CN114282414A - Method and system for optimal design of warp/weft laying direction of glass fiber cloth for PCB - Google Patents
Method and system for optimal design of warp/weft laying direction of glass fiber cloth for PCB Download PDFInfo
- Publication number
- CN114282414A CN114282414A CN202111603889.9A CN202111603889A CN114282414A CN 114282414 A CN114282414 A CN 114282414A CN 202111603889 A CN202111603889 A CN 202111603889A CN 114282414 A CN114282414 A CN 114282414A
- Authority
- CN
- China
- Prior art keywords
- pcb
- warp
- glass fiber
- weft
- fiber cloth
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000003365 glass fiber Substances 0.000 title claims abstract description 156
- 239000004744 fabric Substances 0.000 title claims abstract description 154
- 238000000034 method Methods 0.000 title claims abstract description 73
- 238000013461 design Methods 0.000 title claims description 32
- 238000004088 simulation Methods 0.000 claims abstract description 83
- 239000000463 material Substances 0.000 claims abstract description 73
- 238000003466 welding Methods 0.000 claims abstract description 63
- 230000008569 process Effects 0.000 claims abstract description 34
- 238000013178 mathematical model Methods 0.000 claims abstract description 32
- 239000000126 substance Substances 0.000 claims abstract description 32
- 238000005457 optimization Methods 0.000 claims abstract description 23
- 238000012360 testing method Methods 0.000 claims abstract description 18
- 238000000465 moulding Methods 0.000 claims abstract description 6
- 238000003825 pressing Methods 0.000 claims abstract description 5
- 239000011347 resin Substances 0.000 claims description 46
- 229920005989 resin Polymers 0.000 claims description 46
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 43
- 239000010410 layer Substances 0.000 claims description 40
- 239000011889 copper foil Substances 0.000 claims description 25
- 238000012795 verification Methods 0.000 claims description 22
- 230000008859 change Effects 0.000 claims description 13
- 238000006243 chemical reaction Methods 0.000 claims description 13
- 238000004364 calculation method Methods 0.000 claims description 11
- 238000002474 experimental method Methods 0.000 claims description 7
- 239000012792 core layer Substances 0.000 claims description 6
- 230000000704 physical effect Effects 0.000 claims description 5
- 238000006073 displacement reaction Methods 0.000 claims description 4
- 239000011152 fibreglass Substances 0.000 claims description 4
- 238000012545 processing Methods 0.000 claims description 4
- 238000003860 storage Methods 0.000 claims description 3
- 238000005259 measurement Methods 0.000 claims description 2
- 238000000748 compression moulding Methods 0.000 description 19
- 238000004519 manufacturing process Methods 0.000 description 19
- 239000010949 copper Substances 0.000 description 18
- 229910052802 copper Inorganic materials 0.000 description 18
- 239000002131 composite material Substances 0.000 description 17
- 239000000835 fiber Substances 0.000 description 10
- 239000003822 epoxy resin Substances 0.000 description 8
- 229920000647 polyepoxide Polymers 0.000 description 8
- 238000005476 soldering Methods 0.000 description 8
- 238000003475 lamination Methods 0.000 description 5
- 238000011160 research Methods 0.000 description 5
- 238000009826 distribution Methods 0.000 description 4
- 239000011229 interlayer Substances 0.000 description 4
- 239000011159 matrix material Substances 0.000 description 4
- 239000012779 reinforcing material Substances 0.000 description 4
- 230000008602 contraction Effects 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 238000012805 post-processing Methods 0.000 description 3
- 230000001737 promoting effect Effects 0.000 description 3
- 238000009941 weaving Methods 0.000 description 3
- XLJMAIOERFSOGZ-UHFFFAOYSA-N cyanic acid Chemical compound OC#N XLJMAIOERFSOGZ-UHFFFAOYSA-N 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000010292 electrical insulation Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000036314 physical performance Effects 0.000 description 2
- 150000003071 polychlorinated biphenyls Chemical class 0.000 description 2
- 238000003672 processing method Methods 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000004590 computer program Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- 239000012776 electronic material Substances 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 230000008676 import Effects 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 229910000679 solder Inorganic materials 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
Images
Landscapes
- Woven Fabrics (AREA)
- Laminated Bodies (AREA)
- Moulding By Coating Moulds (AREA)
Abstract
Description
技术领域technical field
本发明涉及印制电路板技术领域,尤其涉及一种PCB用玻纤布经/纬纱铺排方向优化设计方法及系统。The invention relates to the technical field of printed circuit boards, in particular to a method and a system for optimizing the arrangement direction of the warp/weft yarns of glass fiber cloth for PCB.
背景技术Background technique
本部分的陈述仅仅是提供了与本发明相关的背景技术信息,不必然构成在先技术。The statements in this section merely provide background information related to the present invention and do not necessarily constitute prior art.
印制电路板(Printed Circuit Board,简称PCB,下同)在制造和使役过程发生的翘曲变形问题日益严重。PCB的尺寸稳定性影响着电子元器件在PCB表面的焊接可靠性,尤其在焊接芯片时,需要更加严格地控制PCB表面对应焊接区域的翘曲变形,而此时PCB在该区域的平整性很大程度上取决于其制造工艺,因此,这对PCB的制造工艺提出了很高的要求。The problem of warpage and deformation of printed circuit boards (Printed Circuit Board, PCB for short, the same below) during manufacturing and service is becoming more and more serious. The dimensional stability of the PCB affects the reliability of the soldering of electronic components on the surface of the PCB. Especially when soldering chips, it is necessary to more strictly control the warpage and deformation of the corresponding soldering area on the surface of the PCB. At this time, the flatness of the PCB in this area is very high. It largely depends on its manufacturing process, therefore, it places high demands on the manufacturing process of the PCB.
