudouridine, construction method therefor and use thereof | |
CN114672525B (en) | Biosynthesis method and application of N-acetyl-5-methoxy tryptamine | |
CN110846333B (en) | Recombinant strain modified by deoB gene and construction method and application thereof | |
CN110592084B (en) | Recombinant strain transformed by rhtA gene promoter, construction method and application thereof | |
CN112708569B (en) | Yeast engineering bacterium for producing chondroitin sulfate by fermentation and application thereof | |
JP7072809B2 (en) | Use in the production of recombinant microorganisms, their production methods and coenzyme Q10 | |
CN110592109B (en) | Recombinant strain modified by spoT gene and construction method and application thereof | |
CN114410561B (en) | Genetically engineered strain for producing thymidine and construction method and application thereof | |
CN114181288B (en) | Process for producing L-valine, gene used therefor and protein encoded by the gene | |
KR102634303B1 (en) | Microorganisms that produce purine nucleotides and methods of producing purine nucleotides using the same | |
CN108690837B (en) | Method for improving heat stability of polymer protein and alcohol dehydrogenase with improved heat stability | |
CN112266923A (en) | Bacillus subtilis for expressing adenosylmethionine synthase and application | |
CN107810269A (en) | Novel promoter and application thereof | |
CN114315998B (en) | CEY17_RS00300 gene mutant and application thereof in preparation of L-valine | |
KR102613937B1 (en) | Yeast strain in which all genes involved in galactose utilization are deleted and method for producing recombinant protein using the same | |
CN114539367B (en) | CEY17_RS11900 gene mutant and application thereof in preparation of L-valine | |
CN110331121B (en) | Recombinant bacterium for high-yield lipopeptide and application thereof | |
EP4253570A2 (en) | Escherichia coli-based recombinant strain and construction method therefor and application thereof | |
KR20230171239A (en) | Bacteroid thetaiotaomicron strain producing butyrate and method for producing butyrate using the same | |
CN115678869A (en) | Recombinant strain and method for producing amino acid by using same | |
CN114315999A (en) | LeuD protein mutant and related biological material and application thereof in preparation of L-valine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |