CN114295128B - Continuous navigation method and device for low-orbit enhancement and fusion of GNSS and IMU - Google Patents
Continuous navigation method and device for low-orbit enhancement and fusion of GNSS and IMU Download PDFInfo
- Publication number
- CN114295128B CN114295128B CN202111643101.7A CN202111643101A CN114295128B CN 114295128 B CN114295128 B CN 114295128B CN 202111643101 A CN202111643101 A CN 202111643101A CN 114295128 B CN114295128 B CN 114295128B
- Authority
- CN
- China
- Prior art keywords
- navigation
- satellite
- positioning
- signal
- module
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02D—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
- Y02D30/00—Reducing energy consumption in communication networks
- Y02D30/70—Reducing energy consumption in communication networks in wireless communication networks
Landscapes
- Position Fixing By Use Of Radio Waves (AREA)
- Navigation (AREA)
Abstract
Description
技术领域Technical field
本发明涉及卫星导航与组合导航技术领域,主要涉及一种低轨增强、GNSS与IMU融合的持续导航方法及导航装置,尤其涉及一种复杂电磁环境下低轨增强、GNSS与IMU融合的持续导航方法及导航装置。The invention relates to the technical field of satellite navigation and integrated navigation. It mainly relates to a continuous navigation method and navigation device with low orbit enhancement and GNSS and IMU integration. In particular, it relates to a continuous navigation with low orbit enhancement and GNSS and IMU integration in a complex electromagnetic environment. Methods and navigation devices.
背景技术Background technique
全球导航卫星系统(Global Navigation Satellite System,GNSS)导航定位的特点是星座覆盖广,定位精度高,但导航信号易受干扰,且理论上需要四颗以上导航星才能完成定位。惯性定向定位导航系统(Inertial Navigation System,INS)导航定位具有无源特性和隐秘性,且短时间内导航精度较高,但由于惯性器件固有属性限制,长时间导航误差的累计导致定位误差过大。GNSS/INS组合导航技术,利用二者导航系统的特点,弥补了各自的不足,但是在存在遮挡、信号干扰等复杂环境下,GNSS定位可靠性大大降低,甚至不可用,这就需要引入低轨增强系统。利用低轨道地球(Low Earth Orbit,LEO)卫星播发增强信号,在可见星不足的情况下进行单星定位,形成单星/INS组合,同时对GNSS进行辅助定位,应对复杂场景的限制。Global Navigation Satellite System (GNSS) navigation and positioning is characterized by wide constellation coverage and high positioning accuracy, but the navigation signal is susceptible to interference, and theoretically requires more than four navigation satellites to complete positioning. Inertial Navigation System (INS) navigation and positioning has passive characteristics and stealth, and has high navigation accuracy in a short time. However, due to the limitations of the inherent properties of inertial devices, the accumulation of long-term navigation errors leads to excessive positioning errors. . GNSS/INS integrated navigation technology makes use of the characteristics of the two navigation systems to make up for their respective shortcomings. However, in complex environments such as occlusion and signal interference, the reliability of GNSS positioning is greatly reduced or even unavailable. This requires the introduction of low orbit Enhance the system. Low Earth Orbit (LEO) satellites are used to broadcast enhanced signals, perform single-star positioning when there are insufficient visible stars, and form a single-star/INS combination. At the same time, GNSS is used to assist positioning to cope with the restrictions of complex scenarios.
考虑到导航定位应用场景的复杂化及低轨信号的优越性,国内外一直持续对组合导航及低轨星座进行研究,低轨增强性能的测试也在反复进行,融合INS/GNSS/低轨增强的组合定位技术将会大大扩展定位可用场景。Taking into account the complexity of navigation and positioning application scenarios and the superiority of low-orbit signals, research on integrated navigation and low-orbit constellations has been ongoing at home and abroad. Tests of low-orbit enhancement performance are also being carried out repeatedly, integrating INS/GNSS/low-orbit enhancement. The combined positioning technology will greatly expand the available scenarios for positioning.
发明内容Contents of the invention
为了提高在复杂电磁环境下的卫星定位的可靠性和持续性,本发明的目的在于提供一种低轨增强、GNSS与IMU融合的持续导航方法及导航装置。In order to improve the reliability and sustainability of satellite positioning in complex electromagnetic environments, the purpose of the present invention is to provide a continuous navigation method and navigation device that enhances low orbit and integrates GNSS and IMU.
为实现上述发明目的,本发明的技术方案是:In order to achieve the above-mentioned object of the invention, the technical solution of the present invention is:
本发明提供一种低轨增强、GNSS与IMU融合的持续导航方法,包括:The present invention provides a low-orbit enhanced, GNSS and IMU integrated continuous navigation method, including:
S1.利用信号接收模块全球导航卫星系统发送的卫星导航信号及低轨地球卫星发送的低轨增强信号进行捕获跟踪和电文信息解算;S1. Use the satellite navigation signals sent by the global navigation satellite system of the signal receiving module and the low-orbit enhanced signals sent by the low-orbit earth satellites to capture, track and interpret message information;
S2.利用惯性测量单元(Inertial Measurement Unit,IMU)模块进行无源惯性导航定位并输出定位结果;S2. Use the Inertial Measurement Unit (IMU) module to perform passive inertial navigation positioning and output positioning results;
S3.利用捕获判断模块判断所述卫星导航信号是否被正常捕获,当所述卫星导航信号被正常捕获时,执行步骤S4,否则执行步骤S5~S6;S3. Use the capture judgment module to determine whether the satellite navigation signal is captured normally. When the satellite navigation signal is captured normally, execute step S4; otherwise, execute steps S5-S6;
S4.利用组合定位模块将所述定位结果与所述卫星导航信号融合,实现惯性导航系统和全球导航卫星系统的组合导航定位;S4. Use the combined positioning module to fuse the positioning result with the satellite navigation signal to realize the combined navigation positioning of the inertial navigation system and the global navigation satellite system;
S5.利用单星定位模块对所述低轨增强信号进行处理,利用所述惯性导航系统的定位信息剔除定位模糊值,辅助实现低轨地球卫星单星定位;S5. Use the single-satellite positioning module to process the low-orbit enhanced signal, use the positioning information of the inertial navigation system to eliminate positioning ambiguities, and assist in achieving single-star positioning of low-orbit earth satellites;
S6.利用导航增强模块根据单星定位结果以及所述低轨增强信号的转发星历信息,对所述卫星导航信号在捕获跟踪过程中的长时间相干积分,辅助卫星导航信号的捕获跟踪。S6. Use the navigation enhancement module to perform long-term coherent integration of the satellite navigation signal during the acquisition and tracking process based on the single satellite positioning result and the forwarded ephemeris information of the low-orbit enhancement signal to assist in the acquisition and tracking of the satellite navigation signal.
根据本发明的一个方面,所述步骤S1的低轨增强信号以QPSK调制方式调制相互正交的两路电文信息,所述电文信息包括低轨卫星星历参数、低轨卫星时钟改正参数,用以进行单星定位;转发BDS卫星星历信息,用以进行全球导航卫星系统辅助捕获。According to one aspect of the present invention, the low-orbit enhanced signal in step S1 modulates two mutually orthogonal message messages using QPSK modulation. The message message includes low-orbit satellite ephemeris parameters and low-orbit satellite clock correction parameters, using To perform single-star positioning; forward BDS satellite ephemeris information for assisted acquisition of global navigation satellite systems.
根据本发明的一个方面,利用所述信号接收模块接收所述卫星导航信号并解算,作为所述组合定位模块的输入;According to one aspect of the present invention, the signal receiving module is used to receive the satellite navigation signal and resolve it as the input of the combined positioning module;
利用信号接收模块对所述低轨增强信号进行高动态下的频率搜索及快速捕获,解算低轨增强电文发送时刻伪距信息、多普勒信息以及低轨地球卫星位置和速度信息,作为所述单星定位模块的输入;The signal receiving module is used to perform frequency search and rapid acquisition of the low-orbit enhanced signal under high dynamics, and the pseudo-range information, Doppler information, and low-orbit earth satellite position and speed information at the time of sending the low-orbit enhanced message are solved as all The input of the single satellite positioning module;
利用信号接收模块对所述低轨增强信号进行电文解算,获取所述全球导航卫星系统的星历信息,作为所述导航增强模块的输入。The signal receiving module is used to perform message analysis on the low-orbit enhanced signal, and the ephemeris information of the global navigation satellite system is obtained as input to the navigation enhancement module.
根据本发明的一个方面,所述步骤S4包括:According to an aspect of the present invention, the step S4 includes:
利用惯性导航系统自主定位信息,对所述卫星导航信号的跟踪环路进行压缩,辅助所述卫星导航信号的连续跟踪;Utilize the autonomous positioning information of the inertial navigation system to compress the tracking loop of the satellite navigation signal to assist in the continuous tracking of the satellite navigation signal;
利用融合算法将所述定位结果与所述卫星导航信号信息融合。The positioning result is fused with the satellite navigation signal information using a fusion algorithm.
根据本发明的一个方面,所述步骤S5包括:According to an aspect of the present invention, the step S5 includes:
利用单星定位模块对所述信号接收模块输入信息进行处理,输出单星定位结果;Use the single-star positioning module to process the input information of the signal receiving module and output the single-star positioning result;
利用惯性导航系统的定位信息对所述单星定位结果进行修正,剔除单星定位模糊值;Use the positioning information of the inertial navigation system to correct the single-star positioning result and eliminate the single-star positioning ambiguity;
利用融合算法将所述惯性导航系统定位结果与低轨地球卫星单星定位结果进行信息融合。The fusion algorithm is used to fuse information between the positioning results of the inertial navigation system and the single-star positioning results of low-orbit earth satellites.
根据本发明的一个方面,所述步骤S6包括:According to an aspect of the present invention, the step S6 includes:
利用惯性导航系统辅助的低轨增强信号单星定位结果作为先验信息,缩小卫星导航信号捕获过程中的频率及码相位搜索范围,进行卫星导航信号快速频率搜索及码相位同步;Use the low-orbit enhanced signal single satellite positioning results assisted by the inertial navigation system as prior information to narrow the frequency and code phase search range during satellite navigation signal acquisition, and perform rapid frequency search and code phase synchronization of satellite navigation signals;
选取卫星导航信号的无电文信息支路,码相位同步后剥离子码,在卫星导航信号的捕获跟踪阶段进行长时间相干积分,并获取相干积分增益。Select the message-free branch of the satellite navigation signal, peel off the sub-code after synchronizing the code phase, perform long-term coherent integration during the acquisition and tracking phase of the satellite navigation signal, and obtain the coherent integration gain.
一种利用如前述所示的低轨增强、GNSS与IMU融合的持续导航方法实现的低轨增强、GNSS与IMU融合的持续导航装置,包括:信号接收模块、惯性测量单元模块、捕获判断模块、组合定位模块、单星定位模块和导航增强模块。A low-orbit enhancement, GNSS and IMU fusion continuous navigation device implemented by the low-orbit enhancement, GNSS and IMU fusion continuous navigation method as shown above, including: a signal receiving module, an inertial measurement unit module, a capture judgment module, Combined positioning module, single satellite positioning module and navigation enhancement module.
所述信号接收模块用于对全球导航卫星系统发送的卫星导航信号,以及低轨地球卫星发送的低轨增强信号进行捕获跟踪和电文信息解算;The signal receiving module is used to capture and track satellite navigation signals sent by global navigation satellite systems and low-orbit enhanced signals sent by low-orbit earth satellites and interpret message information;
所述惯性测量单元模块用于无源惯性导航定位并输出定位结果;The inertial measurement unit module is used for passive inertial navigation positioning and output positioning results;
所述捕获判断模块用于判断所述卫星导航信号是否被正常捕获,当所述卫星导航信号被正常捕获时,将捕获跟踪的信号和所述定位结果输出至所述组合定位模块,否则将捕获跟踪的信号和所述定位结果输出至所述单星定位模块;The capture judgment module is used to determine whether the satellite navigation signal is captured normally. When the satellite navigation signal is captured normally, the captured and tracked signal and the positioning result are output to the combined positioning module. Otherwise, the satellite navigation signal is captured normally. The tracked signal and the positioning result are output to the single-star positioning module;
所述组合定位模块用于将所述定位结果与所述卫星导航信号融合,实现惯性导航系统和全球导航卫星系统的组合导航定位;The combined positioning module is used to fuse the positioning result with the satellite navigation signal to realize combined navigation positioning of the inertial navigation system and the global navigation satellite system;
所述单星定位模块用于处理所述低轨增强信号,利用惯性导航系统的定位信息剔除定位模糊值,辅助实现低轨地球卫星单星定位;The single-star positioning module is used to process the low-orbit enhanced signal, use the positioning information of the inertial navigation system to eliminate positioning ambiguities, and assist in achieving single-star positioning of low-orbit earth satellites;
所述导航增强模块用于根据单星定位结果,以及所述低轨增强信号中的转发星历信息,对所述卫星导航信号进行长时间相干积分,提升信号捕获跟踪灵敏度,实现复杂电磁环境下全球导航卫星系统定位。The navigation enhancement module is used to perform long-term coherent integration of the satellite navigation signal based on the single-satellite positioning result and the forwarded ephemeris information in the low-orbit enhancement signal, thereby improving signal acquisition and tracking sensitivity, and achieving a complex electromagnetic environment. Global Navigation Satellite System Positioning.
根据本发明的另一个方面,所述信号接收模块包括:卫星信号下变频及基带处理子模块和电文解算及信息处理子模块。According to another aspect of the present invention, the signal receiving module includes: a satellite signal down-conversion and baseband processing sub-module and a message interpretation and information processing sub-module.
所述卫星信号下变频及基带处理子模块用于接收全球导航卫星系统发送的卫星导航信号及低轨地球卫星发送的低轨增强信号,对信号进行捕获跟踪,得到信号累加量参数;The satellite signal down-conversion and baseband processing sub-module is used to receive satellite navigation signals sent by global navigation satellite systems and low-orbit enhanced signals sent by low-orbit earth satellites, capture and track the signals, and obtain signal accumulation parameters;
所述电文解算及信息处理子模块用于根据所述信号累加量参数还原电文比特信息,解算星历参数,并根据星历参数计算卫星位置、速度信息。The message calculation and information processing sub-module is used to restore the message bit information based on the signal accumulation parameters, calculate ephemeris parameters, and calculate satellite position and speed information based on the ephemeris parameters.
根据本发明的另一个方面,所述组合定位模块为惯性导航系统和全球导航卫星系统深耦合组合导航定位模块,用于利用融合算法将所述定位结果与所述卫星导航信号信息融合,并利用惯性导航系统自主定位信息,对所述卫星导航信号的跟踪环路进行压缩,辅助所述卫星导航信号的连续跟踪。According to another aspect of the present invention, the combined positioning module is an inertial navigation system and a global navigation satellite system deeply coupled combined navigation and positioning module, which is used to use a fusion algorithm to fuse the positioning results with the satellite navigation signal information, and uses The inertial navigation system autonomously locates information, compresses the tracking loop of the satellite navigation signal, and assists in the continuous tracking of the satellite navigation signal.
有益效果:Beneficial effects:
根据本发明的方案,采用低轨增强信号、GNSS系统与INS系统的组合,与传统的GNSS/INS组合导航系统相比,本发明的导航方法和装置可在存在电磁干扰,并导致GNSS卫星导航信号无法正常定位的场景下,利用低轨增强信息,对GNSS卫星导航信号进行长时间相干积分,以获得额外的相干积分增益,由此辅助GNSS卫星导航信号的捕获跟踪,提升信号捕获的灵敏度和抗干扰能力。According to the solution of the present invention, a combination of low-orbit enhanced signal, GNSS system and INS system is used. Compared with the traditional GNSS/INS integrated navigation system, the navigation method and device of the present invention can operate in the presence of electromagnetic interference and cause GNSS satellite navigation. In scenarios where signals cannot be positioned normally, low-orbit enhancement information is used to perform long-term coherent integration of GNSS satellite navigation signals to obtain additional coherent integration gain, thereby assisting the capture and tracking of GNSS satellite navigation signals and improving the sensitivity and accuracy of signal capture. Anti-interference ability.
根据本发明的一个方案,本发明可不依赖GNSS导航定位,直接利用LEO卫星进行单星定位,同时以INS定位获取用户动态,进一步提升单星定位精度,实现在GNSS卫星导航信号完全不可用场景下的定位。According to one solution of the present invention, the present invention can directly use LEO satellites for single-star positioning without relying on GNSS navigation and positioning, and at the same time obtain user dynamics with INS positioning, further improving single-star positioning accuracy, and realizing scenarios where GNSS satellite navigation signals are completely unavailable. positioning.
根据本发明的一个方案,GNSS/INS组合导航模式和低轨信号辅助GNSS模式可同时运行,依据捕获判断模块对通道GNSS卫星导航信号捕获情况的判断结果,对通道捕获定位模式进行优选,提升装置自适应性,实现复杂电磁环境下的持续定位。According to one solution of the present invention, the GNSS/INS integrated navigation mode and the low-orbit signal-assisted GNSS mode can be operated simultaneously. According to the judgment result of the acquisition judgment module on the channel GNSS satellite navigation signal acquisition situation, the channel acquisition positioning mode is optimized, and the lifting device Adaptability enables continuous positioning in complex electromagnetic environments.
附图说明Description of drawings
图1示意性表示本发明的一种实施方式的低轨增强、GNSS与IMU融合的持续导航方法的流程图;Figure 1 schematically represents a flow chart of a low-orbit augmentation, GNSS and IMU integrated continuous navigation method according to an embodiment of the present invention;
图2示意性表示本发明的一种实施方式的低轨增强、GNSS与IMU融合的持续导航装置的结构示意图;Figure 2 schematically shows the structural diagram of a low-orbit enhanced, GNSS and IMU integrated continuous navigation device according to an embodiment of the present invention;
图3示意性表示本发明的一种实施方式的低轨增强、GNSS与IMU融合的持续导航装置的实体结构示意图。Figure 3 schematically shows the physical structure of a low-orbit enhanced, GNSS and IMU integrated continuous navigation device according to an embodiment of the present invention.
具体实施方式Detailed ways
为了更清楚地说明本发明实施方式或现有技术中的技术方案,下面将对实施方式中所需要使用的附图作简单地介绍。显而易见地,下面描述中的附图仅仅是本发明的一些实施方式,对于本领域普通技术人员而言,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to more clearly explain the embodiments of the present invention or the technical solutions in the prior art, the drawings needed to be used in the embodiments will be briefly introduced below. Obviously, the drawings in the following description are only some embodiments of the present invention. For those of ordinary skill in the art, other drawings can be obtained based on these drawings without exerting creative efforts.
下面结合附图和具体实施方式对本发明作详细地描述,实施方式不能在此一一赘述,但本发明的实施方式并不因此限定于以下实施方式。The present invention will be described in detail below with reference to the accompanying drawings and specific embodiments. The embodiments cannot be described in detail here, but the embodiments of the present invention are not limited to the following embodiments.
根据本发明的构思,本发明的低轨增强、GNSS与IMU融合的持续导航方法及导航装置,在复杂电磁环境下,同时在GNSS卫星导航信号能够正常接收、捕获跟踪的场景下,接收GNSS卫星导航信号并与INS进行深耦合实现GNSS与INS组合导航定位。在受到电磁干扰的情况下,且GNSS卫星导航信号无法正常接收的场景下,一方面可通过接收低轨增强信号(或者是低轨导航增强信号),并与INS进行组合定位,完成不依赖GNSS卫星导航信号的定位工作;另一方面由低轨导航增强信号和INS组合定位产生先验信息,辅助GNSS卫星导航信号进行长时间相干积分,获得相干积分增益,在一定程度上提升本发明的方法和装置对GNSS卫星导航信号的捕获灵敏度及抗干扰性能。According to the concept of the present invention, the low-orbit enhanced, continuous navigation method and navigation device integrating GNSS and IMU of the present invention can receive GNSS satellites in a complex electromagnetic environment and in a scenario where GNSS satellite navigation signals can be normally received, captured and tracked. Navigation signals are deeply coupled with INS to achieve integrated navigation and positioning of GNSS and INS. In the case of electromagnetic interference and GNSS satellite navigation signals cannot be received normally, on the one hand, it can receive low-orbit enhanced signals (or low-orbit navigation enhanced signals) and perform combined positioning with INS to complete positioning without relying on GNSS. Positioning work of satellite navigation signals; on the other hand, a priori information is generated from the combined positioning of low-orbit navigation enhanced signals and INS, which assists the long-term coherent integration of GNSS satellite navigation signals to obtain coherent integration gain, which improves the method of the present invention to a certain extent. and the device’s capture sensitivity and anti-interference performance for GNSS satellite navigation signals.
如图1所示,本实施方式的低轨增强、GNSS与IMU融合的持续导航方法,包括:As shown in Figure 1, the low-orbit enhanced, GNSS and IMU integrated continuous navigation method of this embodiment includes:
S1.利用信号接收模块对全球导航卫星系统发送的卫星导航信号及低轨地球卫星发送的低轨增强信号进行捕获跟踪和电文信息解算;S1. Use the signal receiving module to capture, track and interpret the message information of satellite navigation signals sent by global navigation satellite systems and low-orbit enhanced signals sent by low-orbit earth satellites;
S2.利用惯性测量单元模块进行无源惯性导航定位并输出定位结果;S2. Use the inertial measurement unit module to perform passive inertial navigation positioning and output positioning results;
S3.利用捕获判断模块判断卫星导航信号是否被正常捕获,当卫星导航信号被正常捕获时,执行步骤S4,否则执行步骤S5~S6;S3. Use the capture judgment module to determine whether the satellite navigation signal is captured normally. When the satellite navigation signal is captured normally, execute step S4; otherwise, execute steps S5~S6;
S4.利用组合定位模块将惯性导航定位结果与卫星导航信号融合,实现惯性导航系统和全球导航卫星系统的组合导航定位;S4. Use the combined positioning module to fuse the inertial navigation positioning results with satellite navigation signals to realize the combined navigation and positioning of the inertial navigation system and the global navigation satellite system;
S5.利用单星定位模块对低轨增强信号进行处理,利用惯性导航系统的定位信息剔除定位模糊值,辅助实现低轨地球卫星单星定位;S5. Use the single-satellite positioning module to process low-orbit enhanced signals, use the positioning information of the inertial navigation system to eliminate positioning ambiguities, and assist in achieving single-star positioning of low-orbit earth satellites;
S6.利用导航增强模块根据单星定位结果,以及低轨增强信号的转发星历信息,对卫星导航信号进行长时间相干积分,辅助全球导航卫星系统的捕获跟踪,实现复杂电磁环境下的全球导航卫星系统定位。S6. Use the navigation enhancement module to perform long-term coherent integration of satellite navigation signals based on the single-satellite positioning results and the forwarded ephemeris information of the low-orbit enhanced signal, assisting the capture and tracking of the global navigation satellite system, and realizing global navigation in complex electromagnetic environments. Satellite system positioning.
根据本发明的一个实施方式,上述低轨增强信号以QPSK调制方式调制相互正交的I、Q两路电文信息,电文信息包括单星定位所需的低轨地球卫星状态信息,以及全球导航卫星系统辅助捕获所需的卫星星历信息。I支路具体包含低轨卫星星历参数、低轨卫星时钟改正参数;Q支路具体包含转发的BDS卫星星历信息。According to an embodiment of the present invention, the above-mentioned low-orbit enhanced signal modulates the mutually orthogonal I and Q message information in the QPSK modulation method. The message information includes low-orbit earth satellite status information required for single-star positioning, and global navigation satellites. The system assists in capturing the required satellite ephemeris information. The I branch specifically includes low-orbit satellite ephemeris parameters and low-orbit satellite clock correction parameters; the Q branch specifically includes the forwarded BDS satellite ephemeris information.
根据本发明的一个实施方式,上述步骤S1包括:利用信号接收模块接收全球导航卫星系统发送的卫星导航信号,对信号进行解算,作为组合定位模块输入;利用信号接收模块接收低轨地球卫星播发的低轨增强信号,并对低轨增强信号进行高动态下的频率搜索及快速捕获,解算低轨增强电文发送时刻的伪距信息、多普勒信息以及低轨地球卫星位置和速度信息,作为单星定位模块的输入;利用信号接收模块对低轨增强信号进行电文解算,获取全球导航卫星系统的星历信息,作为导航增强模块输入。这里的信号接收模块可以由GNSS天线及相关硬件组成。According to an embodiment of the present invention, the above-mentioned step S1 includes: using the signal receiving module to receive the satellite navigation signal sent by the global navigation satellite system, solving the signal, and inputting it as a combined positioning module; using the signal receiving module to receive the broadcast of the low-orbit earth satellite The low-orbit enhanced signal is used to perform frequency search and rapid acquisition of the low-orbit enhanced signal under high dynamics, and the pseudo-range information, Doppler information, and low-orbit earth satellite position and velocity information at the time when the low-orbit enhanced message is sent are solved. As the input of the single-satellite positioning module; the signal receiving module is used to perform message analysis on the low-orbit enhanced signal to obtain the ephemeris information of the global navigation satellite system, which is used as the input of the navigation enhancement module. The signal receiving module here can be composed of a GNSS antenna and related hardware.
根据本发明的一个实施方式,上述步骤S4包括:利用融合算法将定位结果与GNSS卫星导航信号信息融合;利用惯性导航系统自主定位信息,对GNSS卫星导航信号的跟踪环路进行压缩,辅助GNSS卫星导航信号的连续跟踪。通过融合算法可提升定位精度及系统稳健性。According to an embodiment of the present invention, the above step S4 includes: using a fusion algorithm to fuse the positioning result with the GNSS satellite navigation signal information; using the inertial navigation system autonomous positioning information to compress the tracking loop of the GNSS satellite navigation signal to assist the GNSS satellite Continuous tracking of navigation signals. Positioning accuracy and system robustness can be improved through fusion algorithms.
根据本发明的一个实施方式,上述步骤S5包括:利用单星定位模块对模块输入信息进行处理,输出单星定位结果;利用惯性导航系统的定位信息对单星定位结果进行修正,剔除单星定位模糊值;利用融合算法将惯性导航系统定位结果与低轨地球卫星单星定位结果进行信息融合,对定位结果进行优化。According to an embodiment of the present invention, the above step S5 includes: using the single-star positioning module to process the module input information and output the single-star positioning result; using the positioning information of the inertial navigation system to correct the single-star positioning result and eliminate the single-star positioning result. Fuzzy value; use the fusion algorithm to fuse the positioning results of the inertial navigation system and the single-star positioning results of low-orbit earth satellites to optimize the positioning results.
