CN114300751A - Multi-electrode ear lithium ion battery and preparation method thereof - Google Patents

Multi-electrode ear lithium ion battery and preparation method thereof Download PDF

Info

Publication number
CN114300751A
CN114300751A CN202111535726.1A CN202111535726A CN114300751A CN 114300751 A CN114300751 A CN 114300751A CN 202111535726 A CN202111535726 A CN 202111535726A CN 114300751 A CN114300751 A CN 114300751A
Authority
CN
China
Prior art keywords
coating
tab
foil
battery
pole piece
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111535726.1A
Other languages
Chinese (zh)
Inventor
王生旭
刘关心
于子龙
杨山
陈杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huizhou Liwinon Energy Technology Co Ltd
Original Assignee
Huizhou Liwinon Energy Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huizhou Liwinon Energy Technology Co Ltd filed Critical Huizhou Liwinon Energy Technology Co Ltd
Priority to CN202111535726.1A priority Critical patent/CN114300751A/en
Publication of CN114300751A publication Critical patent/CN114300751A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

The invention belongs to the technical field of battery manufacturing, and particularly relates to a preparation method of a multi-polar ear lithium ion battery. The invention effectively shields the problem that the extension of an auxiliary material area and a blank foil area in the zebra coating process is different, efficiently prepares the cathode and anode sheets required by the multi-tab battery, and enables the battery to achieve better levels in the aspects of energy density, charging time, multiplying power discharge capacity, discharge temperature rise and the like. In addition, the invention also provides a multi-electrode ear lithium ion battery.

Description

Multi-electrode ear lithium ion battery and preparation method thereof
Technical Field
The invention belongs to the technical field of battery manufacturing, and particularly relates to a multi-electrode ear lithium ion battery and a preparation method thereof.
Background
The lithium ion battery has the advantages of light weight, high specific power, high voltage platform, small self-discharge, long cycle life, small environmental pollution, no memory effect, good safety and the like, so that the lithium ion battery is widely applied to the fields of electronic equipment, power automobiles and the like. However, with the expansion of the application fields, the requirements of lithium ion batteries, such as energy density, charging time, rate discharge capability, and discharge temperature, are continuously increased. If the design of single pole ear is used, the internal resistance of the battery is increased along with the increase of the thickness, thereby influencing the cycle and the safety performance of the battery.
Meanwhile, the zebra coating can be adopted in the traditional battery coating process, the zebra coating process is used, a plurality of dressing areas and empty foil areas can be caused to appear on one foil material, the thickness and the material composition of the dressing areas and the empty foil areas are different, when the external force is applied in the rolling process, the stress generated in the inside of the dressing areas and the empty foil areas is different, the preparation difficulty of the battery is increased undoubtedly, the optimal rate of the battery is reduced, and therefore a novel technical scheme is urgently needed to solve the problems.
Disclosure of Invention
One of the objects of the present invention is: aiming at the defects of the prior art, the preparation method of the multi-polar ear lithium ion battery is provided, the problem that an auxiliary material area and a blank foil area in a zebra coating process are different in extension is effectively solved, cathode and anode sheets required by the multi-polar ear battery are efficiently prepared, and the battery reaches better levels in the aspects of energy density, charging time, multiplying power discharging capacity, discharging temperature rise and the like.
In order to achieve the purpose, the invention adopts the following technical scheme:
a preparation method of a multi-electrode ear lithium ion battery comprises the following steps:
s1, preparing battery slurry, uniformly stirring the battery slurry, and coating the battery slurry on the foil by adopting a transverse double-gap coating method, so that the surface of the foil is provided with a plurality of coating areas and coating gaps which are alternately distributed;
s2, obtaining a plurality of initial pole pieces with the same size through rolling and slitting processes, wherein the surface of each initial pole piece is provided with a plurality of coating areas and coating gaps which are arranged at intervals;
s3, removing a top material area of the initial pole piece by adopting a die cutting process, and reserving a plurality of coating gaps to obtain a plurality of welding foil areas so as to manufacture a multi-pole-lug cathode piece and a multi-pole-lug anode piece;
s4, winding the multi-tab cathode sheet, the diaphragm and the multi-tab anode sheet into a bare cell;
and S5, welding, top-side sealing, liquid injection, formation, secondary sealing and capacity grading to obtain the multi-tab finished product battery cell.
The coating mode of the transverse double-gap coating method is as follows: first, coating of a length of a1 was performed, then the gap to obtain a length of B was broken, then coating of a length of a2 was performed again, then the gap to obtain a length of B was broken again, so that in this transversely repeated manner, coating of a1 length was sequentially performed, then breaking to obtain a gap of B length was performed, coating of a2 length was performed, then breaking to obtain a gap of B length, and coating was repeated. The lengths of A1 and A2 are determined according to the width of the battery cell and the tab outlet mode (full tab and half tab), when the full tab is adopted, A1 is not equal to A2, and when the half tab is adopted, A1 is equal to A2.
As an improvement of the method for preparing the multi-polar ear lithium ion battery of the present invention, the S5 further includes: in the welding process, a plurality of welding foil regions of a multi-tab cathode piece and a plurality of welding foil regions of a multi-tab anode piece are bent to form a folded tab, and a metal strip tab is welded to the folded tab, wherein the width of the selected metal strip tab is 0.8-1.25 times of the length of a coating gap, so that the metal strip tab forms a leading-out tab of a bare cell.
As an improvement of the method for preparing the multi-polar ear lithium ion battery of the present invention, the S4 further includes: make a plurality of welding foil district of the multi-tab negative pole piece of naked electric core and a plurality of welding foil district of multi-tab positive pole piece not contact each other, and make the bottom side or the top side of whole welding foil district distribution at naked electric core.
As an improvement of the method for preparing the multi-polar ear lithium ion battery of the present invention, the S1 further includes: in the transverse double gap coating, a plurality of coating regions having the same coating length are obtained by the transverse double gap coating method.
As an improvement of the method for preparing the multi-polar ear lithium ion battery of the present invention, the S1 further includes: in the transverse double-gap coating, the coating length of the previous coating area and the next coating area on the surface of the foil is different by adopting a transverse double-gap coating method, and the two specifications with different coating lengths are adopted to alternately coat on the surface of the foil in sequence.
As an improvement of the method for preparing the multi-polar ear lithium ion battery of the present invention, the S1 further includes: in the transverse double-gap coating, the coating width of the coating area on the surface of the foil is 3-8 times of the width of the pole piece required by the finished product battery core, so that a plurality of initial pole pieces with the same size are obtained by the slitting process.
As an improvement of the method for preparing the multi-polar ear lithium ion battery of the present invention, the S2 further includes: in the rolling process, the side edge empty foil of the pole piece is cut off before the cathode piece is rolled, and in the slitting process, the slitting width of the pole piece is the sum of the width of the pole piece required by the finished product battery core and the length of the welding foil area.
As an improvement of the method for preparing the multi-polar ear lithium ion battery of the present invention, the S3 further includes: in the die-cutting process, the spacing of adjacent ones of the plurality of welding foil sections is made the same or different.
As an improvement of the method for preparing the multi-polar ear lithium ion battery of the present invention, the S3 further includes: and when the top material area of the initial pole piece is removed in the die cutting process, a pole piece widening area is cut between the adjacent welding foil areas.
The second purpose of the invention is: the battery comprises pole pieces and a diaphragm, wherein the diaphragm is arranged between the pole pieces with opposite polarities, and the battery is prepared by the preparation method.
The invention has the beneficial effects that: the invention adopts a transverse double-gap coating method to prepare the pole piece, on one hand, the double gaps of the method are transverse and have smaller size, so that the transverse double-gap coating method can effectively shield the problem that the extension of an auxiliary material area and a hollow foil area in a zebra coating process is different, and the excellent rate of the battery is greatly improved.
Drawings
FIG. 1 is a flow chart of the preparation method of the present invention.
FIG. 2 is a graph showing the coating effect of example 1 of the present invention.
FIG. 3 is a schematic view of the striping operation in example 1 of the present invention.
Fig. 4 is a schematic structural diagram of a pole piece in embodiment 1 of the present invention.
Fig. 5 is a schematic structural view of a battery according to embodiment 1 of the present invention.
FIG. 6 is a graph showing the coating effect of example 2 of the present invention.
Fig. 7 is a schematic structural diagram of a pole piece in embodiment 3 of the present invention.
Wherein: 1-a coating zone; 2-coating the gap; l1 — length of coating gap; l2-coating length; l3-coating width; l4-width of pole piece required for finished cell; l5 — stripe width of the pole piece; l6-length of the welded foil sections.
Detailed Description
As used in this specification and the appended claims, certain terms are used to refer to particular components, and it will be appreciated by those skilled in the art that a manufacturer may refer to a component by different names. This specification and claims do not intend to distinguish between components that differ in name but not function. In the following description and in the claims, the terms "include" and "comprise" are used in an open-ended fashion, and thus should be interpreted to mean "include, but not limited to. "substantially" means within an acceptable error range, and a person skilled in the art can solve the technical problem within a certain error range to substantially achieve the technical effect.
In the description of the present invention, it is to be understood that the terms "upper", "lower", "front", "rear", "left", "right", horizontal ", and the like indicate orientations or positional relationships based on those shown in the drawings, and are only for convenience in describing the present invention and simplifying the description, but do not indicate or imply that the referred device or element must have a specific orientation, be constructed in a specific orientation, and be operated, and thus, should not be construed as limiting the present invention.
In the present invention, unless otherwise expressly specified or limited, the terms "mounted," "connected," "secured," and the like are to be construed broadly and can, for example, be fixedly connected, detachably connected, or integrally connected; can be mechanically or electrically connected; they may be connected directly or indirectly through intervening media, or they may be interconnected between two elements. The specific meanings of the above terms in the present invention can be understood by those skilled in the art according to specific situations.
The present invention will be described in further detail with reference to the accompanying drawings 1 to 7 and specific examples, but the present invention is not limited thereto.
Example 1
A method for manufacturing a multi-electrode ear lithium ion battery, as shown in fig. 1 to 5, comprising the steps of:
s1, preparing battery slurry, uniformly stirring the battery slurry, and coating the battery slurry on the foil by adopting a transverse double-gap coating method, so that the surface of the foil is provided with a plurality of coating areas 1 and coating gaps 2 which are alternately distributed;
s2, obtaining a plurality of initial pole pieces with the same size through rolling and slitting processes, wherein the surface of each initial pole piece is provided with a plurality of coating areas 1 and coating gaps 2 which are arranged at intervals;
s3, removing a top material area of the initial pole piece by adopting a die cutting process, and reserving a plurality of coating gaps 2 to obtain a plurality of welding foil areas so as to manufacture a multi-pole-lug cathode piece and a multi-pole-lug anode piece;
s4, winding the multi-tab cathode sheet, the diaphragm and the multi-tab anode sheet into a bare cell;
and S5, welding, top-side sealing, liquid injection, formation, secondary sealing and capacity grading to obtain the multi-tab finished product battery cell.
The coating mode of the transverse double-gap coating method is as follows: first, coating of a length of a1 was performed, then the gap to obtain a length of B was broken, then coating of a length of a2 was performed again, then the gap to obtain a length of B was broken again, so that in this transversely repeated manner, coating of a1 length was sequentially performed, then breaking to obtain a gap of B length was performed, coating of a2 length was performed, then breaking to obtain a gap of B length, and coating was repeated. The lengths of A1 and A2 are determined according to the width of the battery cell and the tab outlet mode (full tab and half tab), when the full tab is adopted, A1 is not equal to A2, and when the half tab is adopted, A1 is equal to A2.
Preferably, the step of S1 further includes: in the transverse double-gap coating, the length L1 of the preset coating gap 2 is 0.5 cm-3 cm, a plurality of coating areas 1 with the same coating length L2 are obtained by adopting a transverse double-gap coating method, and the ratio of L1/L2 is more than or equal to 0.15 and less than or equal to 0.35.
Wherein, the coating gap 2 is used for forming a welding foil area after die cutting of the pole piece, and the transverse double-gap coating method not only improves the preparation efficiency of the pole piece, but also enables the size of the pole piece to have higher controllability, and in addition, the step of S1 further comprises: in the transverse double-gap coating, the coating width L3 of the coating area 1 on the surface of the foil is 3-8 times of the width L4 of the pole piece required by the finished battery cell, so that a plurality of initial pole pieces with the same size are obtained by the slitting process.
Further, the step S2 includes: in the rolling process, the side edge empty foil of the pole piece is cut off before the cathode piece is rolled, and in the cutting process, the strip width L5 of the pole piece is the sum of the width L4 of the pole piece required by the finished battery core and the length of the welding foil area L6.
In the method for manufacturing the battery, the plurality of welded foil regions obtained in the step S3 are integral tabs of the cathode and anode sheets, and the step S3 further includes: in the die cutting process, the distance between the adjacent welding foil areas of the plurality of welding foil areas is the same, so that the sizes of a plurality of tabs of the cathode sheet are equal, and the sizes of a plurality of tabs of the anode sheet are equal.
Preferably, the step of S4 further includes: make a plurality of welding foil district of the multi-tab negative pole piece of naked electric core and a plurality of welding foil district of multi-tab positive pole piece not contact each other, and make the bottom side or the top side of whole welding foil district distribution at naked electric core, can make the welding foil district weld in the strap utmost point ear more high-efficiently.
In the method for manufacturing a battery, the step S5 further includes: in the welding process, a plurality of welding foil regions of the multi-tab cathode piece and a plurality of welding foil regions of the multi-tab anode piece are bent to form a folded tab, and a metal strip tab is welded to the folded tab, wherein the width of the selected metal strip tab is 0.8-1.25 times of the length L1 of the coating gap 2, so that the metal strip tab forms a leading-out tab of a bare cell.
The embodiment adopts a transverse double-gap coating method to prepare the pole piece, on one hand, the double gaps of the method are transverse and have smaller size, so that the transverse double-gap coating method can effectively shield the problem that an auxiliary material area and a blank foil area in a zebra coating process are different in extension, the excellent rate of the battery is greatly improved, on the other hand, the combination of the transverse double-gap coating method and a die cutting process can be used for efficiently preparing the cathode and anode pieces required by the multi-tab battery, the multi-tab battery has obvious advantages in various aspects such as charging time, internal resistance and battery core temperature rise, and the battery is ensured to have excellent charging efficiency and cycle performance.
Example 2
Unlike example 1, as shown in fig. 6, in the transverse double gap coating process in step S1 of the present example, the coating length L2 of the previous coating region 1 and the next coating region 1 on the surface of the foil is made different by the transverse double gap coating method, the foil is coated alternately in sequence by two different coating length specifications, and the spacing between the adjacent welding foil regions of the plurality of welding foil regions is made different in the die cutting process in step S3, so that the manufacturing method of the present example can be flexibly applied to the efficient manufacturing of batteries of different specification sizes.
Other steps in this embodiment are the same as those in embodiment 1, and are not described herein again.
Example 3
Unlike embodiment 1, as shown in fig. 7, step S3 in this embodiment further includes: when the top material area of the initial pole piece is removed in the die cutting process, a pole piece widening area is cut between the adjacent welding foil areas, wherein the pole piece widening area is shorter than the welding foil areas, the welding foil areas can form integrated pole lugs of the pole piece, and an extra pole piece structure with a proper size is additionally arranged between the pole lugs, so that the internal space of the battery can be reasonably utilized, the energy density of the battery is effectively improved, and the charging efficiency and the cycle performance of the battery are improved.
Other steps in this embodiment are the same as those in embodiment 1, and are not described herein again.
Example 4
A multi-electrode ear lithium ion battery comprises pole pieces and a diaphragm, wherein the diaphragm is arranged between the pole pieces with opposite polarities, and the battery is prepared by the preparation method of the embodiment 1-3.
Variations and modifications to the above-described embodiments may also occur to those skilled in the art, which fall within the scope of the invention as disclosed and taught herein. Therefore, the present invention is not limited to the above-mentioned embodiments, and any obvious improvement, replacement or modification made by those skilled in the art based on the present invention is within the protection scope of the present invention. Furthermore, although specific terms are employed herein, they are used in a generic and descriptive sense only and not for purposes of limitation.

Claims (10)

1. A preparation method of a multi-electrode ear lithium ion battery is characterized by comprising the following steps:
s1, preparing battery slurry, uniformly stirring the battery slurry, and coating the battery slurry on the foil by adopting a transverse double-gap coating method, so that the surface of the foil is provided with a plurality of coating areas and coating gaps which are alternately distributed;
s2, obtaining a plurality of initial pole pieces with the same size through rolling and slitting processes, wherein the surface of each initial pole piece is provided with a plurality of coating areas and coating gaps which are arranged at intervals;
s3, removing a top material area of the initial pole piece by adopting a die cutting process, and reserving a plurality of coating gaps to obtain a plurality of welding foil areas so as to manufacture a multi-pole-lug cathode piece and a multi-pole-lug anode piece;
s4, winding the multi-tab cathode sheet, the diaphragm and the multi-tab anode sheet into a bare cell;
and S5, welding, top-side sealing, liquid injection, formation, secondary sealing and capacity grading to obtain the multi-tab finished product battery cell.
2. The method of claim 1, wherein S5 further comprises: in the welding process, a plurality of welding foil regions of a multi-tab cathode piece and a plurality of welding foil regions of a multi-tab anode piece are bent to form a folded tab, and a metal strip tab is welded to the folded tab, wherein the width of the selected metal strip tab is 0.8-1.25 times of the length of a coating gap, so that the metal strip tab forms a leading-out tab of a bare cell.
3. The method of preparing a multi-polar ear lithium ion battery of claim 1 or 2, wherein S4 further comprises: make a plurality of welding foil district of the multi-tab negative pole piece of naked electric core and a plurality of welding foil district of multi-tab positive pole piece not contact each other, and make the bottom side or the top side of whole welding foil district distribution at naked electric core.
4. The method of preparing a multi-polar ear lithium ion battery of claim 1 or 2, wherein S1 further comprises: in the transverse double gap coating, a plurality of coating regions having the same coating length are obtained by the transverse double gap coating method.
5. The method of preparing a multi-polar ear lithium ion battery of claim 1 or 2, wherein S1 further comprises: in the transverse double-gap coating, the coating length of the previous coating area and the next coating area on the surface of the foil is different by adopting a transverse double-gap coating method, and the two specifications with different coating lengths are adopted to alternately coat on the surface of the foil in sequence.
6. The method of claim 1, wherein S1 further comprises: in the transverse double-gap coating, the coating width of the coating area on the surface of the foil is 3-8 times of the width of the pole piece required by the finished product battery core, so that a plurality of initial pole pieces with the same size are obtained by the slitting process.
7. The method of claim 1, wherein S2 further comprises: in the rolling process, the side edge empty foil of the pole piece is cut off before the cathode piece is rolled, and in the slitting process, the slitting width of the pole piece is the sum of the width of the pole piece required by the finished product battery core and the length of the welding foil area.
8. The method of claim 1, wherein S3 further comprises: in the die-cutting process, the spacing of adjacent ones of the plurality of welding foil sections is made the same or different.
9. The method of claim 1 or 8, wherein S3 further comprises: and when the top material area of the initial pole piece is removed in the die cutting process, a pole piece widening area is cut between the adjacent welding foil areas.
10. A multi-polar ear lithium ion battery, characterized by: the battery is prepared by the method of any one of claims 1 to 9.
CN202111535726.1A 2021-12-15 2021-12-15 Multi-electrode ear lithium ion battery and preparation method thereof Pending CN114300751A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111535726.1A CN114300751A (en) 2021-12-15 2021-12-15 Multi-electrode ear lithium ion battery and preparation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111535726.1A CN114300751A (en) 2021-12-15 2021-12-15 Multi-electrode ear lithium ion battery and preparation method thereof

Publications (1)

Publication Number Publication Date
CN114300751A true CN114300751A (en) 2022-04-08

Family

ID=80966654

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111535726.1A Pending CN114300751A (en) 2021-12-15 2021-12-15 Multi-electrode ear lithium ion battery and preparation method thereof

Country Status (1)

Country Link
CN (1) CN114300751A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114975885A (en) * 2022-06-13 2022-08-30 惠州锂威新能源科技有限公司 Preparation method of tab pole piece, battery cell and lithium ion battery
CN115020650A (en) * 2022-08-05 2022-09-06 比亚迪股份有限公司 Preparation method of battery pole piece, battery pole piece and battery
CN115275531A (en) * 2022-09-26 2022-11-01 江苏正力新能电池技术有限公司 Preparation method of multi-tab battery cell and multi-tab battery cell

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN207611809U (en) * 2017-11-13 2018-07-13 深圳市比克动力电池有限公司 A kind of anode slice of lithium ion battery and lithium ion battery
CN108311335A (en) * 2017-12-19 2018-07-24 深圳市沃特玛电池有限公司 A kind of paint roller of multi pole ears cell coating machine and the coating method of multi pole ears battery pole piece
CN208226010U (en) * 2018-06-06 2018-12-11 广东天劲新能源科技股份有限公司 A kind of high-energy density laminated structure and soft bag lithium ionic cell
CN109546077A (en) * 2018-12-26 2019-03-29 蜂巢能源科技有限公司 Electrode plates and preparation method thereof, lithium ion battery
CN111668444A (en) * 2020-05-22 2020-09-15 惠州锂威新能源科技有限公司 Preparation method of multi-tab battery cell and multi-tab battery cell
CN112670438A (en) * 2020-12-17 2021-04-16 惠州市豪鹏科技有限公司 Preparation method of battery pole piece
CN112670436A (en) * 2020-12-17 2021-04-16 惠州市豪鹏科技有限公司 Preparation method of battery pole piece
CN112670437A (en) * 2020-12-17 2021-04-16 惠州市豪鹏科技有限公司 Preparation method of battery pole piece
CN112670435A (en) * 2020-12-17 2021-04-16 惠州市豪鹏科技有限公司 Preparation method of battery pole piece
CN113097658A (en) * 2021-04-08 2021-07-09 惠州锂威新能源科技有限公司 Multi-tab bare cell, preparation method thereof and multi-tab battery
WO2021170350A1 (en) * 2020-02-27 2021-09-02 Bayerische Motoren Werke Aktiengesellschaft Method for producing an electrode
CN113540405A (en) * 2021-05-26 2021-10-22 惠州锂威新能源科技有限公司 Manufacturing process of multi-tab pole piece, multi-tab pole piece and secondary battery

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN207611809U (en) * 2017-11-13 2018-07-13 深圳市比克动力电池有限公司 A kind of anode slice of lithium ion battery and lithium ion battery
CN108311335A (en) * 2017-12-19 2018-07-24 深圳市沃特玛电池有限公司 A kind of paint roller of multi pole ears cell coating machine and the coating method of multi pole ears battery pole piece
CN208226010U (en) * 2018-06-06 2018-12-11 广东天劲新能源科技股份有限公司 A kind of high-energy density laminated structure and soft bag lithium ionic cell
CN109546077A (en) * 2018-12-26 2019-03-29 蜂巢能源科技有限公司 Electrode plates and preparation method thereof, lithium ion battery
WO2021170350A1 (en) * 2020-02-27 2021-09-02 Bayerische Motoren Werke Aktiengesellschaft Method for producing an electrode
CN111668444A (en) * 2020-05-22 2020-09-15 惠州锂威新能源科技有限公司 Preparation method of multi-tab battery cell and multi-tab battery cell
CN112670438A (en) * 2020-12-17 2021-04-16 惠州市豪鹏科技有限公司 Preparation method of battery pole piece
CN112670436A (en) * 2020-12-17 2021-04-16 惠州市豪鹏科技有限公司 Preparation method of battery pole piece
CN112670437A (en) * 2020-12-17 2021-04-16 惠州市豪鹏科技有限公司 Preparation method of battery pole piece
CN112670435A (en) * 2020-12-17 2021-04-16 惠州市豪鹏科技有限公司 Preparation method of battery pole piece
CN113097658A (en) * 2021-04-08 2021-07-09 惠州锂威新能源科技有限公司 Multi-tab bare cell, preparation method thereof and multi-tab battery
CN113540405A (en) * 2021-05-26 2021-10-22 惠州锂威新能源科技有限公司 Manufacturing process of multi-tab pole piece, multi-tab pole piece and secondary battery

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114975885A (en) * 2022-06-13 2022-08-30 惠州锂威新能源科技有限公司 Preparation method of tab pole piece, battery cell and lithium ion battery
CN114975885B (en) * 2022-06-13 2023-06-27 惠州锂威新能源科技有限公司 Preparation method of tab pole piece, battery cell and lithium ion battery
CN115020650A (en) * 2022-08-05 2022-09-06 比亚迪股份有限公司 Preparation method of battery pole piece, battery pole piece and battery
CN115020650B (en) * 2022-08-05 2022-12-09 比亚迪股份有限公司 Preparation method of battery pole piece, battery pole piece and battery
CN115275531A (en) * 2022-09-26 2022-11-01 江苏正力新能电池技术有限公司 Preparation method of multi-tab battery cell and multi-tab battery cell
CN115275531B (en) * 2022-09-26 2022-12-09 江苏正力新能电池技术有限公司 Preparation method of multi-tab battery cell and multi-tab battery cell

Similar Documents

Publication Publication Date Title
CN114300751A (en) Multi-electrode ear lithium ion battery and preparation method thereof
EP2680361B1 (en) Jelly roll-type electrode assembly with active material pattern-coated thereon, and secondary battery having same
CA2679909C (en) Negative grid for battery
KR100449335B1 (en) Lithium secondary battery and method for manufacturing the same
CN112913076A (en) Intelligent battery and lithium battery core thereof
JP4603108B2 (en) Secondary battery electrode roll
CN112531142A (en) Pole piece for soft package button battery, button battery and preparation method of pole piece
EP3574541A1 (en) Battery grid
WO2012132476A1 (en) Grid for lead storage battery, positive plate using grid, plate group, lead storage battery, and method for manufacturing positive plate for lead storage battery
CN114024042A (en) Preparation method of multi-tab lithium battery
US8808914B2 (en) Lead-acid battery design having versatile form factor
CN114388743B (en) Optimized preparation method of cylindrical lithium ion battery pole group
US4615958A (en) Multicell battery using continuous manufacture
CN212648428U (en) Tab for multi-tab battery cell, pole piece for multi-tab battery cell and multi-tab battery cell
US20130183572A1 (en) Lead-acid battery design having versatile form factor
EP2803097A1 (en) Lead-acid battery design having versatile form factor
CN217215023U (en) Multi-electrode-lug lithium ion battery capable of improving energy density
CN220873620U (en) Pole piece, battery core and battery
CN113039662A (en) Electrode plate for secondary battery and secondary battery using the same
CN215266584U (en) Multi-tab winding core structure
CN210897524U (en) Multi-tab winding battery cell
CN211507750U (en) Lithium battery pole plate end face structure
KR102209357B1 (en) How to create grid surface protrusions of lead-acid batteries using press die corrosion
CN212365995U (en) Pole piece for winding type multi-lug battery cell and winding type multi-lug battery cell
CN218123668U (en) Connecting structure for multi-tab battery cell formation

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination