CN114315416A - A kind of preparation method of serial nanocone periodic array - Google Patents
A kind of preparation method of serial nanocone periodic array Download PDFInfo
- Publication number
- CN114315416A CN114315416A CN202111671267.XA CN202111671267A CN114315416A CN 114315416 A CN114315416 A CN 114315416A CN 202111671267 A CN202111671267 A CN 202111671267A CN 114315416 A CN114315416 A CN 114315416A
- Authority
- CN
- China
- Prior art keywords
- serial
- nanocone
- periodic array
- preparation
- periodic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000002110 nanocone Substances 0.000 title claims abstract description 34
- 230000000737 periodic effect Effects 0.000 title claims abstract description 29
- 238000002360 preparation method Methods 0.000 title claims abstract description 14
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 34
- 238000005530 etching Methods 0.000 claims abstract description 17
- 239000000377 silicon dioxide Substances 0.000 claims abstract description 17
- 229910052751 metal Inorganic materials 0.000 claims abstract description 12
- 239000002184 metal Substances 0.000 claims abstract description 12
- 238000001020 plasma etching Methods 0.000 claims abstract description 10
- 238000001338 self-assembly Methods 0.000 claims abstract description 6
- 239000000084 colloidal system Substances 0.000 claims abstract 2
- 238000000034 method Methods 0.000 claims description 13
- 239000011324 bead Substances 0.000 claims description 9
- 238000001755 magnetron sputter deposition Methods 0.000 claims description 7
- 230000005660 hydrophilic surface Effects 0.000 claims description 5
- 239000000758 substrate Substances 0.000 claims description 5
- 238000003491 array Methods 0.000 abstract description 4
- 238000005516 engineering process Methods 0.000 abstract description 4
- 230000008901 benefit Effects 0.000 abstract description 3
- 230000015572 biosynthetic process Effects 0.000 abstract description 3
- 239000000463 material Substances 0.000 abstract description 2
- 239000002114 nanocomposite Substances 0.000 abstract description 2
- 238000003786 synthesis reaction Methods 0.000 abstract description 2
- 238000005289 physical deposition Methods 0.000 abstract 1
- 239000002086 nanomaterial Substances 0.000 description 7
- 230000000694 effects Effects 0.000 description 6
- 229910052709 silver Inorganic materials 0.000 description 5
- 238000002198 surface plasmon resonance spectroscopy Methods 0.000 description 5
- 238000001514 detection method Methods 0.000 description 4
- 230000004907 flux Effects 0.000 description 4
- 235000012239 silicon dioxide Nutrition 0.000 description 4
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 3
- 229910052737 gold Inorganic materials 0.000 description 3
- 239000010931 gold Substances 0.000 description 3
- 239000004332 silver Substances 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 2
- 230000005284 excitation Effects 0.000 description 2
- 238000003384 imaging method Methods 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 230000001902 propagating effect Effects 0.000 description 2
- 239000000523 sample Substances 0.000 description 2
- 230000003595 spectral effect Effects 0.000 description 2
- 230000009471 action Effects 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000005672 electromagnetic field Effects 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 238000003306 harvesting Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- 239000002082 metal nanoparticle Substances 0.000 description 1
- 239000002923 metal particle Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000000386 microscopy Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000000399 optical microscopy Methods 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 230000001699 photocatalysis Effects 0.000 description 1
- 238000007146 photocatalysis Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000010076 replication Effects 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
Images
Landscapes
- Physical Vapour Deposition (AREA)
- Micromachines (AREA)
Abstract
本发明属于纳米复合材料合成技术领域,具体涉及一种连环纳米锥周期性阵列制备方法。本发明通过将二氧化硅胶体球自组装技术、等离子刻蚀技术与物理沉积技术相结合,制备出一种新颖的连环纳米锥周期性阵列,该制备方法可以通过改变胶体球的尺寸、等离子刻蚀时间和沉积金属厚度得到不同尺寸的连环纳米锥周期性阵列,且此制备方法较为简单,制备出的连环纳米锥周期性阵列具有均匀性好、有序度高、可重复性强的优点,能够有效地被大规模复制应用。
The invention belongs to the technical field of nanocomposite material synthesis, and in particular relates to a preparation method of a periodic array of serial nanocones. The invention prepares a novel periodic array of continuous nano cones by combining the silica colloid sphere self-assembly technology, plasma etching technology and physical deposition technology. The serial nanocone periodic arrays of different sizes can be obtained according to the etching time and the thickness of the deposited metal, and the preparation method is relatively simple, and the prepared serial nanocone periodic arrays have the advantages of good uniformity, high order, and strong repeatability. Can be effectively replicated on a large scale.
Description
技术领域technical field
本发明涉及纳米复合材料合成技术领域,尤其是涉及一种连环纳米锥周期性阵列制备方法。The invention relates to the technical field of nanocomposite material synthesis, in particular to a method for preparing a periodic array of serial nanocones.
背景技术Background technique
表面等离激元共振效应(Surface Plasmon Resonance,SPR)由于其独特的光与物质相互作用的特性,有望增强光催化的能量转化效率,近年来引起人们极大的重视。SPR是由于金属(Au,Ag,Cu,Al等)表面的价电子在一定的外场(比如光照)作用下产生集体震荡的效应。具有SPR效应的金属纳米粒子可以通过控制金属粒子的尺寸、组分、形貌等因素可控调节其在可见-近红外区域吸光性能,从而有望拓展捕光范围。纳米聚焦是表面等离激元所具有的重要特性之一,该概念由Stockman于2004年提出,是指表面等离激元沿锥形金属纳米结构传播时,传播能量高度汇聚于锥形结构尖端的现象。表面等离激元纳米聚焦效应使得在纳米结构尖端上通过远程激发和传播形成电磁场“热点”成为可能。纳米聚焦还具有焦点尺寸突破纳米尺度的特点,近几年在国际上掀起了研究热潮。例如,在增强光-物质相互作用方面,借助纳米聚焦的作用,可使得金属锥形纳米结构作为探针,实现对分子的远程激发及高灵敏的光谱检测。在近场成像领域,利用金属针尖上的表面等离激元纳米聚焦,可实现传播表面等离激元对被测物近场的探测及扫描成像,该方法已被广泛地应用于扫描近场光学显微镜的相关研究。同时,随着纳米波导制备工艺的不断改进,不同类型的纳米聚焦波导正逐渐被开发,为其能够广泛应用于光子元件、生物细胞检测等各个领域提供更多可行的方案。Babadjanyan与其合作者通过对金属微尖锥形结构的边界问题分析,认为当SPPs沿纳米锥向其直径缩减方向传导时,导波波长减小使聚焦明显,且在顶点处具有巨大的场增强。同时他们提出:接近锥管顶点区域的管径很小,几乎只有几微米。在没有局部影响的情况下,对这一区域SPP散射的仔细分析已经进一步证实了锥管的聚焦特点。除了在平面结构中应用,这种超聚焦结构的实验实现对近场光学显微镜下表面的光学研究也是非常有用的。Surface plasmon resonance (SPR) is expected to enhance the energy conversion efficiency of photocatalysis due to its unique characteristics of light-matter interaction, which has attracted great attention in recent years. SPR is due to the collective oscillation effect of valence electrons on the surface of metals (Au, Ag, Cu, Al, etc.) under the action of a certain external field (such as light). Metal nanoparticles with SPR effect can controllably adjust their light absorption properties in the visible-near-infrared region by controlling the size, composition, morphology and other factors of the metal particles, which is expected to expand the light-harvesting range. Nanofocusing is one of the important characteristics of surface plasmons. The concept was proposed by Stockman in 2004, which means that when surface plasmons propagate along the conical metal nanostructure, the propagating energy is highly concentrated at the tip of the conical structure. The phenomenon. The surface plasmon nanofocusing effect enables the formation of electromagnetic field "hot spots" on the tips of nanostructures by remote excitation and propagation. Nanofocusing also has the characteristics that the size of the focus breaks through the nanometer scale, which has set off a research upsurge in the world in recent years. For example, in terms of enhancing light-matter interactions, with the help of nanofocusing, metal conical nanostructures can be used as probes to achieve long-range excitation and highly sensitive spectral detection of molecules. In the field of near-field imaging, the use of surface plasmon nanofocusing on the metal tip can realize the detection and scanning imaging of the near-field of the measured object by the propagating surface plasmon. This method has been widely used in scanning near-field Related research on light microscopy. At the same time, with the continuous improvement of nano-waveguide preparation technology, different types of nano-focusing waveguides are gradually being developed, providing more feasible solutions for their wide application in photonic components, biological cell detection and other fields. Babadjanyan and his collaborators analyzed the boundary problem of the metal micro-tip cone structure and believed that when the SPPs were guided along the nanocone in the direction of its diameter reduction, the wavelength of the guided wave was reduced to make the focusing obvious, and there was a huge field enhancement at the apex. At the same time, they proposed that the diameter of the tube near the apex of the cone tube is very small, almost only a few microns. In the absence of local effects, careful analysis of SPP scattering in this region has further confirmed the conical tube's focusing characteristics. In addition to applications in planar structures, the experimental realization of such superfocused structures is also very useful for optical studies of surfaces under near-field optical microscopy.
纳米聚焦效应利用锥形纳米结构直径渐变的构型,实现了光子能量在纳米空间的汇聚。相比于纳间隙耦合体系,锥形纳米结构具有更高的结构稳定性和可操控性,使其被应用于光谱扫描探测领域。而目前锥形纳米结构的制备方法多步骤复杂且成本较高,成为阻碍其进一步发展的难点。The nanofocusing effect utilizes the diameter-gradient configuration of the conical nanostructures to realize the convergence of photon energy in the nanospace. Compared with nano-gap coupled systems, tapered nanostructures have higher structural stability and maneuverability, which makes them suitable for spectral scanning detection. However, the current preparation method of conical nanostructures is complicated in multiple steps and high in cost, which has become a difficulty hindering its further development.
发明内容SUMMARY OF THE INVENTION
本发明正针对现有技术的不足,提出了一种连环纳米锥周期性阵列制备方法;获得尺寸更小、聚焦效应和场增强更加明显的纳米锥结构,提供了一种步骤简单、可操作空间高,制备周期短、价格低廉的连环纳米锥周期性阵列制备方法,制得的连环纳米锥周期性阵列具有大面积可控构筑,均匀性好、有序度高、可重复性强的特点,具有局域表面等离激元共振和增大比表面积的优异性能。Aiming at the deficiencies of the prior art, the present invention proposes a method for preparing a continuous nanocone periodic array; obtaining a nanocone structure with a smaller size, more obvious focusing effect and field enhancement, and providing a simple step and an operable space A method for preparing a series of periodic nanocone arrays with high efficiency, short preparation period and low price. It has excellent properties of localized surface plasmon resonance and increased specific surface area.
为了实现上述目的,本发明采用以下技术方案:一种纳米锥周期性阵列制备方法,包括以下步骤:In order to achieve the above purpose, the present invention adopts the following technical solutions: a method for preparing a nanocone periodic array, comprising the following steps:
(A)在具有亲水性表面的Si衬底上利用自组装法制备高度有序的二氧化硅小球阵列;(A) Preparation of highly ordered silica sphere arrays by self-assembly on Si substrates with hydrophilic surfaces;
(B)对二氧化硅小球阵列进行等离子刻蚀,得到连环纳米锥周期阵列;(B) plasma etching is performed on the silica bead array to obtain a serial nanocone periodic array;
(C)利用磁控溅射技术在样品表面沉积一层金属膜。(C) A metal film was deposited on the surface of the sample by magnetron sputtering.
本发明通过等离子刻蚀和磁控溅射得到连环银纳米锥阵列结构,通过改变二氧化硅小球的尺寸、等离子刻蚀的时间及溅射金属层厚度可以调节纳米锥的尺寸,具有操作简单可控性高的优点。The invention obtains the continuous silver nano-cone array structure by plasma etching and magnetron sputtering, and the size of the nano-cone can be adjusted by changing the size of the silicon dioxide sphere, the time of plasma etching and the thickness of the sputtered metal layer, and has the advantages of simple operation. The advantage of high controllability.
作为优选,步骤(A)中,所述二氧化硅小球半径为500nm。Preferably, in step (A), the radius of the silica sphere is 500 nm.
作为优选,步骤(B)中,所述等离子刻蚀气体为O2或CF4,刻蚀功率为50~150W,刻蚀时间为8~14min。Preferably, in step (B), the plasma etching gas is O 2 or CF 4 , the etching power is 50-150 W, and the etching time is 8-14 minutes.
作为优选,步骤(C)中,所述磁控溅射金属种类为Ag、Au、Cu,溅射厚度为30~150nm。Preferably, in step (C), the magnetron sputtering metal species is Ag, Au, and Cu, and the sputtering thickness is 30-150 nm.
在本发明中,制备了一种连环纳米锥周期性阵列,该周期性阵列有序度高、均匀性好、可重复性强,该制备方法较为简单、制备周期短,能够有效地被大规模复制应用,为后续纳米结构拓宽了可操作的空间。In the present invention, a periodic array of continuous nanocones is prepared, which has high order degree, good uniformity and strong repeatability. Replication applications widen the manipulative space for subsequent nanostructures.
附图说明Description of drawings
图1实施例1中连环纳米锥周期性阵列的扫描电镜俯视图。FIG. 1 is a top view of the scanning electron microscope of the periodic array of serial nanocones in Example 1. FIG.
图2实施例1中连环纳米锥周期性阵列的扫描电镜45°图。FIG. 2 is a 45° view of the scanning electron microscope of the periodic array of serial nanocones in Example 1. FIG.
具体实施方式Detailed ways
下面结合附图和具体实施方式对本发明做进一步的描述。The present invention will be further described below with reference to the accompanying drawings and specific embodiments.
实施例1Example 1
一种如前所述的连环纳米锥周期性阵列的制备方法,所述的制备方法包括以下步骤:A preparation method of the aforementioned serial nanocone periodic array, the preparation method comprises the following steps:
(A)在具有亲水性表面的Si衬底1上利用自组装法得到密排的二氧化硅小球阵列2,其中二氧化硅小球半径为500nm,(A) On the Si substrate 1 with a hydrophilic surface, a self-assembly method is used to obtain a close-packed silica sphere array 2, wherein the silica sphere has a radius of 500 nm,
(B)在密排二氧化硅小球阵列上进行等离子刻蚀,其中刻蚀气体为CF4,气体通量为30sccm,工作压强为2Pa,刻蚀功率为150W,刻蚀时间为11min,得到连环纳米锥周期性阵列,其扫描电镜俯视图如图1所示,扫描电镜45°图如图2所示,从图1、2中可以看出,相邻纳米锥之间相互连接,形成连环纳米锥周期性阵列;(B) Plasma etching is carried out on the close-packed silicon dioxide bead array, wherein the etching gas is CF4, the gas flux is 30sccm, the working pressure is 2Pa, the etching power is 150W, and the etching time is 11min to obtain a serial ring The periodic array of nanocones, the top view of the SEM is shown in Figure 1, and the 45° view of the SEM is shown in Figure 2. It can be seen from Figures 1 and 2 that adjacent nanocones are connected to each other to form a continuous nanocone periodic array;
(C)在连环纳米锥周期性阵列上利用磁控溅射沉积一层银膜,厚度为100nm。(C) A silver film with a thickness of 100 nm was deposited by magnetron sputtering on the periodic array of serial nanocones.
实施例2Example 2
一种如前所述的连环纳米锥周期性阵列的制备方法,所述的制备方法包括以下步骤:A preparation method of the aforementioned serial nanocone periodic array, the preparation method comprises the following steps:
(A)在具有亲水性表面的Si衬底上利用自组装法得到密排的二氧化硅小球阵列,其中二氧化硅小球半径为500nm;(A) On a Si substrate with a hydrophilic surface, a self-assembly method is used to obtain a close-packed array of silica beads, wherein the radius of the silica beads is 500 nm;
(B)在密排二氧化硅小球阵列上进行等离子刻蚀,其中刻蚀气体为CF4,气体通量为30sccm,工作压强为2Pa,刻蚀功率为150W,刻蚀时间为11min,得到连环纳米锥周期性阵列;(B) Plasma etching is carried out on the close-packed silicon dioxide bead array, wherein the etching gas is CF4, the gas flux is 30sccm, the working pressure is 2Pa, the etching power is 150W, and the etching time is 11min to obtain a serial ring Nanocone periodic array;
(C)在连环纳米锥周期性阵列上利用磁控溅射沉积一层金膜,厚度为100nm。(C) A gold film with a thickness of 100 nm was deposited by magnetron sputtering on the periodic array of serial nanocones.
实施例3Example 3
一种如前所述的连环纳米锥周期性阵列的制备方法,所述的制备方法包括以下步骤:A preparation method of the aforementioned serial nanocone periodic array, the preparation method comprises the following steps:
(A)在具有亲水性表面的Si衬底上利用自组装法得到密排的二氧化硅小球阵列,其中二氧化硅小球半径为500nm;(A) On a Si substrate with a hydrophilic surface, a self-assembly method is used to obtain a close-packed array of silica beads, wherein the radius of the silica beads is 500 nm;
(B)在密排二氧化硅小球阵列上进行等离子刻蚀,其中第一步刻蚀气体为O2,气体通量为50sccm,工作压强为20Pa,刻蚀功率为50W,刻蚀时间为150s,第二步刻蚀气体为CF4,气体通量为30sccm,工作压强为2Pa,刻蚀功率为150W,刻蚀时间为500s,得到连环纳米锥周期性阵列;(B) Plasma etching was performed on a close-packed silicon dioxide bead array, wherein the first etching gas was O2, the gas flux was 50sccm, the working pressure was 20Pa, the etching power was 50W, and the etching time was 150s , in the second step, the etching gas is CF4, the gas flux is 30sccm, the working pressure is 2Pa, the etching power is 150W, and the etching time is 500s, to obtain a serial nanocone periodic array;
(C)在连环纳米锥周期性阵列上利用磁控溅射沉积一层银膜,厚度为100nm。(C) A silver film with a thickness of 100 nm was deposited by magnetron sputtering on the periodic array of serial nanocones.
以上所述的实施例只是本发明的一种较佳的方案,并非对本发明作任何形式上的限制,在不超出权利要求所记载的技术方案的前提下还有其它的变体及改型。The above-mentioned embodiment is only a preferred solution of the present invention, and does not limit the present invention in any form, and there are other variations and modifications under the premise of not exceeding the technical solution recorded in the claims.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111671267.XA CN114315416B (en) | 2021-12-31 | 2021-12-31 | A kind of preparation method of serial nanocone periodic array |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111671267.XA CN114315416B (en) | 2021-12-31 | 2021-12-31 | A kind of preparation method of serial nanocone periodic array |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114315416A true CN114315416A (en) | 2022-04-12 |
CN114315416B CN114315416B (en) | 2022-10-21 |
Family
ID=81021915
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111671267.XA Active CN114315416B (en) | 2021-12-31 | 2021-12-31 | A kind of preparation method of serial nanocone periodic array |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114315416B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118584569A (en) * | 2024-07-22 | 2024-09-03 | 中国科学院近代物理研究所 | Metal nanocone plasmon resonant cavity, preparation method and application thereof |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108046211A (en) * | 2017-11-23 | 2018-05-18 | 中国科学院合肥物质科学研究院 | A kind of preparation method and applications of silicon substrate thorniness shape nanocone oldered array |
CN113125405A (en) * | 2019-12-31 | 2021-07-16 | 有研工程技术研究院有限公司 | SERS substrate based on nano conical needle structure and preparation method |
CN113249698A (en) * | 2021-04-23 | 2021-08-13 | 杭州电子科技大学 | Multilayer nano cap-star coupling periodic array and preparation method thereof |
-
2021
- 2021-12-31 CN CN202111671267.XA patent/CN114315416B/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108046211A (en) * | 2017-11-23 | 2018-05-18 | 中国科学院合肥物质科学研究院 | A kind of preparation method and applications of silicon substrate thorniness shape nanocone oldered array |
CN113125405A (en) * | 2019-12-31 | 2021-07-16 | 有研工程技术研究院有限公司 | SERS substrate based on nano conical needle structure and preparation method |
CN113249698A (en) * | 2021-04-23 | 2021-08-13 | 杭州电子科技大学 | Multilayer nano cap-star coupling periodic array and preparation method thereof |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118584569A (en) * | 2024-07-22 | 2024-09-03 | 中国科学院近代物理研究所 | Metal nanocone plasmon resonant cavity, preparation method and application thereof |
Also Published As
Publication number | Publication date |
---|---|
CN114315416B (en) | 2022-10-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109592635B (en) | Method for controllably preparing composite nano pattern array | |
CN104656170B (en) | Broadband light full absorber and preparation method thereof | |
CN102180438A (en) | Fabrication method of a tunable triangular metal nanoparticle array structure | |
CN100465345C (en) | A kind of surface plasmon crystal and its preparation method | |
CN103361601B (en) | A kind of method making surface enhanced Raman scattering substrate | |
CN106567119A (en) | Polymer based nanometer cone structure SERS substrate and preparation method | |
CN101716839B (en) | A large-area metal nanostructure substrate for surface-enhanced Raman and its preparation method | |
CN113125405B (en) | SERS substrate based on nano conical needle structure and preparation method | |
CN108459363A (en) | Surface phasmon-optical-electronic mixed conducting nano-heterogeneous structure and preparation method | |
CN205691505U (en) | Nanometer annular chamber SERS substrate based on surface phasmon effect | |
CN110987901B (en) | Au-Au dimer array structure and preparation method and application thereof | |
CN108666865A (en) | A metal-semiconductor composite structure, SPPs excitation method and preparation method | |
CN113125406B (en) | SERS substrate with microscopic ordered nano structure and preparation method thereof | |
CN114315416B (en) | A kind of preparation method of serial nanocone periodic array | |
CN106442460A (en) | Gold @ silver nano-particles/pyramidal silicon three-dimensional Raman reinforced substrate and preparing method and application thereof | |
CN111007056A (en) | A kind of broadband plasmon composite structure and preparation method thereof | |
Chao et al. | Anti-reflection textured structures by wet etching and island lithography for surface-enhanced Raman spectroscopy | |
Ma et al. | Rapidly fabricating a large area nanotip microstructure for high-sensitivity SERS applications | |
CN107199403B (en) | A method of using TiO2 particle array to assist femtosecond laser super-diffraction limit processing | |
CN111239088A (en) | A kind of micro-nano composite structure with fluorescence enhancement and optical amplification effect and preparation method thereof | |
CN113249698B (en) | Multilayer nano cap-star coupling periodic array and preparation method thereof | |
CN111426674A (en) | Sunflower nano array structure for enhancing SERS activity and preparation method thereof | |
CN114014258A (en) | Preparation method of three-dimensional asymmetric metal-medium functional nano array structure | |
CN112924436B (en) | Bowl-shaped molybdenum disulfide composite gold nanoparticle SERS substrate wrapped by silver and preparation method and application thereof | |
CN207690822U (en) | A kind of single-photon source device of high emission rate, high collection efficiency |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
EE01 | Entry into force of recordation of patent licensing contract |
Application publication date: 20220412 Assignee: Zhejiang saiweike Photoelectric Technology Co.,Ltd. Assignor: HANGZHOU DIANZI University Contract record no.: X2023330000335 Denomination of invention: A Method for Preparing Periodic Arrays of Linked Nanocones Granted publication date: 20221021 License type: Common License Record date: 20230612 |
|
EE01 | Entry into force of recordation of patent licensing contract |