CN114314807A - A method for rapid domestication and enrichment of electrogenic bacteria - Google Patents
A method for rapid domestication and enrichment of electrogenic bacteria Download PDFInfo
- Publication number
- CN114314807A CN114314807A CN202111535858.4A CN202111535858A CN114314807A CN 114314807 A CN114314807 A CN 114314807A CN 202111535858 A CN202111535858 A CN 202111535858A CN 114314807 A CN114314807 A CN 114314807A
- Authority
- CN
- China
- Prior art keywords
- electricity
- enrichment
- producing bacteria
- chamber
- domestication
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 241000894006 Bacteria Species 0.000 title claims abstract description 40
- 238000000034 method Methods 0.000 title claims abstract description 24
- 230000005611 electricity Effects 0.000 claims abstract description 30
- 230000000813 microbial effect Effects 0.000 claims abstract description 25
- 239000010802 sludge Substances 0.000 claims abstract description 20
- 239000002245 particle Substances 0.000 claims abstract description 18
- 244000005700 microbiome Species 0.000 claims abstract description 12
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 9
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 9
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 claims abstract description 8
- 238000004519 manufacturing process Methods 0.000 claims abstract description 8
- 239000001632 sodium acetate Substances 0.000 claims abstract description 8
- 235000017281 sodium acetate Nutrition 0.000 claims abstract description 8
- JXKPEJDQGNYQSM-UHFFFAOYSA-M sodium propionate Chemical compound [Na+].CCC([O-])=O JXKPEJDQGNYQSM-UHFFFAOYSA-M 0.000 claims abstract description 8
- 239000004324 sodium propionate Substances 0.000 claims abstract description 8
- 235000010334 sodium propionate Nutrition 0.000 claims abstract description 8
- 229960003212 sodium propionate Drugs 0.000 claims abstract description 8
- 238000000855 fermentation Methods 0.000 claims abstract description 7
- -1 potassium ferricyanide Chemical compound 0.000 claims abstract description 6
- 239000007772 electrode material Substances 0.000 claims abstract description 4
- 239000003575 carbonaceous material Substances 0.000 claims abstract description 3
- 230000000694 effects Effects 0.000 claims abstract description 3
- 238000012544 monitoring process Methods 0.000 claims abstract description 3
- 238000006243 chemical reaction Methods 0.000 claims description 8
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 8
- 239000000919 ceramic Substances 0.000 claims description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 4
- VTLYFUHAOXGGBS-UHFFFAOYSA-N Fe3+ Chemical compound [Fe+3] VTLYFUHAOXGGBS-UHFFFAOYSA-N 0.000 claims description 4
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 claims description 4
- VSCWAEJMTAWNJL-UHFFFAOYSA-K aluminium trichloride Chemical compound Cl[Al](Cl)Cl VSCWAEJMTAWNJL-UHFFFAOYSA-K 0.000 claims description 4
- 239000011521 glass Substances 0.000 claims description 4
- 238000003760 magnetic stirring Methods 0.000 claims description 4
- 239000000463 material Substances 0.000 claims description 4
- 239000012528 membrane Substances 0.000 claims description 4
- 239000000203 mixture Substances 0.000 claims description 4
- 239000002023 wood Substances 0.000 claims description 4
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 3
- 238000005341 cation exchange Methods 0.000 claims description 3
- 229910001447 ferric ion Inorganic materials 0.000 claims description 3
- 210000002966 serum Anatomy 0.000 claims description 3
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 claims description 2
- 229910021380 Manganese Chloride Inorganic materials 0.000 claims description 2
- GLFNIEUTAYBVOC-UHFFFAOYSA-L Manganese chloride Chemical compound Cl[Mn]Cl GLFNIEUTAYBVOC-UHFFFAOYSA-L 0.000 claims description 2
- 229910021586 Nickel(II) chloride Inorganic materials 0.000 claims description 2
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 claims description 2
- 238000005273 aeration Methods 0.000 claims description 2
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 claims description 2
- 239000004327 boric acid Substances 0.000 claims description 2
- WKVSEJXEIVEFJT-UHFFFAOYSA-N bromo ethanesulfonate Chemical compound CCS(=O)(=O)OBr WKVSEJXEIVEFJT-UHFFFAOYSA-N 0.000 claims description 2
- 239000001110 calcium chloride Substances 0.000 claims description 2
- 229910001628 calcium chloride Inorganic materials 0.000 claims description 2
- GVPFVAHMJGGAJG-UHFFFAOYSA-L cobalt dichloride Chemical compound [Cl-].[Cl-].[Co+2] GVPFVAHMJGGAJG-UHFFFAOYSA-L 0.000 claims description 2
- ORTQZVOHEJQUHG-UHFFFAOYSA-L copper(II) chloride Chemical compound Cl[Cu]Cl ORTQZVOHEJQUHG-UHFFFAOYSA-L 0.000 claims description 2
- BNBLBRISEAQIHU-UHFFFAOYSA-N disodium dioxido(dioxo)manganese Chemical compound [Na+].[Na+].[O-][Mn]([O-])(=O)=O BNBLBRISEAQIHU-UHFFFAOYSA-N 0.000 claims description 2
- 239000011790 ferrous sulphate Substances 0.000 claims description 2
- 235000003891 ferrous sulphate Nutrition 0.000 claims description 2
- 239000003112 inhibitor Substances 0.000 claims description 2
- 238000005342 ion exchange Methods 0.000 claims description 2
- BAUYGSIQEAFULO-UHFFFAOYSA-L iron(2+) sulfate (anhydrous) Chemical compound [Fe+2].[O-]S([O-])(=O)=O BAUYGSIQEAFULO-UHFFFAOYSA-L 0.000 claims description 2
- 229910000359 iron(II) sulfate Inorganic materials 0.000 claims description 2
- 229910001629 magnesium chloride Inorganic materials 0.000 claims description 2
- 239000011565 manganese chloride Substances 0.000 claims description 2
- 235000002867 manganese chloride Nutrition 0.000 claims description 2
- 229940099607 manganese chloride Drugs 0.000 claims description 2
- 238000002156 mixing Methods 0.000 claims description 2
- 229910000402 monopotassium phosphate Inorganic materials 0.000 claims description 2
- 235000019796 monopotassium phosphate Nutrition 0.000 claims description 2
- QMMRZOWCJAIUJA-UHFFFAOYSA-L nickel dichloride Chemical compound Cl[Ni]Cl QMMRZOWCJAIUJA-UHFFFAOYSA-L 0.000 claims description 2
- 229910052757 nitrogen Inorganic materials 0.000 claims description 2
- PJNZPQUBCPKICU-UHFFFAOYSA-N phosphoric acid;potassium Chemical compound [K].OP(O)(O)=O PJNZPQUBCPKICU-UHFFFAOYSA-N 0.000 claims description 2
- 229940047903 potassium chloride 50 mg Drugs 0.000 claims description 2
- 238000002360 preparation method Methods 0.000 claims description 2
- 238000000197 pyrolysis Methods 0.000 claims description 2
- 229910052938 sodium sulfate Inorganic materials 0.000 claims description 2
- 235000011152 sodium sulphate Nutrition 0.000 claims description 2
- DAKAQNVUSAGTRS-UHFFFAOYSA-M sodium;1-bromoethanesulfonate Chemical compound [Na+].CC(Br)S([O-])(=O)=O DAKAQNVUSAGTRS-UHFFFAOYSA-M 0.000 claims description 2
- 239000007787 solid Substances 0.000 claims description 2
- 238000003756 stirring Methods 0.000 claims description 2
- UEUXEKPTXMALOB-UHFFFAOYSA-J tetrasodium;2-[2-[bis(carboxylatomethyl)amino]ethyl-(carboxylatomethyl)amino]acetate Chemical compound [Na+].[Na+].[Na+].[Na+].[O-]C(=O)CN(CC([O-])=O)CCN(CC([O-])=O)CC([O-])=O UEUXEKPTXMALOB-UHFFFAOYSA-J 0.000 claims description 2
- NWONKYPBYAMBJT-UHFFFAOYSA-L zinc sulfate Chemical compound [Zn+2].[O-]S([O-])(=O)=O NWONKYPBYAMBJT-UHFFFAOYSA-L 0.000 claims description 2
- 229960001763 zinc sulfate Drugs 0.000 claims description 2
- 229910000368 zinc sulfate Inorganic materials 0.000 claims description 2
- VZEXJUAYWWLSEP-UHFFFAOYSA-N N.[Cl].Cl Chemical compound N.[Cl].Cl VZEXJUAYWWLSEP-UHFFFAOYSA-N 0.000 claims 1
- 239000007788 liquid Substances 0.000 claims 1
- 239000005416 organic matter Substances 0.000 claims 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 12
- XBDQKXXYIPTUBI-UHFFFAOYSA-N dimethylselenoniopropionate Natural products CCC(O)=O XBDQKXXYIPTUBI-UHFFFAOYSA-N 0.000 description 6
- 239000000370 acceptor Substances 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 3
- 238000012136 culture method Methods 0.000 description 3
- 239000004033 plastic Substances 0.000 description 3
- 235000019260 propionic acid Nutrition 0.000 description 3
- 238000000746 purification Methods 0.000 description 3
- IUVKMZGDUIUOCP-BTNSXGMBSA-N quinbolone Chemical compound O([C@H]1CC[C@H]2[C@H]3[C@@H]([C@]4(C=CC(=O)C=C4CC3)C)CC[C@@]21C)C1=CCCC1 IUVKMZGDUIUOCP-BTNSXGMBSA-N 0.000 description 3
- 230000027756 respiratory electron transport chain Effects 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 2
- 241001568673 Geobacteraceae Species 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 239000003610 charcoal Substances 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 238000012258 culturing Methods 0.000 description 2
- 238000006731 degradation reaction Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000012165 high-throughput sequencing Methods 0.000 description 2
- 239000002609 medium Substances 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 235000019270 ammonium chloride Nutrition 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000003344 environmental pollutant Substances 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 239000001963 growth medium Substances 0.000 description 1
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 1
- 238000009629 microbiological culture Methods 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 231100000719 pollutant Toxicity 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000005067 remediation Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000010865 sewage Substances 0.000 description 1
- VBJLGCCUDXCZEC-UHFFFAOYSA-M sodium methane acetate Chemical compound C.[Na+].CC([O-])=O VBJLGCCUDXCZEC-UHFFFAOYSA-M 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 239000002910 solid waste Substances 0.000 description 1
- 241000894007 species Species 0.000 description 1
Images
Landscapes
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
本发明公开了一种快速驯化富集产电细菌的方法,包括以下步骤;步骤1:构建双室微生物电化学系统,以普通悬浮态厌氧发酵微生物作为种泥微生物,乙酸钠或丙酸钠作为电子供体投加到阳极室,铁氰化钾作为电子受体投加到阴极室,导电碳材料碳毡作为电极材料分别置于阳极室和阴极室,驯化富集产电细菌;步骤2:通过向阳极室中投加悬浮态生物炭颗粒,加快产电细菌在阳极表面的富集速度,通过监测有生物炭投加系统与无生物炭投加系统的产电速率,库伦效率,碳毡表面生物膜的种群结构,评价生物炭颗粒投加对产电细菌快速驯化富集的促进效果。本发明能够高效快速的以低成本的普通厌氧微生物为种泥,实现产电细菌的驯化富集。
The invention discloses a method for rapidly domesticating and enriching electricity-producing bacteria, comprising the following steps; Step 1: constructing a double-chamber microbial electrochemical system, using common suspended anaerobic fermentation microorganisms as seed sludge microorganisms, sodium acetate or sodium propionate As an electron donor, potassium ferricyanide is added to the cathode chamber as an electron acceptor, and the conductive carbon material carbon felt is placed as an electrode material in the anode chamber and the cathode chamber, respectively, to acclimate and enrich the electricity-producing bacteria; step 2 : By adding suspended biochar particles into the anode chamber, the enrichment speed of electricity-producing bacteria on the surface of the anode is accelerated, and by monitoring the electricity production rate, Coulomb efficiency, carbon Population structure of biofilm on felt surface, evaluating the effect of biochar particle addition on the rapid domestication and enrichment of electrogenic bacteria. The invention can efficiently and quickly use low-cost common anaerobic microorganisms as seed sludge to realize domestication and enrichment of electricity-producing bacteria.
Description
技术领域technical field
本发明属于污水处理技术领域,具体涉及一种快速驯化富集产电细菌的方法。The invention belongs to the technical field of sewage treatment, and in particular relates to a method for rapid domestication and enrichment of electricity-producing bacteria.
背景技术Background technique
微生物的胞外电子传递行为在水环境治理、污染物降解、土壤修复等环境工程技术领域具有重要的应用价值。然而,如何利用普通微生物快速驯化富集具有胞外电子传递能力的产电细菌,是胞外电子传递行为研究与应用领域的技术瓶颈之一。因此研发一种利用普通厌氧微生物快速驯化富集产电细菌的方法具有重要意义。The extracellular electron transfer behavior of microorganisms has important application value in the fields of environmental engineering technology such as water environment treatment, pollutant degradation, and soil remediation. However, how to use common microorganisms to rapidly domesticate and enrich electrogenic bacteria with extracellular electron transfer ability is one of the technical bottlenecks in the research and application of extracellular electron transfer behavior. Therefore, it is of great significance to develop a method for rapid domestication and enrichment of electrogenic bacteria using common anaerobic microorganisms.
目前,驯化培养产电细菌的方法主要有培养基驯化培养法,微生物电化学系统培养法。①培养基驯化培养法是指利用微生物纯化技术,以三价铁等作为电子供体,驯化培养产电细菌,并利用LB培养基进行菌落培养,纯化分离。其缺点是该方法的菌落培养与纯化分离需在无菌的厌氧培养箱中进行,操作难度大,成本高;②微生物电化学系统培养法是通过构建双室微生物电化学系统,以葡萄糖,乙酸钠等小分子有机物为电子供体,通过周期性驯化过程在阳极表面富集培养产电细菌,其缺点是培养时间周期长,效率低。At present, the methods for domesticating and culturing electrogenic bacteria mainly include culture medium domestication method and microbial electrochemical system culture method. ①The medium domestication culture method refers to the use of microbial purification technology, using ferric iron as an electron donor, domesticating and culturing electrogenic bacteria, and using LB medium for colony culture, purification and separation. The disadvantage is that the colony culture and purification and separation of this method need to be carried out in a sterile anaerobic incubator, which is difficult to operate and has high cost; (2) The microbial electrochemical system culture method is to construct a dual-chamber microbial electrochemical system, using glucose, Small molecular organics such as sodium acetate are electron donors, and electrogenic bacteria are enriched and cultured on the anode surface through a periodic domestication process.