根据本发明的一个实施方式,上述步骤S6包括:利用惯性导航系统辅助的低轨增强信号单星定位结果作为先验信息,缩小GNSS卫星导航信号捕获过程中的频率及码相位搜索范围后,进行GNSS卫星导航信号快速频率搜索及码相位同步,这样可保证相干积分时间延长后,依旧能够在LEO卫星过境期间完成GNSS卫星导航信号捕获;选取GNSS卫星导航信号的无电文信息支路,码相位同步后剥离子码,在GNSS卫星导航信号的捕获跟踪阶段进行长时间相干积分,并获取相干积分增益,实现GNSS卫星导航信号的捕获灵敏度及抗干扰性能提升。According to an embodiment of the present invention, the above step S6 includes: using the low orbit enhanced signal single satellite positioning result assisted by the inertial navigation system as a priori information, after narrowing the frequency and code phase search range during the GNSS satellite navigation signal acquisition process, Fast frequency search and code phase synchronization of GNSS satellite navigation signals can ensure that after the coherent integration time is extended, GNSS satellite navigation signal acquisition can still be completed during the LEO satellite transit; select the message-free branch of the GNSS satellite navigation signal and code phase synchronization After stripping the sub-code, long-term coherent integration is performed during the acquisition and tracking phase of the GNSS satellite navigation signal, and the coherent integration gain is obtained to improve the acquisition sensitivity and anti-interference performance of the GNSS satellite navigation signal.
根据本发明的一个实施方式,如图2所示,本实施方式利用上述低轨增强、GNSS与IMU融合的持续导航方法实现的低轨增强、GNSS与IMU融合的持续导航装置,包括:信号接收模块201、惯性测量单元模块202、捕获判断模块203、组合定位模块204、单星定位模块205和导航增强模块206。According to an embodiment of the present invention, as shown in Figure 2, this embodiment utilizes the above-mentioned low-orbit enhancement, GNSS and IMU fusion continuous navigation method to implement a low-orbit enhancement, GNSS and IMU fusion continuous navigation device, including: signal reception Module 201, inertial measurement unit module 202, capture judgment module 203, combined positioning module 204, single satellite positioning module 205 and navigation enhancement module 206.
其中,信号接收模块201用于对GNSS卫星导航信号和低轨地球卫星播发的低轨增强信号进行捕获跟踪以及电文信息解算;惯性测量单元模块202用于无源惯性导航定位并输出定位结果;捕获判断模块203用于判断GNSS卫星导航信号是否被正常捕获,当GNSS卫星导航信号被正常捕获时,将捕获跟踪的信号和定位结果输出至组合定位模块204,否则将捕获跟踪的信号和定位结果输出至单星定位模块205;组合定位模块204用于将定位结果与GNSS卫星导航信号融合,实现惯性导航系统和全球导航卫星系统的组合导航定位;单星定位模块205用于根据信号接收模块输入信息进行低轨地球卫星单星定位,利用惯性导航系统的定位信息对单星定位结果进行修正,并将单星定位结果与惯性导航定位结果融合;导航增强模块206用于根据单星定位结果,并利用低轨增强信号中的转发星历信息,完成GNSS卫星导航信号捕获跟踪过程中的长时间相干积分,辅助GNSS卫星导航信号的捕获跟踪。Among them, the signal receiving module 201 is used to capture and track GNSS satellite navigation signals and low-orbit enhanced signals broadcast by low-orbit earth satellites and to interpret message information; the inertial measurement unit module 202 is used for passive inertial navigation positioning and output positioning results; The capture judgment module 203 is used to determine whether the GNSS satellite navigation signal is captured normally. When the GNSS satellite navigation signal is captured normally, the captured and tracked signal and positioning result will be output to the combined positioning module 204. Otherwise, the tracked signal and positioning result will be captured. Output to the single-star positioning module 205; the combined positioning module 204 is used to fuse the positioning results with the GNSS satellite navigation signal to realize the combined navigation and positioning of the inertial navigation system and the global navigation satellite system; the single-star positioning module 205 is used to receive input according to the signal module The information is used to perform single-star positioning of low-orbit earth satellites, use the positioning information of the inertial navigation system to correct the single-star positioning results, and fuse the single-star positioning results with the inertial navigation positioning results; the navigation enhancement module 206 is used to based on the single-star positioning results, It also uses the forwarded ephemeris information in the low-orbit enhanced signal to complete long-term coherent integration during the acquisition and tracking process of GNSS satellite navigation signals, assisting the acquisition and tracking of GNSS satellite navigation signals.
根据本发明的一个实施方式,信号接收模块201包括:卫星信号下变频及基带处理子模块和电文解算及信息处理子模块。其中,卫星信号下变频及基带处理子模块用于接收全球导航卫星系统发送的卫星导航信号及低轨地球卫星发送的低轨增强信号,对信号进行捕获跟踪,得到信号累加量参数。电文解算及信息处理子模块用于根据信号累加量参数还原电文比特信息,解算星历参数,并根据星历参数计算卫星定位信息。According to an embodiment of the present invention, the signal receiving module 201 includes: a satellite signal down-conversion and baseband processing sub-module and a message interpretation and information processing sub-module. Among them, the satellite signal down-conversion and baseband processing sub-modules are used to receive satellite navigation signals sent by global navigation satellite systems and low-orbit enhanced signals sent by low-orbit earth satellites, capture and track the signals, and obtain signal accumulation parameters. The message calculation and information processing sub-module is used to restore the message bit information according to the signal accumulation parameters, solve the ephemeris parameters, and calculate the satellite positioning information based on the ephemeris parameters.
根据本发明的一个实施方式,组合定位模块204为INS和GNSS深耦合组合导航定位模块,用于利用融合算法将定位结果与GNSS卫星导航信号信息融合,并利用惯性导航系统自主定位信息,对GNSS卫星导航信号的跟踪环路进行压缩,辅助GNSS卫星导航信号的连续跟踪。According to an embodiment of the present invention, the combined positioning module 204 is an INS and GNSS deeply coupled combined navigation and positioning module, which is used to use a fusion algorithm to fuse positioning results with GNSS satellite navigation signal information, and to use the inertial navigation system autonomous positioning information to perform GNSS The tracking loop of the satellite navigation signal is compressed to assist the continuous tracking of the GNSS satellite navigation signal.
根据本发明的一个实施方式,单星定位模块205为INS辅助LEO卫星实现单星定位模块,用于根据输入的LEO卫星伪距信息、多普勒信息以及卫星位置和速度信息,进行单星定位并输出定位结果;并用于利用惯性导航系统获取载体运动状态,剔除单星定位模糊值并对单星定位结果进行修正;并用于利用融合算法将惯性导航定位信息与单星定位结果进行融合,对定位结果进一步优化。According to an embodiment of the present invention, the single-star positioning module 205 implements a single-star positioning module for the INS-assisted LEO satellite, and is used to perform single-star positioning based on the input LEO satellite pseudorange information, Doppler information, and satellite position and speed information. And output the positioning results; and used to use the inertial navigation system to obtain the carrier motion status, eliminate single-star positioning fuzzy values and correct the single-star positioning results; and use the fusion algorithm to fuse the inertial navigation positioning information and single-star positioning results, and Positioning results are further optimized.
根据本发明的一个实施方式,导航增强模块206利用惯性导航系统辅助的低轨增强信号单星定位结果作为先验信息,缩小GNSS卫星导航信号捕获过程中的频率及码相位搜索范围后进行GNSS卫星导航信号快速频率搜索及码相位同步。并选取GNSS卫星导航信号的无电文信息支路,码相位同步后剥离子码,在GNSS卫星导航信号的捕获跟踪阶段进行长时间相干积分,获取相干积分增益。According to an embodiment of the present invention, the navigation enhancement module 206 uses the low-orbit enhancement signal single satellite positioning result assisted by the inertial navigation system as a priori information to narrow the frequency and code phase search range during the GNSS satellite navigation signal acquisition process before performing the GNSS satellite search. Fast frequency search and code phase synchronization of navigation signals. And select the non-message information branch of the GNSS satellite navigation signal, peel off the sub-code after code phase synchronization, and perform long-term coherent integration during the acquisition and tracking phase of the GNSS satellite navigation signal to obtain the coherent integral gain.
根据本发明的一个实施方式,如图3所示,在复杂电磁环境下的低轨增强、GNSS与IMU融合的持续导航实体装置包括:信号接收器301、IMU惯性器件302、组合定位器303、单星定位器304和导航增强定位器305。信号接收器301对GNSS卫星导航信号及LEO低轨增强信号进行捕获跟踪、电文解算及星历参数计算。IMU惯性器件302通过惯性器件进行惯性导航定位,组合定位器303将IMU惯性器件302输出的定位结果反馈至信号接收器301,辅助GNSS卫星导航信号的环路跟踪,并通过信息融合输出定位结果。单星定位器304接收信号接收器301输出的低轨增强信号星历计算结果,进行单星定位处理,与IMU惯性器件302输出的惯性导航定位结果进行融合,提升定位精度。导航增强定位器305接收单星定位器304输出的定位结果,辅助GNSS卫星导航信号进行捕获及跟踪过程中的长时间相干积分,提升捕获及跟踪灵敏度。According to an embodiment of the present invention, as shown in Figure 3, the low-orbit enhanced, GNSS and IMU integrated continuous navigation entity device in a complex electromagnetic environment includes: a signal receiver 301, an IMU inertial device 302, a combined positioner 303, Single star locator 304 and navigation enhanced locator 305. The signal receiver 301 captures and tracks GNSS satellite navigation signals and LEO low-orbit enhanced signals, performs message interpretation and calculates ephemeris parameters. The IMU inertial device 302 performs inertial navigation positioning through the inertial device. The combined positioner 303 feeds back the positioning result output by the IMU inertial device 302 to the signal receiver 301, assists in loop tracking of GNSS satellite navigation signals, and outputs the positioning result through information fusion. The single-star locator 304 receives the low-orbit enhanced signal ephemeris calculation result output by the signal receiver 301, performs single-star positioning processing, and fuses it with the inertial navigation positioning result output by the IMU inertial device 302 to improve positioning accuracy. The navigation enhancement locator 305 receives the positioning result output by the single-star locator 304, assists the long-term coherent integration of GNSS satellite navigation signals in the acquisition and tracking process, and improves the acquisition and tracking sensitivity.
以上所述仅为本发明的一个实施方式而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包括在本发明的保护范围之内。The above description is only one embodiment of the present invention and is not intended to limit the present invention. For those skilled in the art, the present invention may have various modifications and changes. Any modifications, equivalent substitutions, improvements, etc. made within the spirit and principles of the present invention shall be included in the protection scope of the present invention.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111643101.7A CN114295128B (en) | 2021-12-29 | 2021-12-29 | Continuous navigation method and device for low-orbit enhancement and fusion of GNSS and IMU |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111643101.7A CN114295128B (en) | 2021-12-29 | 2021-12-29 | Continuous navigation method and device for low-orbit enhancement and fusion of GNSS and IMU |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114295128A CN114295128A (en) | 2022-04-08 |
CN114295128B true CN114295128B (en) | 2024-02-06 |
Family
ID=80972475
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111643101.7A Active CN114295128B (en) | 2021-12-29 | 2021-12-29 | Continuous navigation method and device for low-orbit enhancement and fusion of GNSS and IMU |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114295128B (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103777218A (en) * | 2012-10-23 | 2014-05-07 | 中国科学院光电研究院 | Performance evaluation system and method for GNSS/INS (Global Navigation Satellite System/Inertial Navigation System) ultra-tight integrated navigation system |
CN106443739A (en) * | 2016-09-09 | 2017-02-22 | 清华大学 | Assisted enhancement navigation method and device |
CN108226980A (en) * | 2017-12-23 | 2018-06-29 | 北京卫星信息工程研究所 | Difference GNSS and the adaptive close coupling air navigation aids of INS based on Inertial Measurement Unit |
CN110793528A (en) * | 2019-09-27 | 2020-02-14 | 西安空间无线电技术研究所 | Low-orbit satellite-based anchoring-based Beidou navigation constellation autonomous orbit determination method |
CN112946699A (en) * | 2021-01-29 | 2021-06-11 | 重庆两江卫星移动通信有限公司 | Method and system for enhancing GNSS navigation system by using general-purpose low-orbit satellite |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107390233B (en) * | 2017-07-18 | 2020-04-17 | 武汉大学 | Low-earth-orbit satellite navigation enhanced ionosphere delay correction parameter method |
-
2021
- 2021-12-29 CN CN202111643101.7A patent/CN114295128B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103777218A (en) * | 2012-10-23 | 2014-05-07 | 中国科学院光电研究院 | Performance evaluation system and method for GNSS/INS (Global Navigation Satellite System/Inertial Navigation System) ultra-tight integrated navigation system |
CN106443739A (en) * | 2016-09-09 | 2017-02-22 | 清华大学 | Assisted enhancement navigation method and device |
CN108226980A (en) * | 2017-12-23 | 2018-06-29 | 北京卫星信息工程研究所 | Difference GNSS and the adaptive close coupling air navigation aids of INS based on Inertial Measurement Unit |
CN110793528A (en) * | 2019-09-27 | 2020-02-14 | 西安空间无线电技术研究所 | Low-orbit satellite-based anchoring-based Beidou navigation constellation autonomous orbit determination method |
CN112946699A (en) * | 2021-01-29 | 2021-06-11 | 重庆两江卫星移动通信有限公司 | Method and system for enhancing GNSS navigation system by using general-purpose low-orbit satellite |
Also Published As
Publication number | Publication date |
---|---|
CN114295128A (en) | 2022-04-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104280746B (en) | Inertia-assisting GPS deep-integration semi-physical simulation method | |
CN103954977B (en) | A kind of GNSS cheating interference cognitive method and system | |
EP2058670B1 (en) | Suppression of multipath effects for received SPS signal | |
CN107728172A (en) | A kind of spaceborne receiver of the Big Dipper/GPS dual-mode and its navigation locating method | |
CN106908817A (en) | Assisting navigation localization method and system | |
CN111458730B (en) | GNSS carrier tracking method based on Doppler residual estimation and receiver | |
CN114095070B (en) | Arrow body information feedback device based on Beidou satellite navigation | |
US11598883B2 (en) | Memory optimized GNSS correlator | |
CN112965089A (en) | Method and system for acquiring high-precision signal of communication-conduction integrated low-orbit satellite | |
CN104614739B (en) | Beidou multi-frequency receiver signal joint tracking method based on anti-jamming filter | |
CN114594500A (en) | A GNSS/LEO fusion positioning receiver system and positioning method | |
CN103176189A (en) | Near-far Effect Suppressor and Method for High Sensitivity Satellite Navigation Receiver | |
CN109307873A (en) | An INS-aided dual Kalman filter satellite signal tracking loop | |
CN102176028A (en) | Multipath signal baseband processing method for global navigation satellite system (GNSS) receiver | |
CN114295128B (en) | Continuous navigation method and device for low-orbit enhancement and fusion of GNSS and IMU | |
US20120027133A1 (en) | Demodulation of data collected prior to bit edge detection | |
CN109143285B (en) | Positioning notification system applied to high dynamic target with variable attitude | |
US8295411B2 (en) | Method and system for maintaining integrity of a binary offset carrier signal | |
CN106338748A (en) | Kalman filtering based GPS receiver tracking loop | |
US20120154217A1 (en) | Method and program of acquiring navigation message, gnss receiving apparatus, and mobile terminal | |
CN110780320B (en) | Software and hardware integrated satellite navigation signal processing method | |
CN115051745B (en) | Dynamic compensation method and device for Beidou short message inbound signal of high-speed spacecraft | |
CN111796308B (en) | Method and device for capturing satellite signal, storage medium and electronic equipment | |
CN210376695U (en) | Satellite positioning receiver, mobile device and global satellite navigation system | |
CN112180407A (en) | Method for eliminating mutual interference of strong and weak signals |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |