CN114299004A - 一种基于椒盐噪声全变分数据增广的图像语义分割方法 - Google Patents
一种基于椒盐噪声全变分数据增广的图像语义分割方法 Download PDFInfo
- Publication number
- CN114299004A CN114299004A CN202111605820.XA CN202111605820A CN114299004A CN 114299004 A CN114299004 A CN 114299004A CN 202111605820 A CN202111605820 A CN 202111605820A CN 114299004 A CN114299004 A CN 114299004A
- Authority
- CN
- China
- Prior art keywords
- image
- model
- noise
- denoising
- data set
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 25
- 230000011218 segmentation Effects 0.000 title claims abstract description 16
- 235000002566 Capsicum Nutrition 0.000 title claims abstract description 15
- 239000006002 Pepper Substances 0.000 title claims abstract description 15
- 235000016761 Piper aduncum Nutrition 0.000 title claims abstract description 15
- 235000017804 Piper guineense Nutrition 0.000 title claims abstract description 15
- 235000008184 Piper nigrum Nutrition 0.000 title claims abstract description 15
- 238000013434 data augmentation Methods 0.000 title claims abstract description 15
- 150000003839 salts Chemical class 0.000 title claims abstract description 15
- 244000203593 Piper nigrum Species 0.000 title abstract 2
- 206010028980 Neoplasm Diseases 0.000 claims abstract description 9
- 238000013528 artificial neural network Methods 0.000 claims abstract description 4
- 230000009977 dual effect Effects 0.000 claims description 15
- 241000722363 Piper Species 0.000 claims description 13
- 238000012549 training Methods 0.000 claims description 13
- 230000006870 function Effects 0.000 claims description 6
- 238000012545 processing Methods 0.000 claims description 5
- 238000013527 convolutional neural network Methods 0.000 claims description 3
- 238000013507 mapping Methods 0.000 claims description 3
- 238000003062 neural network model Methods 0.000 claims description 3
- 230000003416 augmentation Effects 0.000 claims 1
- 238000003709 image segmentation Methods 0.000 abstract description 5
- 230000003190 augmentative effect Effects 0.000 abstract description 3
- 238000005457 optimization Methods 0.000 abstract 1
- 238000002591 computed tomography Methods 0.000 description 8
- 238000002600 positron emission tomography Methods 0.000 description 7
- 238000013135 deep learning Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 230000002503 metabolic effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/40—Engine management systems
Landscapes
- Image Processing (AREA)
- Image Analysis (AREA)
Abstract
Description
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111605820.XA CN114299004B (zh) | 2021-12-25 | 2021-12-25 | 一种基于椒盐噪声全变分数据增广的图像语义分割方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111605820.XA CN114299004B (zh) | 2021-12-25 | 2021-12-25 | 一种基于椒盐噪声全变分数据增广的图像语义分割方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114299004A true CN114299004A (zh) | 2022-04-08 |
CN114299004B CN114299004B (zh) | 2024-11-15 |
Family
ID=80968664
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111605820.XA Active CN114299004B (zh) | 2021-12-25 | 2021-12-25 | 一种基于椒盐噪声全变分数据增广的图像语义分割方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114299004B (zh) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106355561A (zh) * | 2016-08-30 | 2017-01-25 | 天津大学 | 基于噪点先验约束的全变分图像去噪方法 |
CN109685743A (zh) * | 2018-12-30 | 2019-04-26 | 陕西师范大学 | 基于噪声学习神经网络模型的图像混合噪声消除方法 |
CN109767404A (zh) * | 2019-01-25 | 2019-05-17 | 重庆电子工程职业学院 | 一种椒盐噪声下红外图像去模糊方法 |
CN110648292A (zh) * | 2019-09-11 | 2020-01-03 | 昆明理工大学 | 一种基于深度卷积网络的高噪声图像去噪方法 |
CN113792743A (zh) * | 2021-08-24 | 2021-12-14 | 西安理工大学 | 一种基于渐进式生成对抗的古籍汉字图像去噪方法 |
-
2021
- 2021-12-25 CN CN202111605820.XA patent/CN114299004B/zh active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106355561A (zh) * | 2016-08-30 | 2017-01-25 | 天津大学 | 基于噪点先验约束的全变分图像去噪方法 |
CN109685743A (zh) * | 2018-12-30 | 2019-04-26 | 陕西师范大学 | 基于噪声学习神经网络模型的图像混合噪声消除方法 |
CN109767404A (zh) * | 2019-01-25 | 2019-05-17 | 重庆电子工程职业学院 | 一种椒盐噪声下红外图像去模糊方法 |
CN110648292A (zh) * | 2019-09-11 | 2020-01-03 | 昆明理工大学 | 一种基于深度卷积网络的高噪声图像去噪方法 |
CN113792743A (zh) * | 2021-08-24 | 2021-12-14 | 西安理工大学 | 一种基于渐进式生成对抗的古籍汉字图像去噪方法 |
Non-Patent Citations (1)
Title |
---|
ALFINA, I; SAVITRI, S AND FANANY, MI: "Modified DBpedia Entities Expansion for Tagging Automatically NER Dataset", 9TH INTERNATIONAL CONFERENCE ON ADVANCED COMPUTER SCIENCE AND INFORMATION SYSTEMS (ICACSIS), 29 June 2018 (2018-06-29) * |
Also Published As
Publication number | Publication date |
---|---|
CN114299004B (zh) | 2024-11-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN113674253B (zh) | 基于U-Transformer的直肠癌CT影像自动分割方法 | |
Wang et al. | ADMM-based deep reconstruction for limited-angle CT | |
Vimala et al. | Image noise removal in ultrasound breast images based on hybrid deep learning technique | |
Singh et al. | A method noise-based convolutional neural network technique for CT image denoising | |
Sharan et al. | Encoder modified U-net and feature pyramid network for multi-class segmentation of cardiac magnetic resonance images | |
Tan et al. | Segmentation of lung airways based on deep learning methods | |
CN114332287B (zh) | 基于transformer特征共享的PET图像重建方法、装置、设备及介质 | |
CN111340903A (zh) | 基于非衰减校正pet图像生成合成pet-ct图像的方法和系统 | |
Sahu et al. | An application of deep dual convolutional neural network for enhanced medical image denoising | |
Tripathi et al. | An augmented deep learning network with noise suppression feature for efficient segmentation of magnetic resonance images | |
Yin et al. | Unpaired low-dose CT denoising via an improved cycle-consistent adversarial network with attention ensemble | |
Xia et al. | Deep residual neural network based image enhancement algorithm for low dose CT images | |
Yao et al. | Graph matching and deep neural networks based whole heart and great vessel segmentation in congenital heart disease | |
Zhang et al. | Multi-modality reconstruction attention and difference enhancement network for brain mri image segmentation | |
Stebani et al. | Towards fully automated inner ear analysis with deep-learning-based joint segmentation and landmark detection framework | |
CN116091412A (zh) | 一种从pet/ct图像中分割肿瘤的方法 | |
CN119251250A (zh) | 基于Transformer的宫颈癌病理图像癌变组织的分割方法及系统 | |
Lu et al. | PDRF-Net: a progressive dense residual fusion network for COVID-19 lung CT image segmentation | |
CN116935182B (zh) | 基于RepCSC-Net的乳腺肿瘤良恶性识别方法 | |
Li et al. | MIS-Net: A deep learning-based multi-class segmentation model for CT images | |
CN114299004A (zh) | 一种基于椒盐噪声全变分数据增广的图像语义分割方法 | |
Dröge et al. | Mitral valve segmentation using robust nonnegative matrix factorization | |
Lou et al. | Nu-net based gan: Using nested u-structure for whole heart auto segmentation | |
Jacob et al. | Deep Conditional Shape Models for 3D cardiac image segmentation | |
CN115147694A (zh) | 一种三图多模态医学图像融合方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
CB02 | Change of applicant information | ||
CB02 | Change of applicant information |
Country or region after: China Address after: Building 43, Zone A, Energy Conservation and Environmental Protection Innovation Park, No. 199, Hongwu Avenue, Tangqiao Town, Zhangjiagang City, Suzhou City, Jiangsu Province, 215600 Applicant after: Suzhou Lijing Intelligent Technology Co.,Ltd. Address before: 315000 room 205, No. 262, Binhai 4th Road, Hangzhou Bay New Area, Ningbo, Zhejiang Applicant before: NINGBO KAIDE TECHNOLOGY SERVICE Co.,Ltd. Country or region before: China |
|
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20250225 Address after: Room 2022-2, Building 2, No. 8 Wangwu Road, Xinjia Industrial Zone, Changqiao Street, Wuzhong District, Suzhou City, Jiangsu Province, 215000 Patentee after: Suzhou Junyue Yuan Intelligent Technology Co.,Ltd. Country or region after: China Address before: Building 43, Zone A, Energy Conservation and Environmental Protection Innovation Park, No. 199, Hongwu Avenue, Tangqiao Town, Zhangjiagang City, Suzhou City, Jiangsu Province, 215600 Patentee before: Suzhou Lijing Intelligent Technology Co.,Ltd. Country or region before: China |