发明内容SUMMARY OF THE INVENTION
为了克服以上技术问题,本发明的目的在于提供一种快速驯化富集产电细菌的方法,能够高效快速的以低成本的普通厌氧微生物为种泥,实现产电细菌的驯化富集。In order to overcome the above technical problems, the purpose of the present invention is to provide a method for rapid domestication and enrichment of electricity-producing bacteria, which can efficiently and rapidly use low-cost common anaerobic microorganisms as seed sludge to achieve domestication and enrichment of electricity-producing bacteria.
为了实现上述目的,本发明采用的技术方案是:In order to achieve the above object, the technical scheme adopted in the present invention is:
一种快速驯化富集产电细菌的方法,包括以下步骤;A method for rapidly domesticating and enriching electrogenic bacteria, comprising the following steps;
步骤1:构建双室微生物电化学系统,以50毫升取自完全混合式厌氧发酵系统的悬浮污泥作为种泥微生物,150毫升乙酸钠或丙酸钠作为电子供体投加到阳极室,铁氰化钾作为电子受体投加到阴极室,导电碳材料碳毡作为电极材料分别置于阳极室和阴极室,驯化富集产电细菌;Step 1: Construct a two-chamber microbial electrochemical system, using 50 ml of suspended sludge from a fully mixed anaerobic fermentation system as seed sludge microorganisms, and 150 ml of sodium acetate or sodium propionate as electron donors into the anode chamber, Potassium ferricyanide is added to the cathode chamber as an electron acceptor, and the conductive carbon material carbon felt is placed as an electrode material in the anode chamber and the cathode chamber, respectively, to domesticate and enrich the electricity-producing bacteria;
步骤2:通过向阳极室中投加生物炭颗粒,以200转/分钟的磁力搅拌保证生物炭颗粒均匀悬浮于装置内,以增大生物炭与悬浮微生物的接触面积,加快产电细菌在阳极表面的富集速度,通过监测有生物炭投加系统与无生物炭投加系统的产电速率,库伦效率,碳毡表面生物膜的种群结构,评价生物炭颗粒投加对产电细菌快速驯化富集的促进效果。Step 2: By adding biochar particles into the anode chamber, magnetic stirring at 200 rpm ensures that the biochar particles are evenly suspended in the device, so as to increase the contact area between the biochar and the suspended microorganisms, and accelerate the electricity-producing bacteria in the anode. The enrichment rate of the surface, by monitoring the electricity production rate of the system with and without the addition of biochar, the coulombic efficiency, and the population structure of the biofilm on the surface of the carbon felt, to evaluate the rapid domestication of electricity-producing bacteria by the addition of biochar particles enrichment boosting effect.
所述步骤2中生物炭颗粒来源为苹果木木屑,生物炭制备方式为限氧热解,将苹果木屑置于陶瓷坩埚,利用陶瓷杵压实,盖上盖子,置于普通马弗炉内,控制升温幅度为12±1℃/min,当温度达到500℃后保持2h,待马弗炉温度恢复至室温后,取出备用。In the
所述步骤2中生物炭颗粒粒径为2-5毫米,投加浓度为15g/L。In the
所述步骤1中双室微生物电化学系统为玻璃材质,阳极室,阴极室的反应体积均为200毫升,双室间由阳离子交换膜隔开,有利于离子交换,阳极与阴极之间用直径为1毫米的钛丝进行连接。In the step 1, the two-chamber microbial electrochemical system is made of glass material, the reaction volume of the anode chamber and the cathode chamber are both 200 ml, and the two chambers are separated by a cation exchange membrane, which is conducive to ion exchange. Make connections for 1 mm titanium wire.
所述步骤1中双室微生物电化学系统的运行温度为室温(26±2℃)。The operating temperature of the dual-chamber microbial electrochemical system in the step 1 is room temperature (26±2°C).
所述步骤1中双室微生物电化学系统的阳极室和阴极室在反应进行前须用纯度为99.9%的氮气以1L/分钟的曝气强度曝气8分钟。In the step 1, the anode chamber and the cathode chamber of the dual-chamber microbial electrochemical system must be aerated with nitrogen with a purity of 99.9% at an aeration intensity of 1 L/min for 8 minutes before the reaction is carried out.
所述步骤1中双室微生物电化学系统的混合方式为磁力搅拌,搅拌为200转/分钟。The mixing mode of the dual-chamber microbial electrochemical system in the step 1 is magnetic stirring, and the stirring is 200 rpm.
所述步骤1中乙酸钠或丙酸钠的投加浓度为1500mg/L,投加方式为一次性投加。In the step 1, the dosage of sodium acetate or sodium propionate is 1500 mg/L, and the dosage is one-time dosage.
所述步骤1中微生物种泥来源于完全混合式中温厌氧发酵系统,用于产电细菌驯化富集,污泥取出后置于厌氧血清瓶中培养,目的是耗尽污泥混合液中的有机质,至日产甲烷量低于5mL/天,即可使用,污泥加入阳极室的浓度为2.3g挥发性固体/L。In the step 1, the microbial seed sludge comes from a completely mixed medium-temperature anaerobic fermentation system, which is used for the domestication and enrichment of electricity-producing bacteria. After the sludge is taken out, it is placed in an anaerobic serum bottle for cultivation. It can be used when the daily methane production is less than 5mL/day, and the concentration of sludge added to the anode chamber is 2.3g volatile solids/L.
所述步骤1中每个阳极室中加入50mM/L的溴乙烷磺酸钠(BES)作为产甲烷抑制剂,用于避免厌氧种泥中的产甲烷菌将丙酸钠或乙酸钠代谢产甲烷。In the step 1, 50mM/L of sodium bromoethane sulfonate (BES) is added to each anode chamber as a methanogenesis inhibitor to prevent the methanogens in the anaerobic seed sludge from metabolizing sodium propionate or sodium acetate Methane production.
所述步骤1中阳极室中用于驯化富集产电细菌的阳极培养液成分组成为:氯化铵500mg/L,磷酸二氢钾200mg/L,硫酸钠40mg/L,氯化钾50mg/L,氯化铝0.5mg/L,氯化钙10mg/L,氯化镁70mg/L,氯化锰0.8mg/L,氯化钴1.2mg/L,氯化镍0.5mg/L,EDTA-钠3mg/L,硫酸亚铁3.2mg/L,氯化铜1.1mg/L,锰酸钠0.1mg/L,硫酸锌3.2mg/L,硼酸0.2mg/L。The composition of the anode culture solution in the anode chamber for domestication and enrichment of electricity-producing bacteria in the step 1 is: ammonium chloride 500mg/L, potassium dihydrogen phosphate 200mg/L, sodium sulfate 40mg/L, potassium chloride 50mg/L L, aluminum chloride 0.5mg/L, calcium chloride 10mg/L, magnesium chloride 70mg/L, manganese chloride 0.8mg/L, cobalt chloride 1.2mg/L, nickel chloride 0.5mg/L, EDTA-sodium 3mg /L, ferrous sulfate 3.2mg/L, copper chloride 1.1mg/L, sodium manganate 0.1mg/L, zinc sulfate 3.2mg/L, boric acid 0.2mg/L.
所述步骤1中阴极室中的铁氰化钾,利用三价铁离子作为电子受体,投加浓度为50mM/L。In the step 1, the potassium ferricyanide in the cathode chamber uses ferric ions as electron acceptors, and the dosage is 50 mM/L.
本发明的有益效果:Beneficial effects of the present invention:
本发明能够实现功能性产电细菌的快速驯化富集;The invention can realize the rapid domestication and enrichment of functional electrogenic bacteria;
该方法与传统方法相比,使用了来源于固体废弃物制备的生物炭绿色材料,环境友好,成本低廉;Compared with the traditional method, the method uses the biochar green material prepared from solid waste, which is environmentally friendly and low in cost;
该方法操作简单,易推广使用。The method is simple to operate and easy to popularize and use.
附图说明Description of drawings
图1为本发明微生物电化学实验装置示意图。FIG. 1 is a schematic diagram of the microbial electrochemical experimental apparatus of the present invention.
图2为本发明反应过程中各组电流密度变化示意图。Fig. 2 is a schematic diagram showing the change of the current density of each group during the reaction process of the present invention.
图3为本发明反应过程中乙酸、丙酸降解情况及系统库伦效率变化示意图。3 is a schematic diagram of the degradation of acetic acid and propionic acid and the change of the system coulombic efficiency during the reaction process of the present invention.
图4为本发明产电菌在碳毡上的富集丰度示意图。FIG. 4 is a schematic diagram of the enrichment and abundance of the electrogenic bacteria of the present invention on the carbon felt.
具体实施方式Detailed ways
下面结合实施例对本发明作进一步详细说明。The present invention will be described in further detail below in conjunction with the examples.
本发明的系统构建与操作步骤如下:The system construction and operation steps of the present invention are as follows:
(1)生物炭颗粒的制备:将平面尺寸为1-3平方厘米的苹果木木片置于200毫升的陶瓷坩埚中,将坩埚体积充满,尽量不留空隙,以营造缺氧环境。将坩埚盖上盖子后置于马弗炉内,设置马弗炉升温速率12±1℃/分钟,至500℃保持2小时,后自动关闭,待马弗炉降温至室温后,去除坩埚,获得生物炭。将用不锈钢筛网将该生物炭筛分至颗粒粒径为2-5mm,存于塑封袋内,置于干燥避光处,备用。(1) Preparation of biochar particles: Place apple wood chips with a plane size of 1-3 square centimeters in a 200 ml ceramic crucible, fill the crucible with volume, and leave no gaps as much as possible to create an oxygen-deficient environment. Cover the crucible and place it in the muffle furnace, set the heating rate of the muffle furnace to 12 ± 1 °C/min, keep it at 500 °C for 2 hours, and then automatically close it. After the muffle furnace is cooled to room temperature, remove the crucible and obtain bio-charcoal. The biochar will be sieved with a stainless steel mesh to a particle size of 2-5 mm, stored in a plastic bag, placed in a dry place away from light, and used for later use.
(2)微生物种泥的来源与预培养:从稳定运行的中温厌氧发酵系统中取厌氧污泥500毫升,于厌氧发酵血清瓶中预培养10-15天,待该厌氧污泥的日产甲烷量低于5mL/天后,将该污泥置于厌氧环境中保存,备用。(2) Source and pre-cultivation of microbial seed sludge: Take 500 ml of anaerobic sludge from the stable operation of the mesophilic anaerobic fermentation system, and pre-cultivate it in an anaerobic fermentation serum bottle for 10-15 days. After the daily methane production is less than 5mL/day, the sludge is stored in an anaerobic environment for use.
(3)双室微生物电化学系统的构建:双室微生物电化学系统如图1所示,其材质为玻璃,工作体积为200毫升。玻璃瓶上方以橡胶塞密封加塑料瓶盖密封。每个瓶子侧面分布有两个圆孔,在实验过程中以橡胶塞加铝盖进行密封。阳极室与阴极室的连接处以阳离子交换膜分隔,并用止水带和不锈钢止水夹进行固定,密封。该系统所用的电极材料为导电碳毡,面积分别为6cm2。阳极与阴极之间利用直径为1毫米的钛丝进行连接。(3) Construction of the dual-chamber microbial electrochemical system: The dual-chamber microbial electrochemical system is shown in Figure 1, and its material is glass, and the working volume is 200 ml. The top of the glass bottle is sealed with a rubber stopper and a plastic bottle cap. There are two round holes on the side of each bottle, which are sealed with rubber stoppers and aluminum caps during the experiment. The junction between the anode chamber and the cathode chamber is separated by a cation exchange membrane, and is fixed and sealed with a water stop tape and a stainless steel water stop clip. The electrode materials used in this system are conductive carbon felts, each with an area of 6 cm 2 . A titanium wire with a diameter of 1 mm is used for connection between the anode and the cathode.
(4)双室微生物电化学系统的组别设置:依据有无生物炭颗粒投加和电子供体类型,共设置乙酸-生物炭投加组(Ac-BC),乙酸-控制组(Ac-CT),丙酸-生物炭投加组(Pr-BC),丙酸-控制组(Pr-CT)。(4) Group setting of the two-chamber microbial electrochemical system: according to the presence or absence of biochar particles and the type of electron donor, a total of acetic acid-biochar dosing group (Ac-BC), acetic acid-control group (Ac- CT), propionic acid-biochar addition group (Pr-BC), propionic acid-control group (Pr-CT).
(5)双室微生物电化学系统的启动与运行:向系统阳极室中投加浓度为2.3g/L的厌氧污泥50mL,微生物培养液150mL,以乙酸为电子供体的两组系统投加乙酸钠,浓度为1500mg/L,以丙酸为电子供体的两组系统投加丙酸钠,浓度为1500mg/L。有生物炭投加的各组向阳极室投加生物炭颗粒,浓度为15g/L。阴极室中统一投加铁氰化钾,利用三价铁离子作为电子受体,投加浓度为50mM/L。(5) Start-up and operation of the dual-chamber microbial electrochemical system: 50mL of anaerobic sludge with a concentration of 2.3g/L and 150mL of microbial culture solution were added to the anode chamber of the system, and two groups of systems using acetic acid as the electron donor were added. Sodium acetate was added at a concentration of 1500 mg/L, and two groups of systems using propionic acid as electron donors were added with sodium propionate at a concentration of 1500 mg/L. Each group with biochar addition added biochar particles to the anode chamber at a concentration of 15g/L. Potassium ferricyanide was uniformly dosed in the cathode chamber, and ferric ions were used as electron acceptors at a concentration of 50mM/L.
(6)系统运行指标的测定:系统运行过程中,定期用5毫升塑料针管在阳极室取2毫升混合液,用0.45微米孔径的滤膜过滤,利用气相色谱仪(火焰离子化检测器)测定乙酸或丙酸的浓度,外电路中串联10Ω的电阻,通过数据采集器联合计算机实时测定电阻两端的电压,利用欧姆定律计算得到系统的电流强度。至反应结束,取下碳毡表面的微生物样品进行高通量测序分析。(6) Determination of system operation indicators: During the operation of the system, regularly use a 5 ml plastic needle to take 2 ml of the mixture in the anode chamber, filter it with a filter membrane with a 0.45-micron pore size, and use a gas chromatograph (flame ionization detector) to measure The concentration of acetic acid or propionic acid, a 10Ω resistance is connected in series in the external circuit, the voltage across the resistance is measured in real time through a data collector and a computer, and the current intensity of the system is calculated using Ohm's law. At the end of the reaction, the microbial samples on the surface of the carbon felt were removed for high-throughput sequencing analysis.
(7)系统运行结果的分析方法:利用库仑定律计算每组微生物消耗电子供体的产电效率。依据微生物高通量测序结果,从科、属水平量化典型产电细菌在各组间的富集情况,分析生物炭投加对产电细菌快速驯化富集的重要作用。(7) Analysis method of system operation results: Coulomb's law is used to calculate the electricity production efficiency of each group of microorganisms consuming electron donors. Based on the results of microbial high-throughput sequencing, the enrichment of typical electrogenic bacteria in each group was quantified at the family and genus levels, and the important role of biochar addition on the rapid domestication and enrichment of electrogenic bacteria was analyzed.
(8)系统运行结果分析:图1展示了各组的电流强度变化。由图2(a)可知,当以乙酸为电子受体时,Ac-BC组的整体电流密度明显高于Ac-CT组,Ac-BC组在运行第2天达到最大电流密度1.6A/m2,而Ac-CT组相比之下,控制组的电流密度在第4天达到最大值0.5A/m2,比Ac-CT组底68.8%,由图2(b)可知,当以丙酸为电子受体时,Pr-BC组的整体电流密度明显高于Pr-CT组,Pr-BC组在运行第3天达到最大电流密度2.3A/m2,而Pr-CT组达到电流峰值的时间滞后,且峰值为1.3A/m2,比Pr-BC组低76.9%。图3中的库伦效率计算结果同样表明,生物炭投加整体上提升了系统的库伦效率。图4展示了反应结束后,各组电极表面生物膜中典型产电细菌Geobacteraceae(科水平)丰度,发现生物炭投加组中Geobacteraceae的相对丰度为26.7-31.7%,远高于无生物炭投加组的3.4-4.6%。尽管电子供体的差异在属水平上影响了Geobacteraceae富集的种类,但投加生物炭能够显著促进典型产电细菌在电极表面的富集。(8) Analysis of system operation results: Figure 1 shows the changes of current intensity in each group. As can be seen from Figure 2(a), when acetic acid was used as the electron acceptor, the overall current density of the Ac-BC group was significantly higher than that of the Ac-CT group, and the Ac-BC group reached the maximum current density of 1.6 A/m on the second day of operation. 2 , while in the Ac-CT group, the current density of the control group reached the maximum value of 0.5A/m 2 on the 4th day, which was 68.8% lower than that of the Ac-CT group. When acid was the electron acceptor, the overall current density of the Pr-BC group was significantly higher than that of the Pr-CT group. The Pr-BC group reached the maximum current density of 2.3 A/m 2 on the third day of operation, while the Pr-CT group reached the peak current density. The time lag was 1.3A/m 2 , which was 76.9% lower than that of the Pr-BC group. The coulombic efficiency calculation results in Figure 3 also show that the addition of biochar improves the coulombic efficiency of the system as a whole. Figure 4 shows the abundance of typical electrogenic bacteria Geobacteraceae (family level) in the biofilm on the electrode surface of each group after the reaction. 3.4-4.6% of the charcoal added group. Although differences in electron donors affected the enriched species of Geobacteraceae at the genus level, the addition of biochar significantly promoted the enrichment of typical electrogenic bacteria on the electrode surface.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111535858.4A CN114314807A (en) | 2021-12-15 | 2021-12-15 | A method for rapid domestication and enrichment of electrogenic bacteria |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111535858.4A CN114314807A (en) | 2021-12-15 | 2021-12-15 | A method for rapid domestication and enrichment of electrogenic bacteria |
Publications (1)
Publication Number | Publication Date |
---|---|
CN114314807A true CN114314807A (en) | 2022-04-12 |
Family
ID=81053499
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111535858.4A Pending CN114314807A (en) | 2021-12-15 | 2021-12-15 | A method for rapid domestication and enrichment of electrogenic bacteria |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114314807A (en) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110055206A (en) * | 2018-01-18 | 2019-07-26 | 云南师范大学 | A kind of method of quick formation MEC hydrogen manufacturing anode microbial film |
CN110127840A (en) * | 2019-04-24 | 2019-08-16 | 上海交通大学 | Sewage Treatment Based on Aerobic Granular Sludge Bed Reactor Cathode Microbial Fuel Cell |
US20190319288A1 (en) * | 2017-04-11 | 2019-10-17 | Dalian University Of Technology | Preparation of a new type of composite anode and microbial fuel cell based on nitrogen doped biological carbon and porous volcanic rocks |
CN110350226A (en) * | 2019-08-06 | 2019-10-18 | 农业农村部规划设计研究院 | A kind of microorganism electrolysis cell and its method for handling wood vinegar |
CN111170599A (en) * | 2020-01-21 | 2020-05-19 | 河海大学 | A sludge MFC-anaerobic digestion coupling system and its performance enhancement method |
CN111304124A (en) * | 2020-02-28 | 2020-06-19 | 五邑大学 | Compound microbial inoculum for strengthening propionic acid anaerobic degradation and construction method thereof |
-
2021
- 2021-12-15 CN CN202111535858.4A patent/CN114314807A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20190319288A1 (en) * | 2017-04-11 | 2019-10-17 | Dalian University Of Technology | Preparation of a new type of composite anode and microbial fuel cell based on nitrogen doped biological carbon and porous volcanic rocks |
CN110055206A (en) * | 2018-01-18 | 2019-07-26 | 云南师范大学 | A kind of method of quick formation MEC hydrogen manufacturing anode microbial film |
CN110127840A (en) * | 2019-04-24 | 2019-08-16 | 上海交通大学 | Sewage Treatment Based on Aerobic Granular Sludge Bed Reactor Cathode Microbial Fuel Cell |
CN110350226A (en) * | 2019-08-06 | 2019-10-18 | 农业农村部规划设计研究院 | A kind of microorganism electrolysis cell and its method for handling wood vinegar |
CN111170599A (en) * | 2020-01-21 | 2020-05-19 | 河海大学 | A sludge MFC-anaerobic digestion coupling system and its performance enhancement method |
CN111304124A (en) * | 2020-02-28 | 2020-06-19 | 五邑大学 | Compound microbial inoculum for strengthening propionic acid anaerobic degradation and construction method thereof |
Non-Patent Citations (1)
Title |
---|
李凤祥等: "产电菌群及电子受体对微生物燃料电池性能的影响", 《应用生态学报》 * |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Zhao et al. | Evaluation on direct interspecies electron transfer in anaerobic sludge digestion of microbial electrolysis cell | |
Yu et al. | Thermophilic Moorella thermoautotrophica-immobilized cathode enhanced microbial electrosynthesis of acetate and formate from CO2 | |
Oh et al. | The relative effectiveness of pH control and heat treatment for enhancing biohydrogen gas production | |
Liu et al. | Bioelectrochemical enhancement of methane production in low temperature anaerobic digestion at 10 C | |
Sun et al. | Characterization of methane production and microbial community shifts during waste activated sludge degradation in microbial electrolysis cells | |
Chang et al. | Evaluation of different pretreatment methods for preparing hydrogen-producing seed inocula from waste activated sludge | |
Li et al. | Bioelectricity production from acidic food waste leachate using microbial fuel cells: effect of microbial inocula | |
Batlle-Vilanova et al. | Deciphering the electron transfer mechanisms for biogas upgrading to biomethane within a mixed culture biocathode | |
Yu et al. | Effect of applied voltage and temperature on methane production and microbial community in microbial electrochemical anaerobic digestion systems treating swine manure | |
Wang et al. | Substrate removal and electricity generation in a membrane-less microbial fuel cell for biological treatment of wastewater | |
Hu et al. | Nitrogenous heterocyclic compounds degradation in the microbial fuel cells | |
Wang et al. | Hydrogen production using biocathode single-chamber microbial electrolysis cells fed by molasses wastewater at low temperature | |
Guo et al. | The influence of microbial synergistic and antagonistic effects on the performance of refinery wastewater microbial fuel cells | |
Zhao et al. | Enriching functional microbes with electrode to accelerate the decomposition of complex substrates during anaerobic digestion of municipal sludge | |
CN102412409B (en) | A microbial fuel cell device based on organic matter in soil | |
Cai et al. | Electro-driven methanogenic microbial community diversity and variability in the electron abundant niche | |
Shen et al. | Enhancement of syntrophic acetate oxidation pathway via single walled carbon nanotubes addition under high acetate concentration and thermophilic condition | |
CN102276064A (en) | Anaerobic-aerobic integrated microbial fuel cell wastewater treatment system | |
Uggetti et al. | Photosynthetic membrane-less microbial fuel cells to enhance microalgal biomass concentration | |
CN104112868B (en) | A kind of single chamber is without amboceptor alga microbial fuel cell construction method and device | |
Qi et al. | Development of a rapid startup method of direct electron transfer-dominant methanogenic microbial electrosynthesis | |
CN103861463A (en) | Electrochemically assisted biological denitrification method of source separated urine | |
Liu et al. | Two-step heating mode with the same energy consumption as conventional heating for enhancing methane production during anaerobic digestion of swine wastewater | |
Zhang et al. | Effect of copper ions on glucose fermentation pathways in bioelectrochemical system | |
Mai et al. | Stratified microbial structure and activity within anode biofilm during electrochemically assisted brewery wastewater treatment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20220412 |