CN114296050A - 基于激光雷达云图探测的光伏电站短期发电功率预测方法 - Google Patents
基于激光雷达云图探测的光伏电站短期发电功率预测方法 Download PDFInfo
- Publication number
- CN114296050A CN114296050A CN202210213970.4A CN202210213970A CN114296050A CN 114296050 A CN114296050 A CN 114296050A CN 202210213970 A CN202210213970 A CN 202210213970A CN 114296050 A CN114296050 A CN 114296050A
- Authority
- CN
- China
- Prior art keywords
- cloud layer
- value
- wavelet
- photovoltaic power
- power generation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A90/00—Technologies having an indirect contribution to adaptation to climate change
- Y02A90/10—Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation
Landscapes
- Radar Systems Or Details Thereof (AREA)
- Traffic Control Systems (AREA)
Abstract
本发明公开了一种基于激光雷达云图探测的光伏电站短期发电功率预测方法,采用地基激光雷达探测扫描光伏电站附近空域得到目标空域激光散射吸收后反馈回波信号,并根据聚类算法实时连续探测估算大气云层信息,从而预测云层边界在目标光伏电站太阳能板的占比和停留时间,实现光伏电站发电功率的短期预测。本发明设备体积小、重量轻、能连续实时观测,且分辨率高的特点,与梯度法GARD和标准化偏差法STD相比,具有相同一致性,在较大噪声时,精确率更高,能有效避免估错从而降低短期发电功率预测误差率。
Description
技术领域
本发明属于激光雷达成像识别技术领域,尤其涉及基于激光雷达云图探测的光伏电站短期发电功率预测方法。
背景技术
由于石化能源的日益消耗枯竭,且对环境带来污染影响,而太阳能光伏发电由于其清洁可持续等优点,在全球能源体系中扮演着越来越大重要角色。随着我国光伏产业的投资建设规模不断增加,光伏发电系统的优势和规模效应逐渐得到体现,尤其处于拥有高海拔、日照长、人烟稀少无遮挡等优点的高海拔高高北纬地带,光伏发电产业得到持续高速发展,其作为优质能源通常采用分布式智能并网模式补充能源短缺。
但光伏发电的光电转化效率和发电功率容易受到天气、气候和昼夜周期性等因素影响,因此是一种典型的间歇性电源。光伏发电系统的输出功率主要受到太阳辐射能量的影响发生较大、且频繁的波动,影响因素主要包括大气层外辐射度、大气状态、空气成分、云层遮挡等因素。光伏发电输出的间歇不稳定性波动对发电系统和电网设备的安全稳定带来安全隐患,同时影响储能模块的寿命。针对该问题,电网调度需要对光伏发电功率进行预测从而能及时采取调节分布式储能吸收平抑波动,启动最大功率点跟踪策略或极端断网等应对措施确保电网的安全稳定。
国内外针对光伏功率的预测有了很多研究,但大多集中在光伏发电系统中,云层和大气状态的不定性才是影响地面辐射量的最主要因素,因此云层种类,云层占空比及移动速度的监测是光伏发电功率短期预测的关键影响因素。目前云层监测手段主要包括人工观测、卫星成像云层图像识别、地基全天空图像识别,而人工观测在复杂情形及大尺度环境下无法做到准确判定和预测,且效率低下;卫星成像云层图像识别需要借助卫星图像,成本极高,大多数光伏电站无法实现;地基全天空图像识别则需要在光伏电站周边设置大量的地基全天空摄像CCD设备,成本过高,且由于需要对云层图像识别,需要长期采集图像进行识别算法训练,且图像中涉及到的太阳光晕和非空环境成像干扰导致数据处理过程复杂,使得预测误差较大,不同光伏发电场之间的预测模型相对独立,光伏发电场启用调试周期延长,对于初次光伏电站使用,可能由于缺少大气气候及光伏发电历史数据,造成建设周期延长和成本增加。
发明内容
发明目的:针对上述现有存在的问题和不足,本发明的目的是提供了一种基于激光雷达云图探测的光伏电站短期发电功率预测方法,从而能尽可能降低光伏电站发电并网时对电力系统稳定运行、继电保护、储能元件的不利影响,进而能为多元能源的吸纳与调控提供决策性依据。
技术方案:为实现上述发明目的,本发明采用以下技术方案:一种基于激光雷达云图探测的光伏电站短期发电功率预测方法,包括以下步骤:
步骤S1,利用大气气体分子和气溶胶对激光的散射吸收作用,采用地基激光雷达探测扫描光伏电站附近空域得到目标空域激光散射吸收后反馈信号,该反馈信号为不同空间坐标点上的呈梯度衰减的反馈信号时间序列集,为信号距离,为信号方位角,为信号极角;
由于小波协方差函数值越大表明信号函数与Haar函数越相似,反映其阶跃变化度越大,此时将小波协方差函数值中的第一峰值信号作为大气云层边界反馈信号,并形成第一峰值信号数据集,所述第一峰值信号对应的高度作为云层高度,对应的坐标作为云层的经纬坐标;
步骤S3,以小波协方差函数的第一峰值信号相似度作为距离标准,并设置幅度阈值,采用DBSCAN聚类算法对所述第一峰值信号数据集进行聚类处理,形成相应的聚类中心及不超阈值范围内的坐标数据集,完成云层边界检测;
步骤S5,以云层聚类中心点作为特征点,根据激光雷达扫描得到的信号时间序列,计算得到其相应时间段内的平均移动速度作为云层的移动速度;
进一步的,步骤S3聚类算法的具体步骤包括:
step4:继续扫描所有临时聚类簇,对具有相同临时核心点的临时聚类簇进行合并,得到新的聚类簇;
step5:重复步骤step3和step4直到聚类簇中不存在新的临时核心点,完成云层边界的检测,并确定各聚类簇的聚类中心。
有益效果:与现有技术相比,本发明的核心是采用激光雷达回波信号的动态突变跃迁信息获取大气云层信息和大气状况,具有体积小、重量轻、能连续实时观测,且分辨率高的特点,相对多地基云层图像观测设备,投入和建设成本更低;同时,本发明无需目标区域大气气候和光伏发电全历史数据,应用范围更广,具有建设周期更短的优点;另外,与梯度法GARD和标准化偏差法STD相比,具有相同一致性,在较大噪声时,精确率更高,能有效避免估错从而降低短期发电功率预测误差率。
附图说明
图1为本发明所述基于激光雷达云图探测的光伏电站短期发电功率预测方法的流程示意图。
图2为本发明所述聚类算法的流程示意图。
图3为本发明所述聚类算法的原理图。
图4为本发明实施例反馈信号采用本发明小波协方差Harr、梯度法GRAD和标准偏差法STD处理后信号对应云层高度随时间变化图。
图5为本发明实施例发电功率预测值与实际输出值RMSE误差比较示意图。
具体实施方式
下面结合附图和具体实施例,进一步阐明本发明,应理解这些实施例仅用于说明本发明而不用于限制本发明的范围,在阅读了本发明之后,本领域技术人员对本发明的各种等价形式的修改均落于本申请所附权利要求所限定的范围。
如图1所示,本发明基于激光雷达云图探测的光伏电站短期发电功率预测方法的具体步骤如下:
步骤S1,利用大气气体分子和气溶胶对激光的散射吸收作用,采用地基激光雷达探测扫描光伏电站附近空域得到目标空域激光散射吸收后反馈信号,该反馈信号为不同空间坐标点上的呈梯度衰减的反馈信号时间序列集,为信号距离,为信号方位角,为信号极角;
当小波协方差函数的值越大说明信号函数与Haar函数越相似,其阶跃变化度越大;云层高度多数集中在600~5000m高度范围内必然处于云层第一阶跃变化极值范围内,此时小波协方差函数的第一峰值信号对应的高度即为云层高度,对应的坐标作为云层的经纬坐标。如图4所示,为山东某市光伏电站在2021年10月23日目标空域上空云层,反馈信号经过小波转换后得到的小波协方差函数第一峰值信号对应的云层高度随时间变化图。本发明考虑了激光雷达探测信号在时间和空间的变化特征,能快速连续实时获得天空云层空间坐标等信息,并基于反馈信号收到大气气体分子和气溶胶对激光的散射吸收特性来推断和估计大气云层信息,与梯度法(GRAD)及标准偏差法(STD)具有较好一致性。
步骤S3,以小波协方差函数的第一峰值信号对应高度坐标相似度作为距离标准,并设置幅度阈值,采用DBSCAN聚类算法对所述第一峰值信号数据集进行聚类处理,形成相应的聚类中心及不超阈值范围内的坐标数据集,完成云层边界检测。具体步骤如下:
step3:接着扫描两两数据点间的小波协方差函数第一峰值信号相似度值的数据集,如果存在某个数据使得相似阈值E范围内的数据个数小于,则将其记录为临时核心点,并将该范围内所有数据点设为临时聚类簇,否则继续对第一峰值信号数据集继续扫描;
step4:继续扫描所有临时聚类簇,对具有相同临时核心点的临时聚类簇进行合并,得到新的聚类簇;
step5:重复步骤step3和step4直到聚类簇中不存在新的临时核心点,完成云层边界的检测,并确定各聚类簇的聚类中心。
步骤S5,以云层聚类中心点作为特征点,根据激光雷达扫描得到的信号时间序列,计算得到其相应时间段内的平均移动速度作为云层的移动速度;
步骤S6,最后对光伏电站太阳能板有效面积进行网格化划分并编号。步骤S5得到的云层移动速度经过云层高度时空坐标及云层与光伏电站的夹角,换算得到云层在目标区的投影范围和移动速度,从而计算得到云层投影在每个网格中的停留时间和云层投影占每个网格的面积比的预测值,进而获得光伏发电功率的预测值,如下式(4)所示,
以山东某市光伏电站数据为例,采用STM固态激光雷达EV-Lidar(INtel515RealSense)对光伏电站上空目标区域进行实时连续监测,采集的反馈回波信号按照梯度法GRAD和标准偏差法STD,以及本申请采用Harr小波协方差转换得到的第一峰值信号回波信号对应的云层高度随时间变化对比,如图4所示可知:本申请与GRAD、STD法相比,探测数据转换具有较好的一致性,大气探测边界及高度信息具有相近的表现。本申请中小波变换模的极值点对应图像的边缘,通过将图像信号分解在不同尺度上的多个分量,从而实现刻画图像信号突变点进而完成大气云层边界检测确定,且相对于现有技术中的GARD和STD法,当反馈回波信号的观测资料具有较大噪声时,精确率更高,能有效避免估错。利用聚类算法进一步计算确定云层边界检测及其运动速度和方向,进而依据云层投影覆盖范围并结合光伏网格发电最大值预测短时发电量。
本文光伏发电功率短时预测选取采样预测周期为15min,并以1min为预测尺度检测得到预测数据,并通过均方根误差RMSE值对光伏电站发电功率试验预测数据与实际输出数据两者偏差进行量化分析,RMSE通过下式(5)计算,
式中,为发电功率预测值,为发电功率实际输出值,为光伏电站运行总容量,试样数据总个数。从图5可知,本申请方法发电功率预测值与实际输出值RMSE误差较小,仅为9.42%,具有较高精度,预测值与实际输出变化趋势保持高度一致性,验证了预测准确性。
以上所述的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
Claims (4)
1.一种基于激光雷达云图探测的光伏电站短期发电功率预测方法,其特征在于包括以下步骤:
步骤S1,利用大气气体分子和气溶胶对激光的散射吸收作用,采用地基激光雷达探测扫描光伏电站附近空域得到目标空域激光散射吸收后反馈信号,该反馈信号为不同空间坐标点上的呈梯度衰减的反馈信号时间序列集,为信号距离,为信号方位角,为信号极角;
由于小波协方差函数值越大表明信号函数与Haar函数越相似,反映其阶跃变化度越大,此时将小波协方差函数值中的第一峰值信号作为大气云层边界反馈信号,并形成第一峰值信号数据集,所述第一峰值信号对应的高度作为云层高度,对应的坐标作为云层的经纬坐标;
步骤S3,以小波协方差函数的第一峰值信号相似度作为距离标准,并设置幅度阈值,采用DBSCAN聚类算法对所述第一峰值信号数据集进行聚类处理,形成相应的聚类中心及不超阈值范围内的坐标数据集,完成云层边界检测;
步骤S5,以云层聚类中心点作为特征点,根据激光雷达扫描得到的信号时间序列,计算得到其相应时间段内的平均移动速度作为云层的移动速度;
2.根据权利要求1所述基于激光雷达云图探测的光伏电站短期发电功率预测方法,其特征在于:步骤S3聚类算法的具体步骤包括:
step4:继续扫描所有临时聚类簇,对具有相同临时核心点的临时聚类簇进行合并,得到新的聚类簇;
step5:重复step3和4直到聚类簇中不存在新的临时核心点,完成云层边界的检测,并确定各聚类簇的聚类中心。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210213970.4A CN114296050B (zh) | 2022-03-07 | 2022-03-07 | 基于激光雷达云图探测的光伏电站短期发电功率预测方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210213970.4A CN114296050B (zh) | 2022-03-07 | 2022-03-07 | 基于激光雷达云图探测的光伏电站短期发电功率预测方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114296050A true CN114296050A (zh) | 2022-04-08 |
CN114296050B CN114296050B (zh) | 2022-06-07 |
Family
ID=80978687
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210213970.4A Active CN114296050B (zh) | 2022-03-07 | 2022-03-07 | 基于激光雷达云图探测的光伏电站短期发电功率预测方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114296050B (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115759330A (zh) * | 2022-09-29 | 2023-03-07 | 中国大唐集团科学技术研究总院有限公司 | 一种高时间分辨率的光伏发电功率预测方法 |
CN116662829A (zh) * | 2023-07-28 | 2023-08-29 | 云南中广核能源服务有限公司 | 一种场群风机标准功率曲线定义规则和偏差验证方法 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103886616A (zh) * | 2014-02-25 | 2014-06-25 | 国家电网公司 | 一种基于全天空成像数据的光伏发电功率超短期预测方法 |
US20140355843A1 (en) * | 2011-12-21 | 2014-12-04 | Feipeng Da | 3d face recognition method based on intermediate frequency information in geometric image |
CN104200484A (zh) * | 2013-12-16 | 2014-12-10 | 浙江工业大学 | 基于云团特征分析的分布式光伏系统超短期出力预测方法 |
CN109886486A (zh) * | 2019-02-18 | 2019-06-14 | 南方电网科学研究院有限责任公司 | 不依赖于设备的云层跟踪技术及小时内辐照度预测方法 |
CN110031868A (zh) * | 2019-05-15 | 2019-07-19 | 国耀量子雷达科技有限公司 | 一种基于相干测风激光雷达载噪比反演边界层高度的方法 |
CN111815038A (zh) * | 2020-06-24 | 2020-10-23 | 山东大学 | 一种光伏超短期预测方法及系统 |
CN112132364A (zh) * | 2020-11-02 | 2020-12-25 | 西安热工研究院有限公司 | 一种受云层影响的光伏电站功率预测方法、介质及设备 |
CN113159466A (zh) * | 2021-05-27 | 2021-07-23 | 沃太能源股份有限公司 | 一种短时光伏发电功率预测系统及方法 |
-
2022
- 2022-03-07 CN CN202210213970.4A patent/CN114296050B/zh active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140355843A1 (en) * | 2011-12-21 | 2014-12-04 | Feipeng Da | 3d face recognition method based on intermediate frequency information in geometric image |
CN104200484A (zh) * | 2013-12-16 | 2014-12-10 | 浙江工业大学 | 基于云团特征分析的分布式光伏系统超短期出力预测方法 |
CN103886616A (zh) * | 2014-02-25 | 2014-06-25 | 国家电网公司 | 一种基于全天空成像数据的光伏发电功率超短期预测方法 |
CN109886486A (zh) * | 2019-02-18 | 2019-06-14 | 南方电网科学研究院有限责任公司 | 不依赖于设备的云层跟踪技术及小时内辐照度预测方法 |
CN110031868A (zh) * | 2019-05-15 | 2019-07-19 | 国耀量子雷达科技有限公司 | 一种基于相干测风激光雷达载噪比反演边界层高度的方法 |
CN111815038A (zh) * | 2020-06-24 | 2020-10-23 | 山东大学 | 一种光伏超短期预测方法及系统 |
CN112132364A (zh) * | 2020-11-02 | 2020-12-25 | 西安热工研究院有限公司 | 一种受云层影响的光伏电站功率预测方法、介质及设备 |
CN113159466A (zh) * | 2021-05-27 | 2021-07-23 | 沃太能源股份有限公司 | 一种短时光伏发电功率预测系统及方法 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115759330A (zh) * | 2022-09-29 | 2023-03-07 | 中国大唐集团科学技术研究总院有限公司 | 一种高时间分辨率的光伏发电功率预测方法 |
CN115759330B (zh) * | 2022-09-29 | 2024-04-09 | 中国大唐集团科学技术研究总院有限公司 | 一种高时间分辨率的光伏发电功率预测方法 |
CN116662829A (zh) * | 2023-07-28 | 2023-08-29 | 云南中广核能源服务有限公司 | 一种场群风机标准功率曲线定义规则和偏差验证方法 |
CN116662829B (zh) * | 2023-07-28 | 2023-10-17 | 云南中广核能源服务有限公司 | 一种场群风机标准功率曲线定义规则和偏差验证方法 |
Also Published As
Publication number | Publication date |
---|---|
CN114296050B (zh) | 2022-06-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Si et al. | Hybrid solar forecasting method using satellite visible images and modified convolutional neural networks | |
CN114296050B (zh) | 基于激光雷达云图探测的光伏电站短期发电功率预测方法 | |
CN113936142B (zh) | 一种基于深度学习的降水临近预报方法及装置 | |
Gualtieri et al. | Extrapolating wind speed time series vs. Weibull distribution to assess wind resource to the turbine hub height: A case study on coastal location in Southern Italy | |
CN103971169A (zh) | 一种基于云量模拟的光伏超短期发电功率的预测方法 | |
Liu et al. | Evolution of the total lightning activity in a leading-line and trailing stratiform mesoscale convective system over Beijing | |
CN107193060B (zh) | 一种多路径台风风暴潮快速预测方法及系统 | |
CN112329977A (zh) | 一种面向极端场景的风电功率预测系统 | |
Lonij et al. | Forecasts of PV power output using power measurements of 80 residential PV installs | |
CN111079073A (zh) | 一种建筑物三维太阳能潜力计算方法 | |
CN113640803B (zh) | 一种基于回波强度和回波顶高外推的短时定量降水预报方法 | |
CN105303254B (zh) | 一种对光伏电站接收辐射进行预测的方法及装置 | |
Feng et al. | Short-term global horizontal irradiance forecasting based on sky imaging and pattern recognition | |
Dissawa et al. | Sky Image‐Based Localized, Short‐Term Solar Irradiance Forecasting for Multiple PV Sites via Cloud Motion Tracking | |
Theuer et al. | Minute-scale power forecast of offshore wind turbines using single-Doppler long-range lidar measurements | |
CN112801413A (zh) | 一种光伏电站发电功率预测方法及装置 | |
Dissawa et al. | Cross-correlation based cloud motion estimation for short-term solar irradiation predictions | |
Liu et al. | A spatio-temporal modeling framework for weather radar image data in tropical Southeast Asia | |
CN109583095B (zh) | 基于混合统计动力模型的西北太平洋台风延伸期预报方法 | |
Manandhar et al. | Short-term solar radiation forecast using total sky imager via transfer learning | |
Wu et al. | A minutely solar irradiance forecasting method based on multidimensional feature extraction using all-sky images | |
CN116582086B (zh) | 一种光伏电站清洁度的诊断方法 | |
CN112541620B (zh) | 一种预测精度及效率高的台风风暴增水预测方法及系统 | |
CN115689021A (zh) | 用于预测光伏电站功率的方法、装置、存储介质及处理器 | |
CN113936166A (zh) | 一种基于多普勒天气雷达数据的冰雹回波识别方法及系统 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CP01 | Change in the name or title of a patent holder | ||
CP01 | Change in the name or title of a patent holder |
Address after: 210000 rooms 501 and 502, 5 / F, building 8, yunmi City, No. 19, ningshuang Road, Yuhuatai District, Nanjing, Jiangsu Province Patentee after: Nanjing Naiyun Technology Co.,Ltd. Address before: 210000 rooms 501 and 502, 5 / F, building 8, yunmi City, No. 19, ningshuang Road, Yuhuatai District, Nanjing, Jiangsu Province Patentee before: Nanjing naiyun Information Technology Co.,Ltd. |