CN114307689A - A kind of preparation method of wet gel conversion synthesis A-type zeolite membrane - Google Patents
A kind of preparation method of wet gel conversion synthesis A-type zeolite membrane Download PDFInfo
- Publication number
- CN114307689A CN114307689A CN202210048911.6A CN202210048911A CN114307689A CN 114307689 A CN114307689 A CN 114307689A CN 202210048911 A CN202210048911 A CN 202210048911A CN 114307689 A CN114307689 A CN 114307689A
- Authority
- CN
- China
- Prior art keywords
- preparation
- type zeolite
- coating
- carrier
- molecular sieve
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 229910021536 Zeolite Inorganic materials 0.000 title claims abstract description 52
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 title claims abstract description 52
- 239000010457 zeolite Substances 0.000 title claims abstract description 52
- 239000012528 membrane Substances 0.000 title claims abstract description 43
- 238000002360 preparation method Methods 0.000 title claims abstract description 21
- 230000015572 biosynthetic process Effects 0.000 title claims abstract description 15
- 238000006243 chemical reaction Methods 0.000 title claims abstract description 14
- 238000003786 synthesis reaction Methods 0.000 title claims abstract description 14
- 239000011240 wet gel Substances 0.000 title claims abstract description 10
- 238000000034 method Methods 0.000 claims abstract description 53
- 239000013078 crystal Substances 0.000 claims abstract description 30
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 28
- 239000000499 gel Substances 0.000 claims abstract description 26
- 238000000576 coating method Methods 0.000 claims abstract description 18
- 239000011248 coating agent Substances 0.000 claims abstract description 17
- 239000000463 material Substances 0.000 claims abstract description 6
- 239000002808 molecular sieve Substances 0.000 claims description 31
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 claims description 31
- 238000002425 crystallisation Methods 0.000 claims description 24
- 230000008025 crystallization Effects 0.000 claims description 24
- 239000007788 liquid Substances 0.000 claims description 20
- 238000007598 dipping method Methods 0.000 claims description 16
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 12
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims description 12
- 239000008367 deionised water Substances 0.000 claims description 11
- 229910021641 deionized water Inorganic materials 0.000 claims description 11
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims description 9
- 239000011734 sodium Substances 0.000 claims description 9
- 238000003756 stirring Methods 0.000 claims description 9
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 8
- 238000004528 spin coating Methods 0.000 claims description 8
- 229920000742 Cotton Polymers 0.000 claims description 7
- 239000003513 alkali Substances 0.000 claims description 7
- 239000011148 porous material Substances 0.000 claims description 7
- 238000005507 spraying Methods 0.000 claims description 7
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 6
- 229910052782 aluminium Inorganic materials 0.000 claims description 6
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 6
- 239000002245 particle Substances 0.000 claims description 6
- 230000008569 process Effects 0.000 claims description 6
- 229910052710 silicon Inorganic materials 0.000 claims description 6
- 239000010703 silicon Substances 0.000 claims description 6
- 239000000126 substance Substances 0.000 claims description 6
- 239000012510 hollow fiber Substances 0.000 claims description 5
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 claims description 4
- 238000010438 heat treatment Methods 0.000 claims description 4
- 239000000203 mixture Substances 0.000 claims description 4
- 239000000843 powder Substances 0.000 claims description 4
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 claims description 4
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 claims description 3
- 229910052708 sodium Inorganic materials 0.000 claims description 3
- 238000001771 vacuum deposition Methods 0.000 claims description 3
- 238000009736 wetting Methods 0.000 claims description 3
- 230000008859 change Effects 0.000 claims description 2
- KZHJGOXRZJKJNY-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Si]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O KZHJGOXRZJKJNY-UHFFFAOYSA-N 0.000 claims description 2
- 229910052751 metal Inorganic materials 0.000 claims description 2
- 239000002184 metal Substances 0.000 claims description 2
- 229910052863 mullite Inorganic materials 0.000 claims description 2
- 238000005470 impregnation Methods 0.000 claims 1
- 230000004048 modification Effects 0.000 claims 1
- 238000012986 modification Methods 0.000 claims 1
- 230000018044 dehydration Effects 0.000 abstract description 12
- 238000006297 dehydration reaction Methods 0.000 abstract description 12
- 238000000926 separation method Methods 0.000 abstract description 10
- 230000004907 flux Effects 0.000 abstract description 9
- 238000005373 pervaporation Methods 0.000 abstract description 6
- 239000012466 permeate Substances 0.000 abstract description 4
- CSDREXVUYHZDNP-UHFFFAOYSA-N alumanylidynesilicon Chemical compound [Al].[Si] CSDREXVUYHZDNP-UHFFFAOYSA-N 0.000 abstract description 2
- 238000013341 scale-up Methods 0.000 abstract description 2
- 239000000243 solution Substances 0.000 description 21
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 20
- 238000011065 in-situ storage Methods 0.000 description 4
- 239000005416 organic matter Substances 0.000 description 4
- 238000011160 research Methods 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 238000005265 energy consumption Methods 0.000 description 3
- 238000001027 hydrothermal synthesis Methods 0.000 description 3
- 150000002894 organic compounds Chemical class 0.000 description 3
- 230000002194 synthesizing effect Effects 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 238000002441 X-ray diffraction Methods 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000004821 distillation Methods 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 230000007935 neutral effect Effects 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 238000007670 refining Methods 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 238000001179 sorption measurement Methods 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 238000001308 synthesis method Methods 0.000 description 2
- 239000002253 acid Substances 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- ANBBXQWFNXMHLD-UHFFFAOYSA-N aluminum;sodium;oxygen(2-) Chemical compound [O-2].[O-2].[Na+].[Al+3] ANBBXQWFNXMHLD-UHFFFAOYSA-N 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000001354 calcination Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- IDGUHHHQCWSQLU-UHFFFAOYSA-N ethanol;hydrate Chemical compound O.CCO IDGUHHHQCWSQLU-UHFFFAOYSA-N 0.000 description 1
- 239000012847 fine chemical Substances 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000000543 intermediate Substances 0.000 description 1
- 238000000622 liquid--liquid extraction Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000002715 modification method Methods 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- -1 polytetrafluoroethylene Polymers 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 238000010992 reflux Methods 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 230000034655 secondary growth Effects 0.000 description 1
- 229910001388 sodium aluminate Inorganic materials 0.000 description 1
- 238000000638 solvent extraction Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 230000008719 thickening Effects 0.000 description 1
- 230000036962 time dependent Effects 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 238000004065 wastewater treatment Methods 0.000 description 1
Images
Landscapes
- Silicates, Zeolites, And Molecular Sieves (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
Abstract
本发明提供了一种湿凝胶转化合成A型沸石膜的制备方法,属于沸石膜材料领域及有机物脱水技术领域。本发明采用湿凝胶转化法制备A型沸石膜,将一定配比凝胶合成液涂覆在涂晶后的载体表面,高温晶化,表面生长均匀连续,膜厚度约4μm,将其用于渗透蒸发时具有较高的渗透水通量及分离因子,相比于高硅铝比沸石膜具有较好的渗透水通量,采用本方法可以解决平板载体工业化放大的难题,降低膜制备的成本。
The invention provides a preparation method of wet gel conversion synthesis A-type zeolite membrane, belonging to the field of zeolite membrane material and the technical field of organic dehydration. The invention adopts the wet gel conversion method to prepare the A-type zeolite membrane, coats the surface of the carrier after the crystal coating with a certain proportion of the gel synthesis solution, crystallizes at a high temperature, the surface grows uniformly and continuously, and the membrane thickness is about 4 μm. It has higher permeate water flux and separation factor during pervaporation. Compared with high silicon-aluminum ratio zeolite membrane, it has better permeate water flux. Using this method can solve the problem of industrial scale-up of flat supports and reduce the cost of membrane preparation. .
Description
技术领域technical field
本发明属于沸石膜材料领域及有机物脱水技术领域,具体地说是一种湿凝胶转化合成A型沸石膜的制备方法。The invention belongs to the field of zeolite membrane material and the technical field of organic dehydration, in particular to a preparation method for synthesizing A-type zeolite membrane by wet gel conversion.
背景技术Background technique
随着我国化工领域发展的日新月异,在石油化工、精细化工、有机化工、医药化工等领域中有机物的精制变得越来越重要,而有机物精制过程中面临的最大的难题便是有机物的脱水。无论在化工合成还是废水处理中,水分的存在对于有机物来说都是难以逾越的一道鸿沟。有机物常常与水形成共沸物,这便加大了其脱水的难度,因此,寻找实用有效的有机物脱水的方法迫在眉睫。有机物脱水受到了全球研究者和政府的关注,是工程领域的研究热点。With the rapid development of my country's chemical industry, the refining of organic compounds has become more and more important in petrochemical, fine chemical, organic chemical, pharmaceutical and chemical fields, and the biggest problem in the process of organic refining is the dehydration of organic compounds. Whether in chemical synthesis or wastewater treatment, the presence of moisture is an insurmountable gap for organic matter. Organic matter often forms an azeotrope with water, which increases the difficulty of its dehydration. Therefore, it is urgent to find a practical and effective method for dehydration of organic matter. Dehydration of organic matter has attracted the attention of researchers and governments around the world, and is a research hotspot in the field of engineering.
目前乙醇脱水工业面临的主要问题是乙醇和水可以形成共沸物。质量分数或体积分数为97.2%的乙醇水溶液在78.15℃,形成传统精馏方式无法分离的共沸物。传统精馏方式只对10-85wt%的乙醇溶液进可以实现有效分离,如果乙醇水的比例接近共沸物的组成,乙醇含量超过86%,传统精馏所需的能耗就越大。尤其是目标产物是无水乙醇时,对设备的回流比要求要更高。乙醇溶液以及大部分有机溶剂脱水分离通常分为两个阶段,一般常规的蒸馏方法中溶液被浓缩到92%左右,然后对浓缩溶液进行特殊处理,得到无水乙醇和其他高纯度有机物。常用的脱水精制方法包括精馏、液-液萃取和吸附。对于精馏而言,工艺很成熟,不过能耗过高,引入组分易造成污染[Jaime J A,Rodríguez G,Gil ID.Industrial&Engineering Chemistry Research,2018,57(29):9615-9626.],吸附处理量很大,能耗也很低,不过再生比较复杂[Moulai S,Ghezini R,Hasnaoui A,etal.Research on Chemical Intermediates,2019,45(3):1653-1668],膜分离由于能耗较低,无污染,再生方便广受大家欢迎,但是处理量较小。A major problem currently faced by the ethanol dehydration industry is that ethanol and water can form azeotropes. At 78.15°C, the 97.2% ethanol aqueous solution by mass fraction or volume fraction forms an azeotrope that cannot be separated by traditional distillation methods. The traditional rectification method can achieve effective separation only for 10-85wt% ethanol solution. If the proportion of ethanol water is close to the composition of azeotrope, and the ethanol content exceeds 86%, the energy consumption required by traditional rectification will be greater. Especially when the target product is anhydrous ethanol, the reflux ratio of the equipment is required to be higher. The dehydration and separation of ethanol solution and most organic solvents is usually divided into two stages. Generally, the solution is concentrated to about 92% in the conventional distillation method, and then the concentrated solution is specially treated to obtain absolute ethanol and other high-purity organic compounds. Commonly used dehydration purification methods include rectification, liquid-liquid extraction and adsorption. For rectification, the process is very mature, but the energy consumption is too high, and the introduction of components is easy to cause pollution [Jaime J A, Rodríguez G, Gil ID. Industrial & Engineering Chemistry Research, 2018, 57(29): 9615-9626.], Adsorption The treatment capacity is large and the energy consumption is also low, but the regeneration is more complicated [Moulai S, Ghezini R, Hasnaoui A, et al. Research on Chemical Intermediates, 2019, 45(3): 1653-1668]. Low, pollution-free, and easy to regenerate, it is widely welcomed by everyone, but the processing capacity is small.
相比于有机膜材料,无机沸石膜材料不仅具有高的机械稳定性及抗生物污染性,还具有规则的结晶孔道、可调控的骨架硅铝比(亲疏水性)等特点,因此无机沸石膜用于有机物脱水不仅具有良好的稳定性,还具备优异的分离因子及较高的渗透水通量。Compared with organic membrane materials, inorganic zeolite membrane materials not only have high mechanical stability and anti-biofouling properties, but also have regular crystalline pores, adjustable framework silicon-alumina ratio (hydrophilic and hydrophobic) and other characteristics, so inorganic zeolite membranes are used in inorganic zeolite membranes. It not only has good stability for organic dehydration, but also has excellent separation factor and high permeate water flux.
传统的水热合成法由于工艺成熟,方便简单而受大家广泛应用,但成膜需要多次晶化,Masuda等人利用多次原位合成的方法制备沸石膜,试图通过增加合成次数使膜层增厚来弥补[Masuda T,Hara H.Microporous Mater,1995,3(4-5):565-571]。目前NaA型沸石分子筛膜多采用二次生长法制备而成的,这种方法可以大大减少了晶化次数[刘光瑞,杨建华,王磊,等.化工进展,2019,38(12):8.]。湿凝胶转化法由于在沸石结晶过程中溶剂的缺乏有效降低了自身压力,消除了许多安全隐患,在较高温度下也可以快速合成,对于膜的机械强度也有一定提高,更有利于反应机理的研究,从而促进结晶度的提高。湿凝胶转化法更加节省原料,只需要涂敷一次凝胶层即可晶化,对于环境污染及工业化放大具有重要意义。The traditional hydrothermal synthesis method is widely used due to its mature technology, convenience and simplicity, but film formation requires multiple crystallizations. Masuda et al. used multiple in-situ synthesis methods to prepare zeolite membranes, trying to increase the number of synthesis times. Thickening to compensate [Masuda T, Hara H. Microporous Mater, 1995, 3(4-5):565-571]. At present, NaA zeolite molecular sieve membranes are mostly prepared by secondary growth method, which can greatly reduce the number of crystallization [Liu Guangrui, Yang Jianhua, Wang Lei, et al. Progress in Chemical Industry, 2019, 38(12):8.] . Due to the lack of solvent in the zeolite crystallization process, the wet gel conversion method effectively reduces its own pressure and eliminates many potential safety hazards. It can also be synthesized quickly at higher temperatures, and the mechanical strength of the membrane is also improved to a certain extent, which is more conducive to the reaction mechanism. research, thereby promoting the improvement of crystallinity. The wet gel conversion method saves more raw materials, and only needs to coat the gel layer once to crystallize, which is of great significance for environmental pollution and industrial scale-up.
发明内容SUMMARY OF THE INVENTION
本发明针对上述有机物脱水过程传统合成方法成本高,对膜机械强度伤害大等问题,提出一种采用湿凝胶转化法合成A型沸石膜的制备方法。Aiming at the problems of high cost and great damage to the mechanical strength of the membrane by the traditional synthesis method of the above-mentioned organic dehydration process, the present invention proposes a preparation method for synthesizing the A-type zeolite membrane by the wet gel conversion method.
本发明的技术方案:Technical scheme of the present invention:
一种湿凝胶转化合成A型沸石膜的制备方法,在多孔载体表面进行修饰、涂覆晶种液获得晶种层、涂覆涂膜液获得凝胶层;然后将所述载体晶化处理后得到所述的A型沸石分子筛膜;所述多孔载体经过修饰后引入晶种并直接涂敷凝胶液制备凝胶,在蒸气环境下直接转化为分子筛膜,在合成过程中通过调节合成压力来控制成膜质量。此方法在廉价的大孔载体上预涂晶种层,采用凝胶法制备出的A型沸石分子筛膜的分离性能优异,具有一定的稳定性。该方法重复性高、有效节约溶剂、膜性能高。A preparation method for synthesizing A-type zeolite membrane by wet gel conversion. The surface of a porous carrier is modified, coated with a crystal seed liquid to obtain a crystal seed layer, and coated with a coating liquid to obtain a gel layer; and then the carrier is crystallized Then, the A-type zeolite molecular sieve membrane is obtained; the porous carrier is modified and then introduced into crystal seeds and directly coated with a gel solution to prepare a gel, which is directly converted into a molecular sieve membrane in a vapor environment, and the synthesis pressure is adjusted during the synthesis process. to control the film quality. In this method, a seed layer is pre-coated on an inexpensive macroporous carrier, and the A-type zeolite molecular sieve membrane prepared by the gel method has excellent separation performance and certain stability. The method has high repeatability, effective solvent saving and high membrane performance.
具体步骤如下:Specific steps are as follows:
(1)修饰载体:将多孔载体用去离子水润湿后,将粒径均一的氧化铝粉末擦涂在多孔载体表面后,干燥再用脱脂棉擦试;(1) Modified carrier: after wetting the porous carrier with deionized water, wipe the alumina powder with uniform particle size on the surface of the porous carrier, dry it and wipe it with absorbent cotton;
(2)涂覆晶种层:将A型沸石分子筛晶种分散在去离子水中,得到A型沸石分子筛晶种液,将此晶种液涂覆在多孔载体表面,再用脱脂棉擦干,获得均一致密、无缺陷晶种层;(2) Coating seed layer: Disperse A-type zeolite molecular sieve crystal seeds in deionized water to obtain A-type zeolite molecular sieve seed crystal liquid, coat the seed crystal liquid on the surface of the porous carrier, and then dry it with absorbent cotton to obtain Uniform dense, defect-free seed layer;
(3)制备凝胶液:以硅溶胶为硅源、偏铝酸钠为铝源、氢氧化钠为碱源,将铝源、碱源、硅源混合,继续搅拌陈化4~6小时形成稳定的SiO2-Na2O-Al2O3-H2O体系;其中,各组分摩尔比为:SiO2/Al2O3=1~5,H2O/SiO2=50~60,Na2O/SiO2=1~2;(3) Preparation of gel solution: using silica sol as the silicon source, sodium metaaluminate as the aluminum source, and sodium hydroxide as the alkali source, mix the aluminum source, the alkali source and the silicon source, and continue to stir and age for 4 to 6 hours to form A stable SiO 2 -Na 2 O-Al 2 O 3 -H 2 O system; wherein, the molar ratios of the components are: SiO 2 /Al 2 O 3 =1-5, H 2 O/SiO 2 =50-60 , Na 2 O/SiO 2 =1~2;
(4)涂覆凝胶层:以步骤(3)中所得的凝胶液为涂膜液,均匀涂覆在步骤(2)得到的多孔载体表面;(4) Coating the gel layer: using the gel solution obtained in the step (3) as a coating solution, uniformly coat the surface of the porous carrier obtained in the step (2);
(5)晶化:晶化前,向釜内添加占釜体体积0.1~2%的水,用于调节釜内的蒸汽压;再将步骤(4)得到的多孔载体置于高压釜中于80~120℃下晶化3~5.5h。(5) Crystallization: before crystallization, add water that accounts for 0.1 to 2% of the volume of the still body to adjust the vapor pressure in the still; then place the porous carrier obtained in step (4) in the autoclave at Crystallize at 80~120℃ for 3~5.5h.
所述晶化反应条件为在80~120℃下反应3-5.5h,晶化时间随着晶化温度升高而降低,优选晶化反应条件为100℃下反应4h。The crystallization reaction conditions are 3-5.5 hours at 80-120° C., and the crystallization time decreases with the increase of the crystallization temperature. The preferred crystallization reaction conditions are 100° C. for 4 hours.
步骤(2)中,A型沸石分子筛晶种液中A型沸石分子筛的含量为0.5~2%,A型沸石分子筛晶体颗粒大小为0.2~3μm,优选A型沸石分子筛尺寸为载体孔径的0.5~1倍。In step (2), the content of the A-type zeolite molecular sieve in the A-type zeolite molecular sieve crystal seed liquid is 0.5-2%, the A-type zeolite molecular sieve crystal particle size is 0.2-3 μm, and preferably the A-type zeolite molecular sieve size is 0.5-3 μm of the carrier aperture. 1 times.
步骤(2)中,将A型沸石分子筛晶种液在多孔载体表面引入晶种层的方法为浸渍法、热浸渍法、变温热浸渍法、真空涂晶法、喷涂法、擦涂法或旋涂法。In step (2), the method for introducing the A-type zeolite molecular sieve seed liquid into the seed layer on the surface of the porous carrier is dipping method, hot dipping method, variable temperature thermal dipping method, vacuum coating crystal method, spraying method, wiping method or spin coating.
步骤(3)中,凝胶液的制备条件为:在20~50℃下搅拌4~6h。In step (3), the preparation conditions of the gel solution are: stirring at 20-50° C. for 4-6 hours.
所述A型沸石膜合成液配制过程为搅拌溶解氢氧化钠、铝酸钠于水中,待溶液澄清后加入硅溶胶,搅拌陈化4-6h。The preparation process of the A-type zeolite membrane synthesis solution is to stir and dissolve sodium hydroxide and sodium aluminate in water, add silica sol after the solution is clarified, and stir and age for 4-6 hours.
步骤(4)中,制备凝胶层的方法为浸渍法、旋涂法、流动法、真空法、喷涂法或旋涂法;单通道管式、中空纤维载体优选浸渍法;多通道管式及板式载体优选流动法。In step (4), the method for preparing the gel layer is dipping method, spin coating method, flow method, vacuum method, spraying method or spin coating method; single-channel tubular type, hollow fiber carrier is preferably dipping method; multi-channel tubular type and The plate carrier is preferably a flow method.
步骤(5)中,晶化温度为80~120℃,晶化时间为3~5.5h。In step (5), the crystallization temperature is 80-120° C., and the crystallization time is 3-5.5 h.
所述多孔载体的材质为氧化铝、氧化锆、莫来石、多孔金属;多孔载体的形式为单通道及多通道管式、板式、中空纤维;所述多孔载体的孔径为0.02~40μm。The material of the porous carrier is alumina, zirconia, mullite, and porous metal; the form of the porous carrier is single-channel and multi-channel tubular, plate, and hollow fibers; the pore diameter of the porous carrier is 0.02-40 μm.
晶化加热方式采用常规加热及微波。The crystallization heating method adopts conventional heating and microwave.
所述多孔载体为α-Al2O3管、中空纤维或不锈钢管,优选α-Al2O3管。The porous carrier is an α-Al 2 O 3 tube, a hollow fiber or a stainless steel tube, preferably an α-Al 2 O 3 tube.
所述多孔载体孔径为0.5~5μm,优选载体孔径为2~3μm。The pore size of the porous carrier is 0.5-5 μm, preferably the pore size of the carrier is 2-3 μm.
所述氧化铝粒子修饰方法为擦涂法、热浸渍法或喷涂法,优选擦涂法。The alumina particle modification method is rubbing method, hot dipping method or spraying method, preferably rubbing method.
载体成膜后迅速用清水清洗表面杂质并用去离子水浸泡12h。After the carrier film was formed, the surface impurities were quickly washed with clean water and soaked in deionized water for 12 h.
所述A型沸石分子筛膜,温度75℃时,对90wt.%乙醇/水的通量为2.62kg·m-2·h-1,分离因子大于10000。The A-type zeolite molecular sieve membrane has a flux of 2.62 kg·m -2 ·h -1 to 90 wt.% ethanol/water at a temperature of 75° C., and the separation factor is greater than 10,000.
本发明的有益效果:A型沸石膜用于渗透蒸发醇类脱水,具有较高分离因子,且相比于高硅铝比的沸石膜具有较大的渗透通量,且湿凝胶转化法操作成本低,较传统水热方法更容易。Beneficial effects of the present invention: A-type zeolite membrane is used for pervaporation of alcohols dehydration, has higher separation factor, and has larger permeation flux than zeolite membrane with high silicon-aluminum ratio, and operates by wet gel conversion method Low cost and easier than traditional hydrothermal methods.
附图说明Description of drawings
图1为渗透蒸发(PV)装置示意图,其中,a磁力搅拌器,b水浴锅,c膜管,d膜组件,e原料储罐,f冷阱,g液氮,h缓冲瓶,i真空表,j真空泵;Figure 1 is a schematic diagram of a pervaporation (PV) device, wherein a magnetic stirrer, b water bath, c membrane tube, d membrane module, e raw material storage tank, f cold trap, g liquid nitrogen, h buffer bottle, i vacuum meter , j vacuum pump;
图2为A型沸石膜表面扫描电镜(SEM)图;Fig. 2 is A-type zeolite membrane surface scanning electron microscope (SEM) figure;
图3为A型沸石膜截面扫描电镜(SEM)图;Fig. 3 is A-type zeolite membrane cross section scanning electron microscope (SEM) figure;
图4为A型沸石膜渗透蒸发水热稳定性图;Fig. 4 is the hydrothermal stability diagram of A-type zeolite membrane pervaporation;
图5为A型沸石膜的x射线衍射图(XRD)图,其中a为膜,b为晶体。Figure 5 is an x-ray diffraction pattern (XRD) pattern of the A-type zeolite membrane, wherein a is the membrane and b is the crystal.
具体实施方式Detailed ways
以下结合附图和技术方案,进一步说明本发明的具体实施方式。The specific embodiments of the present invention will be further described below with reference to the accompanying drawings and technical solutions.
(1)修饰载体:将多孔载体用去离子水润湿后,将3μm的氧化铝粉末擦涂在多孔载体表面,随后放入100℃烘箱内干燥;(1) Modified carrier: after wetting the porous carrier with deionized water, rubbed 3 μm alumina powder on the surface of the porous carrier, and then put it in a 100°C oven to dry;
(2)处理载体:经过修饰的载体干燥后,用脱脂棉擦干载体。(2) Handling the carrier: After the modified carrier is dried, dry the carrier with absorbent cotton.
(3)涂覆晶种层:将A型沸石分子筛晶种分散在去离子水中,得到A型沸石分子筛晶种液,将此晶种液涂覆在多孔载体表面,获得均一致密、无缺陷晶种层;(3) Coating seed layer: Disperse A-type zeolite molecular sieve crystal seeds in deionized water to obtain A-type zeolite molecular sieve crystal seed liquid, and coat the seed crystal liquid on the surface of the porous carrier to obtain uniform, dense, defect-free crystals seed layer;
(4)制备凝胶液:本发明以合成液为凝胶涂膜液,其中水的含量较少;所述合成液以硅溶胶为硅源,偏铝酸钠为铝源,氢氧化钠为碱源,将铝源、碱源、硅源加入混合,继续搅拌陈化4~6小时形成稳定的SiO2-Na2O-Al2O3-H2O体系。其中,各组分摩尔比为:SiO2/Al2O3=1~5,H2O/SiO2=50~60,Na2O/SiO2=1~2;(4) Preparation of gel solution: the present invention uses the synthetic solution as the gel coating solution, wherein the content of water is less; the synthetic solution uses silica sol as the silicon source, sodium metaaluminate as the aluminum source, and sodium hydroxide as the Alkali source, add aluminum source, alkali source and silicon source to mix, continue to stir and age for 4-6 hours to form a stable SiO 2 -Na 2 O-Al 2 O 3 -H 2 O system. Wherein, the molar ratio of each component is: SiO 2 /Al 2 O 3 =1-5, H 2 O/SiO 2 =50-60, Na 2 O/SiO 2 =1-2;
(5)处理载体:经过涂晶的载体固化后,用脱脂棉擦干载体。(5) Handling the carrier: After the crystal-coated carrier is cured, dry the carrier with absorbent cotton.
(6)涂覆凝胶层:以(4)中所得的凝胶液为涂膜液,均匀涂覆在载体表面;(6) Coating gel layer: take the gel solution obtained in (4) as a coating solution, and evenly coat it on the surface of the carrier;
(7)晶化:将载体置于高压釜中于80~120℃下晶化3~5.5h。(7) Crystallization: The carrier is placed in an autoclave and crystallized at 80-120° C. for 3-5.5 hours.
在所述步骤(3)中,A型沸石分子筛晶种液中A型沸石分子筛的含量为0.5~2%,晶种液中A型沸石分子筛晶体颗粒大小为0.2~3μm。In the step (3), the content of the A-type zeolite molecular sieve in the A-type zeolite molecular sieve seed liquid is 0.5-2%, and the A-type zeolite molecular sieve crystal particle size in the A-type zeolite molecular sieve liquid is 0.2-3 μm.
在所述步骤(3)中,将A型沸石分子筛晶种液在多孔载体表面引入晶种层的方法为浸渍法、热浸渍法、变温热浸渍法、真空涂晶法、喷涂法、擦涂法或旋涂法,优选为变温热浸渍法。In the step (3), the method of introducing the A-type zeolite molecular sieve seed liquid into the seed layer on the surface of the porous carrier is dipping method, hot dipping method, variable temperature thermal dipping method, vacuum coating crystal method, spraying method, rubbing method, etc. A coating method or a spin coating method, preferably a variable temperature dipping method.
在所述步骤(4)中,凝胶液的制备条件为:在20~50℃下搅拌4~6h,优选为在30℃下搅拌4h。In the step (4), the preparation conditions of the gel solution are: stirring at 20-50° C. for 4-6 hours, preferably stirring at 30° C. for 4 hours.
在所述步骤(6)中,涂覆凝胶层的方法为浸渍法、热浸渍法、真空法、喷涂法、擦涂法或旋涂法,优选为浸渍法。In the step (6), the method of coating the gel layer is dipping method, hot dipping method, vacuum method, spraying method, wiping method or spin coating method, preferably dipping method.
在所述步骤(7)中,晶化温度为80~120℃,晶化时间为3~5.5h,优选为晶化温度100℃,晶化时间4h。In the step (7), the crystallization temperature is 80-120°C, and the crystallization time is 3-5.5h, preferably the crystallization temperature is 100°C, and the crystallization time is 4h.
为了进一步描述本发明,下面给出几个具体实施案例,但专利权利不局限于以下例子。In order to further describe the present invention, several specific implementation examples are given below, but the patent rights are not limited to the following examples.
实施例1Example 1
(1)预处理α-Al2O3载体管:管外径12mm,管内径8mm,平均孔径2~3μm,孔隙率约30~40%;用800目和1500目的砂纸将载体管的外表面先后打磨一遍;用去离子水超声振荡去除载体管上残留的沙粒,重复几次,直至用于洗管的水不再变浑浊,然后依次用酸、碱超声震荡以清除载体孔内残留物,并用去离子水洗至中性;最后将管置于烘箱中干燥,再置于马弗炉中550℃下锻烧6h后,两端封好备用;(1) Pretreatment α-Al 2 O 3 carrier tube: the outer diameter of the tube is 12 mm, the inner diameter of the tube is 8 mm, the average pore diameter is 2-3 μm, and the porosity is about 30-40%; the outer surface of the carrier tube is sanded with 800-mesh and 1500-mesh sandpaper. Grind one after another; use deionized water to ultrasonically remove the residual sand on the carrier tube, repeat several times until the water used for washing the tube no longer becomes turbid, and then use acid and alkali ultrasonic vibration in turn to remove the residues in the carrier pores , and washed with deionized water until neutral; finally, the tube was dried in an oven, and then placed in a muffle furnace for calcination at 550 ° C for 6 hours, and both ends were sealed for use;
(2)将步骤(1)得到的载体管置于去离子水中润湿10~15s,然后用3μm的球形氧化铝粉末进行擦涂修饰,得到修饰后的载体;(2) placing the carrier tube obtained in step (1) in deionized water for 10 to 15 s, and then rubbing and modifying it with 3 μm spherical alumina powder to obtain a modified carrier;
(3)将步骤(2)得到的载体管置于175℃下预热3~4h,然后迅速浸渍到质量浓度为2wt.%的大晶种(3μm)悬浮液Ⅰ中,在80℃下过夜干燥,在175℃下固化3~4h,得晶种层负载载体Ⅰ;(3) The carrier tube obtained in step (2) was preheated at 175°C for 3 to 4 hours, and then quickly immersed in suspension I of large seed crystals (3 μm) with a mass concentration of 2 wt.%, at 80°C overnight Drying and curing at 175°C for 3-4 hours to obtain the seed layer supported carrier I;
(4)用脱脂棉将载体表面的晶种擦去,晶种层负载载体Ⅰ置于80℃下预热3~4h,然后浸渍到质量浓度为的0.5wt.%的小晶种(200nm)悬浮液Ⅱ中,在80℃下过夜干燥,在175℃下固化3~4h,得晶种层负载载体Ⅱ;(4) Wipe off the seed crystals on the surface of the carrier with absorbent cotton, and place the seed layer supported carrier I at 80°C for 3 to 4 hours, and then immerse it into a small seed crystal (200 nm) with a mass concentration of 0.5 wt.% to suspend In liquid II, drying at 80°C overnight, and curing at 175°C for 3 to 4 hours to obtain seed layer supported carrier II;
(5)以摩尔比为1Al2O3:2SiO2:2Na2O:100H2O配成合成液,在室温下搅拌陈化4~6h;(5) A synthesis solution was prepared with a molar ratio of 1Al 2 O 3 : 2SiO 2 : 2Na 2 O : 100H 2 O, and the mixture was stirred and aged for 4-6 hours at room temperature;
(6)将载体管Ⅱ浸渍在合成液中约15~20s,得到有凝胶层的负载载体Ⅲ(6) Immerse the carrier tube II in the synthesis solution for about 15-20 s to obtain the supported carrier III with a gel layer
(7)将(6)得到的负载载体Ⅲ装入带有聚四氟内衬的不锈钢晶化釜中,置于100℃烘箱中晶化4h;(7) Load carrier III obtained in (6) into a stainless steel crystallization kettle with a polytetrafluoroethylene lining, and place it in an oven at 100° C. for crystallization for 4 hours;
(8)将合成后的A型分子筛沸石膜用去离子水洗涤至中性,置于50℃烘箱中干燥。(8) The synthesized A-type molecular sieve zeolite membrane was washed with deionized water until neutral, and dried in an oven at 50°C.
实施例2Example 2
除(7)之外,其余步骤均与实施例1相同;Except (7), all other steps are identical with
改变合成条件,在釜底加入1mL的水,合成A型沸石分子筛膜,进行75℃下90wt.%乙醇/水渗透蒸发测试后得到其性能为膜的通量和分离因子分别为1.30kg·m-2·h-1,1491。Change the synthesis conditions, add 1 mL of water at the bottom of the kettle, synthesize the A-type zeolite molecular sieve membrane, and carry out the pervaporation test of 90wt.% ethanol/water at 75 °C. The flux and separation factor of the membrane are 1.30 kg m, respectively. -2 · h -1 , 1491.
实施例3Example 3
将实施例1制备所得的A型沸石分子筛膜分离90wt.%乙醇/水体系进行时间依存性测试,测试结果如图4所示。经过10h测试后,总通量从起始2.62kg·m-2·h-1降低至2.32kg·m-2·h-1左右,渗透侧水含量基本保持不变。The A-type zeolite molecular sieve membrane prepared in Example 1 was used to separate the 90 wt.% ethanol/water system for a time-dependent test, and the test results are shown in FIG. 4 . After 10h of testing, the total flux decreased from the initial 2.62kg·m-2·h-1 to about 2.32kg·m-2·h-1, and the water content on the permeate side remained basically unchanged.
对比例1Comparative Example 1
采用常规原位水热合成法合成A型沸石分子筛膜,实施例1中第(1)、(2)、(5)步不变,第(3)、(4)步去掉,第(6)步将陈化后的合成液沿釜内衬壁缓慢导入反应釜,高温晶化。从表1可以看出,在大孔载体上直接原位合成分离因子仅有1.45而通量达到了23.53kg·m2·h-1,说明原位生长的NaA分子筛膜不连续致密。The A-type zeolite molecular sieve membrane was synthesized by conventional in-situ hydrothermal synthesis method. Step by step, the synthetic liquid after aging is slowly introduced into the reaction kettle along the inner lining wall of the kettle, and crystallized at high temperature. It can be seen from Table 1 that the separation factor of the direct in situ synthesis on the macroporous carrier is only 1.45 and the flux reaches 23.53 kg·m 2 ·h -1 , indicating that the NaA zeolite membrane grown in situ is discontinuous and dense.
表1 实施例1及对比例1的通量及分离因子Table 1 Flux and separation factor of Example 1 and Comparative Example 1
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210048911.6A CN114307689A (en) | 2022-01-17 | 2022-01-17 | A kind of preparation method of wet gel conversion synthesis A-type zeolite membrane |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210048911.6A CN114307689A (en) | 2022-01-17 | 2022-01-17 | A kind of preparation method of wet gel conversion synthesis A-type zeolite membrane |
Publications (1)
Publication Number | Publication Date |
---|---|
CN114307689A true CN114307689A (en) | 2022-04-12 |
Family
ID=81028595
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210048911.6A Withdrawn CN114307689A (en) | 2022-01-17 | 2022-01-17 | A kind of preparation method of wet gel conversion synthesis A-type zeolite membrane |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114307689A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115121132A (en) * | 2022-07-25 | 2022-09-30 | 浙江汇甬新材料有限公司 | NaA/NaY type zeolite molecular sieve membrane and preparation method thereof |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007182345A (en) * | 2006-01-06 | 2007-07-19 | National Institute Of Advanced Industrial & Technology | Zeolite separation membrane |
CN104437116A (en) * | 2014-12-08 | 2015-03-25 | 大连理工大学 | Method for performing induced synthesis on MOFs (metal-organic frameworks) membrane by implanting homologous metal oxide particles into surface of macroporous carrier by virtue of swabbing process |
CN109999676A (en) * | 2019-05-05 | 2019-07-12 | 大连理工大学 | The preparation method of T-type zeolite molecular sieve membrane |
CN110898684A (en) * | 2019-11-22 | 2020-03-24 | 上海绿强新材料有限公司 | A kind of preparation method of EMT molecular sieve membrane |
CN112426891A (en) * | 2020-10-09 | 2021-03-02 | 大连理工大学 | Preparation method of CHA-type zeolite molecular sieve membrane |
-
2022
- 2022-01-17 CN CN202210048911.6A patent/CN114307689A/en not_active Withdrawn
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007182345A (en) * | 2006-01-06 | 2007-07-19 | National Institute Of Advanced Industrial & Technology | Zeolite separation membrane |
CN104437116A (en) * | 2014-12-08 | 2015-03-25 | 大连理工大学 | Method for performing induced synthesis on MOFs (metal-organic frameworks) membrane by implanting homologous metal oxide particles into surface of macroporous carrier by virtue of swabbing process |
CN109999676A (en) * | 2019-05-05 | 2019-07-12 | 大连理工大学 | The preparation method of T-type zeolite molecular sieve membrane |
CN110898684A (en) * | 2019-11-22 | 2020-03-24 | 上海绿强新材料有限公司 | A kind of preparation method of EMT molecular sieve membrane |
CN112426891A (en) * | 2020-10-09 | 2021-03-02 | 大连理工大学 | Preparation method of CHA-type zeolite molecular sieve membrane |
Non-Patent Citations (1)
Title |
---|
路颖: "高性能T型沸石分子筛膜的制备及应用", 《中国优秀硕士学位论文全文数据库 工程科技Ⅰ辑》 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115121132A (en) * | 2022-07-25 | 2022-09-30 | 浙江汇甬新材料有限公司 | NaA/NaY type zeolite molecular sieve membrane and preparation method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101890306B (en) | Method for synthesizing NaA zeolite membrane on macroporous carrier | |
CN109999676B (en) | Preparation method of T-type zeolite molecular sieve membrane | |
CN102139188B (en) | Preparation method and application of molecular sieve/organic composite infiltration, vaporization and separation membrane | |
CN112426891B (en) | A kind of preparation method of CHA type zeolite molecular sieve membrane | |
CN101716470B (en) | Method for preparing fluorine-containing mordenite zeolite membrane | |
CN103877865B (en) | A kind of method of synthesizing NaA molecular sieve membrane | |
CN107337472B (en) | Preparation method of FAU type zeolite molecular sieve membrane | |
CN103599709A (en) | Method for synthesizing NaA zeolite membrane with high membrane forming efficiency | |
CN101254930A (en) | A method for synthesizing T-type molecular sieve membrane by microwave heating method | |
WO2022166509A1 (en) | Method for synthesizing high water permeability molecular sieve membrane | |
CN101708436A (en) | Molecular sieve composite membrane | |
CN105311972A (en) | Method for synthesizing hydrophilic ZSM-5 zeolite molecular sieve membrane | |
CN108114613A (en) | The method that crystal seed method prepares acidproof zeolite molecular sieve membrane | |
CN102285668A (en) | Method for preparing zeolite socony mobil-5 (ZSM-5) zeolite membrane by dehydration by acetic acid | |
CN111760467A (en) | Preparation method of T-type zeolite molecular sieve membrane | |
CN114307689A (en) | A kind of preparation method of wet gel conversion synthesis A-type zeolite membrane | |
CN109970075B (en) | Method for synthesizing A-type molecular sieve membrane at low temperature | |
CN103191647B (en) | Hydrophilic zeolite film without crystal seed self assembly hydrothermal preparing process | |
CN102527258B (en) | Preparation method for T-type zeolite molecular sieve membrane | |
CN101857522B (en) | Method for separating methanol/methyl methacrylate mixed system | |
CN108529639B (en) | A kind of method for preparing chabazite membrane by crystal phase transformation | |
CN111054222A (en) | Successive transfer synthesis method of molecular sieve membrane | |
CN115672052A (en) | Template-free aluminum-rich Beta molecular sieve membrane, rapid preparation method thereof and application thereof in organic matter dehydration | |
CN105366689B (en) | A kind of method of weak solution Microwave-assisted synthesis MOR zeolite molecular sieve films | |
Li et al. | Organotemplate-free synthesis of ZSM-5 membrane for pervaporation dehydration of isopropanol |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WW01 | Invention patent application withdrawn after publication |
Application publication date: 20220412 |
|
WW01 | Invention patent application withdrawn after publication |