按刚挠程度来分,PCB包括刚性板和挠性板,刚性板使用时不能像挠性板那样进行弯折和挠曲,且需要电子玻纤布作为增强材料,其厚度在0.5~7mm左右,包括但不仅限于智能手机电路板、个人计算机电路板、家用电器电路板、服务器电路板等尺寸大小不一的电路板。结合图1,其制造过程为多层覆铜板4和半固化片2经一定温度和一定压力下得到半成品板,再经过钻孔、镀铜、蚀刻、阻焊油墨处理等工艺过程得到成品板,功能是用于表面焊接电子元器件的载板。According to the degree of rigidity and flexibility, PCB includes rigid board and flexible board. Rigid board cannot be bent and flexed like flexible board when used, and electronic glass fiber cloth is required as a reinforcing material, and its thickness is about 0.5 ~ 7mm , including but not limited to smart phone circuit boards, personal computer circuit boards, home appliance circuit boards, server circuit boards and other circuit boards of different sizes. Referring to Figure 1, the manufacturing process is that the multi-layer copper
半固化片2又称为“PP片”或树脂片,主要由树脂和增强材料组成,目前制作多层印制电路板所使用的半固化片大多采用电子玻纤布做增强材料;半固化片在多层PCB中的主要功能是粘接不同板层和起到绝缘作用,其机理是环氧树脂在高温下软化流动,填满铜导线之间的空谷,同时发生固化交联反应,形成不溶不熔的刚性树脂,从而将双面蚀刻的覆铜板稳固粘接起来形成多层PCB。
PCB用玻纤布指代电子玻纤布6,其由电子级玻璃纤维经过正交纺织形成,该玻璃纤维又称E-玻璃纤维、无碱玻璃纤维或电子纱(以下统称电子纱),可分为经纱与纬纱,具有良好的电气绝缘性及力学性能。The glass fiber cloth for PCB refers to the electronic
覆铜板4是指将电子玻纤布等作为增强材料,浸以树脂5,单面或双面覆以铜箔,经热压而成的一种板状材料,全称覆铜箔层压板,即CCL(Copper Clad Laminate),其中,双面铜箔之间的玻纤布增强树脂基复合材料称为CCL芯板3。在PCB压合成型前,铜箔被按照设计的电路进行蚀刻;在PCB压合成型后,将含有铜箔与树脂的几何层定义为铜箔/树脂混杂层1。Copper
结合图2,影响电子玻纤布的经纱和纬纱铺排方向的因素主要是电子纱的材料性能参数。根据国家标准“GB/T 18373-2013印制板用E玻璃纤维布”,电子玻纤布6的经纱7和纬纱8规格一般有所不同,以商业代号1080电子玻纤布为例,其规格代号为EWPC53,E代表通用、具备良好的电绝缘性能的玻璃,WPC代表印制板用玻纤布,53代表这种玻纤布的厚度为53μm,其中经纱密度为59根/25mm,纬纱密度为46根/25mm,经纱与纬纱均为连续纤维,且单根丝线公称直径均为5μm,经纱与纬纱密度的不同造成电子玻纤布在经纱与纬纱铺排方向上的弹性模量与剪切模量的不同,从而引起热学和力学性能的方向性差异。由此可知,经纱和纬纱铺排方向对于面内各向异性材料性能参数存在直接影响,而面内各向异性的材料性能参数引起的玻纤和树脂及铜的热膨胀系数的不匹配以及树脂化学收缩应变与玻璃纤维和铜的力学应变的不匹配、层间树脂与铜的非对称分布等因素正是导致PCB压合成型至焊接芯片时产生翘曲变形的根本原因。Combined with Figure 2, the factors that affect the direction of the warp and weft of the electronic glass fiber cloth are mainly the material performance parameters of the electronic yarn. According to the national standard "GB/T 18373-2013 E glass fiber cloth for printed boards", the specifications of
当前减少PCB从压合成型至焊接芯片时的翘曲变形量的措施有:在非对称结构多层电路板的半固化片之间放入离型缓冲材料;在大面积非电路部分的树脂区域进行铺铜作业或放置间隔交错的若干个铜块;设计一种不对称结构的CCL内层芯板,通过压合时的反向弓曲来抵消非对称电路在压合时产生的弓曲;将线路结构板的残铜率分布在层间设置为大致镜像分布;等等。上述措施主要从材料因素考虑,虽然这些措施都涉及树脂与铜的面内和层间分布优化,但鲜有涉及到优化设计半固化片及CCL芯板的电子级玻纤布的经/纬纱铺排方向的研究。The current measures to reduce the amount of warpage deformation of the PCB from compression molding to welding chips include: placing a release buffer material between the prepregs of the multi-layer circuit board with an asymmetric structure; Copper operation or placement of several copper blocks staggered at intervals; design a CCL inner core board with an asymmetrical structure, and offset the bowing produced by asymmetric circuits during pressing through the reverse bowing during pressing; The residual copper distribution of the structural board is set to roughly mirror the distribution between layers; and so on. The above measures are mainly considered from the material factors. Although these measures all involve the optimization of the in-plane and inter-layer distribution of resin and copper, few of them involve the optimization of the warp/weft laying direction of the electronic-grade fiberglass cloth for the prepreg and CCL core board. Research.
目前通过优化电子玻纤布经/纬纱铺排方向来减少PCB翘曲变形的有限元模拟研究较少,且没有具体阐述PCB从压合成型至焊接芯片时的内应力历史与各向异性粘弹性模型的关系、没有系统地给出PCB的热学、力学性能在压合成型至焊接芯片时的演变历史,也部分地忽视了PCB的面内非均匀性和层间非对称性,同时几何建模过于简化,导致数值模拟结果与实验结果存在较大偏差,不能真正实现有针对性地降低PCB翘曲变形量并进行电子玻纤布经/纬纱铺排方向优化设计的目标。At present, there are few finite element simulation studies on reducing PCB warpage deformation by optimizing the warp/weft laying direction of electronic glass fiber cloth, and there is no specific description of the internal stress history and anisotropic viscoelasticity model of PCB from press molding to welding chips. It does not systematically give the evolution history of the thermal and mechanical properties of the PCB from compression molding to welding chips, and also partially ignores the in-plane non-uniformity and inter-layer asymmetry of the PCB. At the same time, the geometric modeling is too The simplification leads to a large deviation between the numerical simulation results and the experimental results, and the goal of reducing the warpage deformation of the PCB and optimizing the direction of the warp/weft yarn layout of the electronic glass fiber cloth cannot be truly achieved.
发明内容SUMMARY OF THE INVENTION
为了解决上述问题,本发明提出了一种PCB用玻纤布经/纬纱铺排方向优化设计方法及系统,以电子玻纤布经/纬纱铺排方向作为研究对象,通过不断优化PCB内电子玻纤布的经纱与纬纱铺排方向,借助有限元模拟手段和实验验证,使得PCB压合成型至焊接芯片时的翘曲变形量最小化或按需控制,从而获得最佳的电子玻纤布经/纬纱铺排方向,提高PCB在焊接芯片时的平整度和焊接可靠性。In order to solve the above problems, the present invention proposes a method and system for optimizing the warp/weft laying direction of glass fiber cloth for PCB. With the help of finite element simulation and experimental verification, the warpage deformation of the PCB is minimized or controlled on demand when it is pressed and molded to the welding chip, so as to obtain the best electronic glass fiber cloth. direction, improve the flatness and soldering reliability of PCB when soldering chips.
在一些实施方式中,采用如下技术方案:In some embodiments, the following technical solutions are adopted:
一种PCB用玻纤布经/纬纱铺排方向优化设计方法,包括:A method for optimizing design of warp/weft laying direction of glass fiber cloth for PCB, comprising:
建立多层PCB的几何模型及PCB压合成型至焊接芯片的数学模型;Build the geometric model of the multi-layer PCB and the mathematical model of the PCB compression molding to the soldered chip;
通过实验测试和实际工艺确定有限元模拟所需要的材料性能参数和初边值条件;确定经/纬纱铺排方向与材料方向的对应关系;Determine the material performance parameters and initial boundary value conditions required by the finite element simulation through experimental tests and actual processes; determine the corresponding relationship between the direction of warp/weft yarns and the direction of the material;
分别通过有限元模拟和实验验证,得到PCB压合成型至焊接芯片时的翘曲变形量模拟结果和实验结果;Through finite element simulation and experimental verification, respectively, the simulation results and experimental results of the warpage deformation amount when the PCB is pressed and formed to the welding chip are obtained;
基于所述模拟结果和实验结果,不断优化电子玻纤布经/纬纱铺排方向对应的材料物理和化学性能参数,得到使得PCB翘曲变形量最小化或按需控制对应的电子玻纤布经/纬纱铺排方向的优化方案。Based on the simulation results and experimental results, the material physical and chemical performance parameters corresponding to the warp/weft laying direction of the electronic glass fiber cloth are continuously optimized, and the corresponding electronic glass fiber cloth warp/weft can be obtained to minimize the warp deformation of the PCB or control the corresponding electronic glass fiber cloth as needed. Optimization scheme for the direction of weft yarn placement.
在另一些实施方式中,采用如下技术方案:In other embodiments, the following technical solutions are adopted:
一种PCB用玻纤布经/纬纱铺排方向优化设计系统,包括:An optimized design system for the direction of the warp/weft laying out of glass fiber cloth for PCB, comprising:
数学建模模块,用于建立多层PCB的几何模型和PCB压合成型至焊接芯片的数学模型;Mathematical modeling module, used to establish the geometric model of multilayer PCB and the mathematical model of PCB compression molding to soldered chips;
参数设置模块,用于通过实验测试和实际工艺确定有限元模拟所需要的材料性能参数和初边值条件;确定经/纬纱铺排方向与材料方向的对应关系;The parameter setting module is used to determine the material performance parameters and initial boundary value conditions required by the finite element simulation through experimental tests and actual processes; to determine the corresponding relationship between the warp/weft yarn laying direction and the material direction;
数值模拟模块,用于分别通过有限元模拟和实验验证,得到PCB压合成型至焊接芯片时的翘曲变形量模拟结果和实验结果;The numerical simulation module is used to obtain the simulation results and experimental results of the warpage deformation amount when the PCB is pressed and formed to the welding chip through finite element simulation and experimental verification respectively;
优化设计模块,用于基于所述模拟结果和实验结果,不断优化电子玻纤布经/纬纱铺排方向对应的材料物理和化学性能参数,得到使得PCB翘曲变形量最小化或按需控制对应的电子玻纤布经/纬纱铺排方向的优化方案。The optimization design module is used to continuously optimize the material physical and chemical performance parameters corresponding to the warp/weft laying direction of the electronic glass fiber cloth based on the simulation results and experimental results, so as to obtain the corresponding parameters that minimize the warpage deformation of the PCB or control it on demand. Optimization scheme of warp/weft laying direction of electronic glass fiber cloth.
在另一些实施方式中,采用如下技术方案:In other embodiments, the following technical solutions are adopted:
一种终端设备,其包括处理器和存储器,处理器用于实现各指令;存储器用于存储多条指令,所述指令适于由处理器加载并执行上述的PCB用玻纤布经/纬纱铺排方向优化设计方法。A terminal device, comprising a processor and a memory, the processor is used to implement each instruction; the memory is used to store a plurality of instructions, and the instructions are suitable for being loaded by the processor and executing the above-mentioned warp/weft laying direction of the glass fiber cloth for PCB Optimization design method.
在另一些实施方式中,采用如下技术方案:In other embodiments, the following technical solutions are adopted:
一种计算机可读存储介质,其中存储有多条指令,所述指令适于由终端设备的处理器加载并执行上述的PCB用玻纤布经/纬纱铺排方向优化设计方法。A computer-readable storage medium, wherein a plurality of instructions are stored, and the instructions are suitable for being loaded by a processor of a terminal device and executing the above-mentioned optimal design method for the warp/weft arrangement direction of glass fiber cloth for PCB.
与现有技术相比,本发明的有益效果是:Compared with the prior art, the beneficial effects of the present invention are:
(1)本发明将电子玻纤布的经/纬纱铺排方向的物理过程转化为数学模型参数的简单设置,从而方便地进行PCB用电子玻纤布经/纬纱铺排方向影响PCB压合成型至焊接芯片时的翘曲变形的数值模拟,同时用实验验证模拟结果。(1) The present invention converts the physical process of the warp/weft laying direction of the electronic glass fiber cloth into a simple setting of the parameters of the mathematical model, so as to conveniently carry out the electronic glass fiber cloth warp/weft laying direction for the PCB to affect the PCB compression molding to welding Numerical simulation of the warpage deformation of the chip, and experimental verification of the simulation results.
(2)本发明借助PCB压合成型至焊接芯片前工艺过程的有限元模拟技术,建立电子玻纤布经/纬纱铺排方向的优化设计系统和方法,有利于促进电子级玻璃纤维布生产流程的精细化,拓宽电子级玻璃纤维布在PCB制造行业的应用前景。(2) The present invention establishes an optimized design system and method for the warp/weft laying direction of electronic glass fiber cloth by means of the finite element simulation technology of the process before PCB compression molding to welding chips, which is conducive to promoting the production process of electronic glass fiber cloth. Refinement, broaden the application prospects of electronic-grade glass fiber cloth in the PCB manufacturing industry.
(3)本发明提供了一种减少PCB制造过程的翘曲变形的解决方案,有利于推动PCB制造业向着高质量、高稳定性和低成本的道路迈进,促进集成电路技术产业的发展,为减少高密度电路板制造过程的翘曲变形和提高芯片焊接质量提供了新的思路。(3) The present invention provides a solution for reducing the warpage and deformation of the PCB manufacturing process, which is conducive to promoting the PCB manufacturing industry towards the road of high quality, high stability and low cost, and promoting the development of the integrated circuit technology industry. It provides new ideas for reducing warpage deformation in high-density circuit board manufacturing and improving chip soldering quality.
本发明的其他特征和附加方面的优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本方面的实践了解到。Other features and advantages of additional aspects of the invention will be set forth in part from the description that follows, and in part will become apparent from the description below, or will be learned by practice of the present aspects.
附图说明Description of drawings
图1是PCB内CCL芯板、半固化片、铜箔/树脂混杂层的层间位置及双面蚀刻的覆铜板结构示意图;Figure 1 is a schematic diagram of the interlayer position of the CCL core board, the prepreg, the copper foil/resin hybrid layer in the PCB and the structure of the double-sided etched copper clad laminate;
图2是PCB用玻纤布的经/纬纱铺排方向示意图;Fig. 2 is the schematic diagram of warp/weft laying direction of glass fiber cloth for PCB;
图3是本发明实施例中PCB用玻纤布经/纬纱铺排方向优化设计方法流程图;Fig. 3 is the flow chart of the optimized design method for the warp/weft laying direction of glass fiber cloth for PCB in the embodiment of the present invention;
图4是本发明示例(一)对应的不同电子玻纤布经/纬纱铺排方向下的PCB压合成型至焊接芯片时的翘曲变形量模拟结果与实验结果;4 is the simulation result and the experimental result of the warpage deformation amount when the PCB under the warp/weft laying direction of the electronic glass fiber cloth corresponding to the example (1) of the present invention is press-molded to the welding chip;
图5是本发明示例(二)对应的不同电子玻纤布经/纬纱铺排方向下的PCB压合成型至焊接芯片时的翘曲变形量模拟结果与实验结果;5 is the simulation result and the experimental result of the warpage deformation amount when the PCB under the warp/weft laying direction of the electronic glass fiber cloth corresponding to the example (2) of the present invention is press-molded to the welding chip;
图6是本发明示例(三)对应的不同电子玻纤布经/纬纱铺排方向下的PCB压合成型至焊接芯片时的翘曲变形量模拟结果与实验结果;6 is the simulation result and the experimental result of the warpage deformation amount when the PCB under the warp/weft laying direction of the electronic glass fiber cloth corresponding to the example (3) of the present invention is press-molded to the welding chip;
图7是本发明示例(四)对应的不同电子玻纤布经/纬纱铺排方向下的PCB压合成型至焊接芯片时的翘曲变形量模拟结果与实验结果;7 is the simulation result and the experimental result of the warpage deformation amount when the PCB under the warp/weft laying direction of the electronic glass fiber cloth corresponding to the example (4) of the present invention is press-molded to the welding chip;
其中,1.铜箔/树脂混杂层;2.半固化片;3.CCL芯板;4.覆铜板;5.树脂;6.电子玻纤布;7.纬纱;8.经纱。Among them, 1. Copper foil/resin hybrid layer; 2. Prepreg; 3. CCL core board; 4. Copper clad laminate; 5. Resin; 6. Electronic glass fiber cloth; 7. Weft yarn; 8. Warp yarn.
具体实施方式Detailed ways
应该指出,以下详细说明都是例示性的,旨在对本申请提供进一步的说明。除非另有指明,本发明使用的所有技术和科学术语具有与本申请所属技术领域的普通技术人员通常理解的相同含义。It should be noted that the following detailed description is exemplary and intended to provide further explanation of the application. Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this application belongs.
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本申请的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合。It should be noted that the terminology used herein is for the purpose of describing specific embodiments only, and is not intended to limit the exemplary embodiments according to the present application. As used herein, unless the context clearly dictates otherwise, the singular is intended to include the plural as well, furthermore, it is to be understood that when the terms "comprising" and/or "including" are used in this specification, it indicates that There are features, steps, operations, devices, components and/or combinations thereof.
实施例一Example 1
在一个或多个实施方式中,公开了一种PCB用玻纤布经/纬纱铺排方向优化设计方法,首先建立多层PCB的几何模型及PCB压合成型至焊接芯片的数学模型,其次通过实验测试和实际工艺确定有限元模拟所需要的材料性能参数和初边值条件,接着不断优化电子玻纤布经/纬纱铺排方向对应的材料物理和化学性能参数,形成多个电子玻纤布经/纬纱铺排方向的可选方案,从而通过有限元模拟得出对应的PCB压合成型至焊接芯片时的翘曲变形量仿真结果,同时用实验验证模拟结果,并与对照组进行比较,翘曲变形量数值比对照组大的方案舍去,翘曲变形量数值比对照组小的方案保留并替换为新的对照组,经过不断筛选,最后将使得PCB翘曲变形量最小化或按需控制对应的电子玻纤布经/纬纱铺排方向作为优化设计的最优方案。In one or more embodiments, a method for optimizing the warp/weft arrangement direction of glass fiber cloth for PCB is disclosed. First, a geometric model of a multi-layer PCB and a mathematical model of the PCB being pressed and molded to a soldered chip are established, and then an experiment is performed. The material performance parameters and initial boundary value conditions required by the finite element simulation are determined by testing and actual process, and then the material physical and chemical performance parameters corresponding to the warp/weft laying direction of the electronic glass fiber cloth are continuously optimized to form multiple electronic glass fiber cloth warp/weft yarns. An optional solution for the direction of weft yarn laying, so as to obtain the simulation results of the corresponding warpage deformation when the PCB is pressed and formed to the welding chip through finite element simulation. At the same time, the simulation results are verified by experiments and compared with the control group. The plan with a larger value than the control group is discarded, and the plan with a smaller warpage deformation value than the control group is retained and replaced with a new control group. After continuous screening, the PCB warpage deformation amount will be minimized or controlled according to demand The warp/weft laying direction of the electronic glass fiber cloth is the best solution for the optimal design.
本实施例中,电子玻纤布为正交编织材料,其经纱和纬纱铺排方向的布置影响着PCB在压合成型至焊接芯片时的翘曲变形,这是由PCB自身材料因素决定的。当经纱轴向与纬纱轴向的材料物理性能参数发生改变时,面对高温高压的外部环境和以树脂固化反应放热为内部热源的复杂环境,面内和层间不均匀的热胀冷缩应变及树脂化学收缩应变导致的残余内应力也会改变,从而影响着PCB在焊接芯片时的表面平整度,也令PCB的翘曲变形状态难以预测。这导致现场实时观察和预测PCB在改变电子玻纤布经/纬纱铺排方向后、焊接芯片时的翘曲变形非常困难,难以准确量化电子玻纤布经/纬纱铺排方向对PCB翘曲变形量的影响。In this embodiment, the electronic glass fiber cloth is an orthogonal woven material, and the arrangement of the warp and weft yarns affects the warpage deformation of the PCB when it is pressed and molded to the soldered chip, which is determined by the material of the PCB itself. When the material physical property parameters in the warp and weft axes change, in the face of the external environment of high temperature and high pressure and the complex environment with the resin curing reaction exothermic as the internal heat source, the uneven thermal expansion and contraction in the plane and between layers Residual internal stress caused by strain and resin chemical shrinkage strain will also change, which affects the surface flatness of the PCB when soldering the chip, and also makes the warpage and deformation state of the PCB difficult to predict. This makes it very difficult to observe and predict the warpage deformation of the PCB in real time after changing the warp/weft laying direction of the electronic glass fiber cloth and welding the chip. influences.
因此,本实施例将改变电子玻纤布的经/纬纱铺排方向的物理过程转化为数学模型中的参数设置提出,利用PCB压合成型至焊接芯片时的有限元模拟手段,数值求解给定初边值条件下的泛定方程,获得PCB压合成型至焊接芯片时的厚度方向翘曲变形量数值解并与实验结果对比,从而建立PCB用电子玻纤布经/纬纱铺排方向的优化设计方法。Therefore, in this embodiment, the physical process of changing the warp/weft laying direction of the electronic glass fiber cloth is transformed into the parameter setting in the mathematical model, and the finite element simulation method when the PCB is pressed and formed to the welding chip is used to numerically solve the given initial The generalized equation under the boundary value condition is used to obtain the numerical solution of the warpage deformation in the thickness direction when the PCB is pressed and formed to the welding chip and compared with the experimental results, so as to establish the optimal design method of the warp/weft laying direction of the electronic glass fiber cloth for PCB. .
参照图1,本实施例具体的优化设计方法包括如下过程:Referring to FIG. 1, the specific optimization design method of this embodiment includes the following processes:
步骤(1):建立多层PCB的几何模型及PCB压合成型至焊接芯片的数学模型;Step (1): establish the geometric model of the multilayer PCB and the mathematical model of the PCB compression molding to the welding chip;
步骤(2):通过实验测试和实际工艺确定有限元模拟所需要的材料性能参数和初边值条件;确定经/纬纱铺排方向与材料方向的对应关系;Step (2): determine the material performance parameters and initial boundary value conditions required by the finite element simulation through experimental tests and actual processes; determine the corresponding relationship between the warp/weft yarn laying direction and the material direction;
其中,根据实际生产中的物料温度、压力历程和PCB与压机的几何关系分别确定有限元模拟所需的传热学和力学初始条件与边界条件以及PCB与压机的接触关系,具体包括:PCB的初始温度、初始压力、初始位移以及PCB在压合成型至焊接芯片阶段的位移边界条件等;Among them, according to the material temperature, pressure history and the geometric relationship between the PCB and the press in actual production, the initial conditions and boundary conditions of heat transfer and mechanics required for the finite element simulation and the contact relationship between the PCB and the press are respectively determined, including: The initial temperature, initial pressure, initial displacement of the PCB, and the displacement boundary conditions of the PCB from the stage of pressing and forming to the welding chip, etc.;
根据实验测试获得有限元模拟所需的材料性能参数,具体包括密度、比热容、导热系数、单位质量的化学反应放热量、化学反应动力学级数、弹性模量、剪切模量、泊松比、热膨胀系数等。Obtain the material performance parameters required for finite element simulation based on experimental tests, including density, specific heat capacity, thermal conductivity, chemical reaction heat release per unit mass, chemical reaction kinetic series, elastic modulus, shear modulus, Poisson's ratio , thermal expansion coefficient, etc.
上述参数在不同的实施例中可以进行删减、增加、更换或调整。The above parameters may be deleted, added, replaced or adjusted in different embodiments.
步骤(3):分别通过有限元模拟和实验验证,得到PCB压合成型至焊接芯片时的翘曲变形量模拟结果和实验结果;Step (3): through finite element simulation and experimental verification, respectively, obtain the simulation results and experimental results of the warpage deformation amount when the PCB is pressed and formed to the welding chip;
其中,进行有限元模拟的过程为:通过有限元软件,基于建立的模型,输入实验测试的PCB热学、力学性能参数和实际工艺对应的等效初边值条件,改变半固化片和CCL芯板在数学模型中经纱与纬纱轴向的材料性能参数,从而数值求解PCB压合成型至焊接芯片时的翘曲变形量模拟结果。Among them, the process of finite element simulation is: through the finite element software, based on the established model, input the PCB thermal and mechanical performance parameters of the experimental test and the equivalent initial boundary value conditions corresponding to the actual process, and change the mathematical properties of the prepreg and CCL core board. The material performance parameters of the warp and weft axial directions in the model are used to numerically solve the simulation results of the warpage deformation when the PCB is pressed and molded to the soldered chip.
进行实验验证的过程为:建立与有限元模拟相同条件的PCB压合成型至焊接芯片的实验过程,通过阴影云纹法测得指定时间点的PCB上表面的凹凸特征,经过数据处理,从而获取PCB压合成型至焊接芯片时翘曲实测结果,并与模拟结果进行对比,验证该优化设计方法的合理性和可行性。The process of experimental verification is as follows: establish the experimental process of PCB compression molding to welding chips under the same conditions as the finite element simulation, and measure the concave and convex characteristics of the upper surface of the PCB at a specified time point by the shadow moiré method, and then obtain the data through data processing. The warpage measurement results when the PCB is pressed and formed to the welding chip are compared with the simulation results to verify the rationality and feasibility of the optimized design method.
步骤(4):基于所述模拟结果和实验结果,不断优化电子玻纤布经/纬纱铺排方向对应的材料物理和化学性能参数,得到使得PCB翘曲变形量最小化或按需控制对应的电子玻纤布经/纬纱铺排方向的优化方案。Step (4): Based on the simulation results and experimental results, continuously optimize the material physical and chemical performance parameters corresponding to the warp/weft laying direction of the electronic glass fiber cloth, and obtain the corresponding electronic material that minimizes the warpage deformation of the PCB or controls the corresponding electronic fiberglass cloth as needed. Optimization scheme of warp/weft laying direction of glass fiber cloth.
具体过程如下:The specific process is as follows:
(1)得到某一型号PCB压合成型至焊接芯片时的翘曲变形量A之后,只改变某一型号的电子玻纤布经纱/纬纱的铺排方向,重新进行有限元模拟和实验验证;得到PCB压合成型至焊接芯片时的翘曲变形量B;(1) After obtaining the warpage deformation A when a certain type of PCB is pressed and formed to the welding chip, only change the arrangement direction of the warp/weft yarn of a certain type of electronic glass fiber cloth, and re-run the finite element simulation and experimental verification; The warpage deformation amount B when the PCB is pressed and formed to the welding chip;
(2)若B>A,则舍弃得到当前翘曲变形量B的经纱/纬纱铺排方案;若B<A,则将当前翘曲变形量B的经纱/纬纱铺排方案替代翘曲变形量A的经纱/纬纱铺排方案;(2) If B>A, discard the warp/weft arranging scheme that obtains the current warpage deformation B; if B<A, replace the warp/weft arranging scheme of the current warpage deformation B with the warp deformation A Warp/Weft Arrangement Scheme;
(3)继续只改变某电子玻纤布的经/纬纱铺排方向,重复步骤(2)-(3),直至遍历所有改变单一型号的电子玻纤布的经/纬纱铺排方向;(3) Continue to change only the warp/weft laying direction of a certain electronic glass fiber cloth, and repeat steps (2)-(3) until traversing all the warp/weft laying directions of the electronic glass fiber cloth of a single model;
(4)从每次改变两种型号的电子玻纤布的经/纬纱铺排方向开始,至改变所有型号的电子玻纤布经/纬纱铺排方向,逐一重新进行有限元模拟和实验验证;得到PCB压合成型至焊接芯片时的翘曲变形量B;采用步骤(2)中的方法继续比较翘曲变形量B和当前翘曲变形量A的值,直至得到使得PCB压合成型至焊接芯片时的翘曲变形量最小化或按需控制对应的电子玻纤布经/纬纱铺排方向。(4) Starting from changing the warp/weft laying direction of two types of electronic glass fiber cloth each time, to changing the warp/weft laying direction of all types of electronic glass fiber cloth, the finite element simulation and experimental verification are carried out one by one; get PCB The warpage deformation amount B when the pressure is formed to the welding chip; the method in step (2) is used to continue to compare the warpage deformation amount B and the current value of the warpage deformation amount A, until the PCB pressure forming to the welding chip is obtained. Minimize the amount of warpage deformation or control the corresponding electronic glass fiber cloth warp/weft laying direction as needed.
作为具体的实施方案,本实施例对半固化片和CCL芯板中电子玻纤布的经/纬纱铺排方向进行优化设计。As a specific embodiment, this example optimizes the design of the warp/weft arrangement direction of the electronic glass fiber cloth in the prepreg and the CCL core board.
借助PCB压合成型至焊接芯片的全过程集成有限元模拟手段,引入控制变量优化方法,减少诸多外部因素的干扰,利用计算数学、复合材料力学、数值传热学、各向异性粘弹性力学、固化反应动力学等理论知识,建立PCB压合成型、后加工至焊接芯片前的全过程数学模型,数值模拟PCB在改变CCL芯板和半固化片的力学、热学、物理和化学性能参数后的翘曲变形过程,最终获得PCB翘曲变形量的数值解并用实验结果进行验证。With the integrated finite element simulation method of the whole process from PCB compression molding to welding chip, the control variable optimization method is introduced to reduce the interference of many external factors, using computational mathematics, composite material mechanics, numerical heat transfer, anisotropic viscoelasticity, Theoretical knowledge of curing reaction kinetics, etc., establish a mathematical model of the whole process of PCB compression molding, post-processing to welding chips, and numerically simulate the warpage of PCB after changing the mechanical, thermal, physical and chemical performance parameters of CCL core board and prepreg The deformation process, and finally the numerical solution of the PCB warpage deformation is obtained and verified with the experimental results.
本实施例中,根据PCB每一铜箔/树脂混杂层、半固化片层和CCL芯板层,在图形化界面或几何建模软件中建立层合板几何模型,然后导入有限元软件,建立包含树脂固化反应动力学方程、各向异性粘弹性应力应变本构方程以及材料热本构方程的数学模型。其中,固化反应动力学方程通过实验测试和数据拟合得到,各向异性粘弹性应力应变本构方程和材料热本构方程是已知的,但都需要根据具体的材料类型通过实验测试得到相关数据输入,以作为数学模型建立的一部分;这些方程都是本领域技术人员根据现有知识能够得到的。In this embodiment, according to each copper foil/resin hybrid layer, prepreg layer and CCL core layer of the PCB, the geometric model of the laminate is established in the graphical interface or geometric modeling software, and then imported into the finite element software, and the establishment includes resin curing. Mathematical models of reaction kinetic equations, anisotropic viscoelastic stress-strain constitutive equations, and material thermal constitutive equations. Among them, the curing reaction kinetic equation is obtained through experimental testing and data fitting. The anisotropic viscoelastic stress-strain constitutive equation and material thermal constitutive equation are known, but they need to be obtained through experimental testing according to the specific material type. Data input as part of the mathematical model building; these equations are available to those skilled in the art based on their current knowledge.
定义经纱轴向、纬纱轴向和厚度方向与数学模型中半固化片与CCL芯板纬纱轴向、经纱轴向和厚度方向的对应关系。在本实施例中,半固化片与CCL芯板的纬纱轴向、经纱轴向和厚度方向被分别编号为1、2、3,并与PCB几何模型的面内纬纱轴向、经纱轴向以及厚度方向分别对应起来,从而将经纱和纬纱铺排方向的优化设计转化为经纱轴向和纬纱轴向对应的材料物理性能参数的优化设计。Define the correspondence between the warp axis, weft axis and thickness direction and the prepreg in the mathematical model and the weft axis, warp axis and thickness direction of the CCL core board. In this embodiment, the weft, warp, and thickness directions of the prepreg and the CCL core are numbered 1, 2, and 3, respectively, and correspond to the in-plane weft, warp, and thickness directions of the PCB geometric model. Correspondingly, so that the optimal design of the warp and weft laying directions is transformed into the optimal design of the material physical property parameters corresponding to the warp and weft axes.
改变电子玻纤布型号则改变有限元模拟中的经纱轴向与纬纱轴向的材料性能参数;针对PCB中改变某型号半固化片的经纱和纬纱铺排方向则改变有限元模拟时该型号的半固化片的经纱轴向与纬纱轴向的材料性能参数。Changing the type of electronic glass fiber cloth changes the material performance parameters of the warp and weft axes in the finite element simulation; for changing the direction of the warp and weft of a certain type of prepreg in the PCB, the warp of this type of prepreg is changed during the finite element simulation. Material property parameters in the axial and weft axis.
例如,定义材料2方向为经纱轴向,材料1方向为纬纱轴向,若交换电子玻纤布的纬纱与经纱铺排方向,则相应的交换电子玻纤布对应数学模型的材料1方向和2方向的弹性模量、剪切模量、泊松比、热膨胀系数、化学收缩应变计算系数等参数;若仅改变电子玻纤布的经纱纱线型号,则只改变数学模型中的2方向弹性模量、剪切模量、泊松比、热膨胀系数、化学收缩应变计算系数等参数,而1方向参数保持不变。For example, define the direction of
对面内材料性能参数进行正交各向异性处理;从材料力学的角度来看,面内两个正交方向和面外法线方向的弹性模量、剪切模量、泊松比、热膨胀系数和体积收缩率可以通过实验测试手段直接得到,从而作为PCB压合成型至焊接芯片的有限元模拟中正交各向异性材料性能参数的输入,进一步为经纱与纬纱铺排方向的优化设计奠定基础。Orthotropic treatment of in-plane material performance parameters; from the point of view of material mechanics, elastic modulus, shear modulus, Poisson's ratio, thermal expansion coefficient in two orthogonal directions in the plane and in the out-of-plane normal direction and volume shrinkage can be directly obtained by experimental testing methods, which can be used as the input of orthotropic material performance parameters in the finite element simulation of PCB compression molding to welding chips, which further lays the foundation for the optimal design of the warp and weft laying directions.
其中,体积收缩率(下称化学收缩率)的产生是由于树脂发生固化反应会产生化学收缩,而玻纤布因不发生化学收缩,将受到树脂基体的拉力而产生力学压缩应变,从而玻纤布与树脂的复合材料发生体积收缩,玻纤布经纬纱模量的差异导致经/纬纱方向力学应变差异,从而导致体积收缩率的经纬纱方向差异,从而导致PCB翘曲变形量的变化。Among them, the volume shrinkage rate (hereinafter referred to as the chemical shrinkage rate) is caused by the chemical shrinkage caused by the curing reaction of the resin, and the glass fiber cloth will be subjected to the tensile force of the resin matrix because it does not undergo chemical shrinkage. The composite material of cloth and resin undergoes volume shrinkage, and the difference in the warp and weft modulus of the glass fiber cloth leads to the difference in mechanical strain in the warp/weft direction, which leads to the difference in the warp and weft direction of the volume shrinkage rate, which leads to the change in the warp deformation of the PCB.
半固化片和CCL芯板的密度、比热容、导热系数则被认为是温度相关的各向同性材料性能参数,可通过一些实验仪器和测试标准直接得到数据。The density, specific heat capacity, and thermal conductivity of the prepreg and CCL core board are considered as temperature-dependent isotropic material performance parameters, and the data can be obtained directly through some experimental instruments and test standards.
然而,半固化片和CCL芯板厚度很小,例如1080电子玻纤布公称厚度为55μm,对应固化片厚度仅有76μm,对于此类薄板复合材料,三个主轴方向的热膨胀系数和化学收缩率难以通过实验准确测得。因此,本实施例提供PCB热膨胀系数和化学收缩率的各向异性等效处理方法,以便进行PCB压合成型至焊接芯片时翘曲变形的数值模拟。However, the thickness of the prepreg and CCL core board is very small. For example, the nominal thickness of 1080 electronic glass fiber cloth is 55 μm, and the thickness of the corresponding cured sheet is only 76 μm. For such thin-plate composite materials, the thermal expansion coefficient and chemical shrinkage in the three main axis directions are difficult to pass. The experiment is accurately measured. Therefore, this embodiment provides an anisotropic equivalent processing method for the thermal expansion coefficient and chemical shrinkage rate of the PCB, so as to perform numerical simulation of the warpage deformation when the PCB is press-molded to a soldered chip.
PCB各向异性热膨胀系数的等效处理方法具体为:The equivalent processing method of PCB anisotropic thermal expansion coefficient is as follows:
对于面内两个方向的热膨胀系数,通过实验测得某型号固化片的面内热膨胀系数的均化值a和经纱与纬纱方向的弹性模量E1、E2,根据应力、应变与弹性模量的关系,认为热膨胀系数与弹性模量成反比,分别计算出该型号固化片的经纱轴向与纬纱轴向的热膨胀系数e1、e2,计算公式如式(1)所示:For the thermal expansion coefficients in the two directions in the plane, the average value a of the in-plane thermal expansion coefficient of a certain type of curing sheet and the elastic moduli E1 and E2 in the warp and weft directions are measured through experiments. It is considered that the thermal expansion coefficient is inversely proportional to the elastic modulus, and the thermal expansion coefficients e1 and e2 of the warp and weft axes of this type of curing sheet are calculated respectively. The calculation formula is shown in formula (1):
同理,可计算PCB内不同型号半固化片及CCL芯板的面内经纱与纬纱轴向的等效热膨胀系数e1、e2;对于厚度方向的热膨胀系数,直接通过实验测试,如热膨胀仪就能直接获得PCB厚度方向的热膨胀系数e3。In the same way, the equivalent thermal expansion coefficients e1 and e2 of the in-plane warp and weft axial directions of different types of prepregs and CCL core boards in the PCB can be calculated. The thermal expansion coefficient e3 in the thickness direction of the PCB.
PCB各向异性化学收缩系数的等效处理方法具体为:The equivalent treatment method of PCB anisotropic chemical shrinkage coefficient is as follows:
建立半固化片和CCL芯板的正交编织玻纤布复合材料单胞模型,通过实验测得复合材料发生树脂固化反应所致的体积收缩率,随后按照复合材料细观力学理论,依据经纱轴向和纬纱轴向的树脂的体积分数、纤维体积分数、树脂弹性模量、纤维弹性模量分别计算得到纬纱轴向和经纱轴向的等效化学收缩系数,记为ε1、ε2,然后在复合材料单胞中,根据已知的两个方向的化学收缩系数和总体积收缩率计算得出另一个方向的化学收缩系数,就得到厚度方向的等效化学收缩系数ε3,从而三个主轴方向(1、2方向为面内沿纤维方向即纬纱、经纱轴向,3方向为厚度方向)的等效化学收缩应变可求,需要说明的是,当树脂化学收缩应变很小时,纤维的力学应变可忽略不计,从而简化了化学收缩应变的计算公式。具体计算公式分别如式(2)、(3)、(4)所示:The unit cell model of the orthogonal woven glass fiber cloth composite material of the prepreg and the CCL core board was established, and the volume shrinkage rate of the composite material caused by the resin curing reaction was measured experimentally. The volume fraction of resin, fiber volume fraction, resin elastic modulus, and fiber elastic modulus in the weft axis are calculated to obtain the equivalent chemical shrinkage coefficients of the weft axis and the warp axis, denoted as ε 1 , ε 2 , and then in the composite In the material unit cell, the chemical shrinkage coefficient in the other direction is calculated according to the known chemical shrinkage coefficient in two directions and the total volume shrinkage rate, and the equivalent chemical shrinkage coefficient ε 3 in the thickness direction is obtained, so that the three main axis directions are (1 and 2 directions are in-plane along the fiber direction, that is, the weft and warp axial directions, and the 3 directions are the thickness direction), the equivalent chemical shrinkage strain can be obtained. It should be noted that when the chemical shrinkage strain of the resin is very small, the mechanical strain of the fiber can be ignored, which simplifies the calculation formula of chemical shrinkage strain. The specific calculation formulas are shown in formulas (2), (3) and (4) respectively:
其中,E1f、E2f、Em分别为半固化片和CCL芯板在纬纱轴向、经纱轴向上的模量和树脂模量,Vf为半固化片和CCL芯板内纤维的体积分数,Δvcomposite为实验测得的半固化片整体固化收缩率;εm是纯树脂各向同性的化学收缩应变,其与树脂的体积变化率Δv、固化度Δα和完全固化后总的体积变化率Vsh有关,εm的计算公式如式(5)所示:Among them, E 1f , E 2f , and Em are the modulus and resin modulus of the prepreg and the CCL core in the weft and warp axes, respectively, V f is the volume fraction of fibers in the prepreg and the CCL core, Δv composite is the overall curing shrinkage of the prepreg measured experimentally; ε m is the isotropic chemical shrinkage strain of the pure resin, which is related to the volume change rate Δv of the resin, the curing degree Δα and the total volume change rate V sh after complete curing, ε The calculation formula of m is shown in formula (5):
CCL芯板是由一层或多层正交编织的电子玻纤布增强环氧树脂基复合材料层合板,树脂在压合之前已经固化,而半固化片则是树脂没有固化完全的若干层正交编织的电子玻纤布增强环氧树脂基复合材料层合板。在PCB中,CCL芯板和半固化片影响着PCB在面内和层间的各向异性材料性能,尤其是当两者内部的电子玻纤布按正交放置时,PCB的物理性能参数将出现显著的各向异性。这是因为,电子玻纤布的经纱的弹性模量要稍大于纬纱的弹性模量,在编织长度相同的条件下,玻纤布增强环氧树脂复合材料片的经纱轴向的弹性模量、剪切模量、拉伸强度等力学性能参数均高于纬纱轴向对应的力学性能参数,而热膨胀系数则相反,即复合材料在经纱轴向的热膨胀系数小于纬纱轴向的热膨胀系数。经纱与纬纱性能参数的不同导致电子玻纤布经纱与纬纱铺排方向不同的PCB在经历热胀冷缩效应、化学收缩效应以及力学的重新平衡过程中出现翘曲变形量的差异。The CCL core board is a composite laminate of epoxy resin matrix reinforced by one or more layers of orthogonally woven electronic glass fiber cloth. The resin has been cured before lamination, while the prepreg is a number of layers of orthogonal weaving with the resin not fully cured. The electronic glass fiber cloth reinforced epoxy resin matrix composite laminate. In the PCB, the CCL core board and the prepreg affect the anisotropic material properties of the PCB in-plane and between layers, especially when the electronic glass fiber cloth inside the two are placed orthogonally, the physical performance parameters of the PCB will appear significantly. anisotropy. This is because the elastic modulus of the warp yarn of the electronic glass fiber cloth is slightly larger than the elastic modulus of the weft yarn. Under the condition of the same weaving length, the elastic modulus of the warp yarn axial direction of the glass fiber cloth reinforced epoxy resin composite sheet, The mechanical properties parameters such as shear modulus and tensile strength are higher than those corresponding to the weft axis, while the thermal expansion coefficient is opposite, that is, the thermal expansion coefficient of the composite material in the warp axis is smaller than that in the weft axis. The difference in the performance parameters of warp and weft leads to the difference in warpage deformation of PCBs with different warp and weft arrangement directions of electronic glass fiber cloth in the process of thermal expansion and cold contraction, chemical shrinkage and mechanical rebalancing.
因此,改变PCB电子玻纤布的经/纬纱铺排方向,导致PCB在经纱轴向和纬纱轴向的力学、热学性能出现差异,是导致压合成型至焊接芯片时PCB翘曲变形量出现差异的重要因素。Therefore, changing the warp/weft arranging direction of the PCB electronic glass fiber cloth will lead to differences in the mechanical and thermal properties of the PCB in the warp axis and the weft axis. Key factor.
本实施例借助PCB压合成型至焊接芯片的全过程集成有限元模拟手段,引入控制变量优化方法,减少诸多外部因素的干扰,利用计算数学、复合材料力学、数值传热学、各向异性粘弹性力学、固化反应动力学等理论知识,建立PCB压合成型、后加工至焊接芯片前的全过程数学模型,数值模拟PCB在改变CCL芯板和半固化片的力学、热学、物理和化学性能参数后的翘曲变形过程,最终获得PCB翘曲变形量的数值解并用实验结果进行验证。In this embodiment, the finite element simulation method is integrated in the whole process of PCB compression molding to welding chip, and the control variable optimization method is introduced to reduce the interference of many external factors. Theoretical knowledge of elasticity, curing reaction kinetics, etc., establish the mathematical model of the whole process of PCB compression molding, post-processing to welding chips, and numerically simulate PCB after changing the mechanical, thermal, physical and chemical performance parameters of CCL core board and prepreg Finally, the numerical solution of the warpage deformation of the PCB is obtained and verified with the experimental results.
PCB压合成型至焊接芯片的全过程集成有限元模拟,其内容包括但不限于:将PCB的几何模型导入有限元软件,将数学模型用数学公式和一系列本构方程进行数学描述,利用热学-化学-力学的多物理场耦合,定量揭示PCB在高温高压和热循环、外力加载过程的内应力和应变演变规律,解决铜、树脂、玻纤的物理性能参数之间的相互影响问题,采用解耦合的隐式迭代法,不断数值求解力平衡控制方程、力矩平衡控制方程(这些方程均是有限元软件中已有的算法),从而在给定的初边值条件下定量地获得铜、树脂、玻纤复合体系的热胀冷缩应变、树脂固化度、PCB温度、残余内应力、化学收缩应变的动态演变情况,并获得PCB压合成型至焊接芯片时的翘曲变形量数值解,同时用实验结果进行验证,进而面向理想的PCB理想的力学性能、翘曲变形量和变形形貌等优化设计电子玻纤布经/纬纱铺排方向,从而提高PCB的生产良品率和降低生产成本。The integrated finite element simulation of the whole process of PCB compression molding to welding chips, including but not limited to: importing the geometric model of the PCB into the finite element software, mathematically describing the mathematical model with mathematical formulas and a series of constitutive equations, using thermal -Chemical-mechanical multi-physics coupling, quantitatively revealing the evolution law of internal stress and strain of PCB in the process of high temperature and high pressure, thermal cycle, and external force loading, to solve the problem of mutual influence between the physical performance parameters of copper, resin, and glass fiber, using The implicit iterative method of decoupling continuously numerically solves the force balance control equation and the moment balance control equation (these equations are all existing algorithms in the finite element software), thereby quantitatively obtaining copper, The dynamic evolution of thermal expansion and cold contraction strain, resin curing degree, PCB temperature, residual internal stress and chemical shrinkage strain of resin and glass fiber composite system, and the numerical solution of warpage deformation from PCB compression molding to welding chip, At the same time, the experimental results are used for verification, and then for the ideal mechanical properties, warpage deformation and deformation morphology of the ideal PCB, the warp/weft arrangement direction of the electronic glass fiber cloth is optimally designed, thereby improving the production yield of the PCB and reducing the production cost.
需要说明的是,本实施例PCB压合成型至焊接芯片时的翘曲变形量数值解,是指在仅改变电子玻纤布经/纬纱铺排方向后引起的材料物理性能参数的方向性调换后,通过建立多层PCB的几何模型及PCB压合成型至焊接芯片的数学模型,借助计算机软件和数值计算方法,数值模拟PCB从压合成型至焊接芯片时的翘曲变形,并通过软件后处理功能,在以PCB面内经纱和纬纱轴向、厚度方向为三条坐标轴建立空间直角坐标系,获得的PCB厚度方向的相对最大位移。It should be noted that the numerical solution of the warpage deformation amount when the PCB is pressed and formed to the welding chip in this embodiment refers to the directionality of the physical property parameters of the material caused by only changing the warp/weft laying direction of the electronic glass fiber cloth. , By establishing the geometric model of the multi-layer PCB and the mathematical model of the PCB compression molding to the welding chip, with the help of computer software and numerical calculation methods, numerically simulate the warpage deformation of the PCB from the compression molding to the welding chip, and post-processing through the software The function is to establish a space rectangular coordinate system with the three coordinate axes of the warp and weft yarns in the PCB plane and the thickness direction as the three coordinate axes, and obtain the relative maximum displacement in the thickness direction of the PCB.
本实施例不限定电子玻纤布的牌号,凡是PCB和IC封装基板用电子玻纤布均在本申请保护范围内;所涉及到的材料主轴方向与纱线轴向没有绝对的对应关系,仅在确定的PCB模型中严格对应,并且通过对材料物理、化学性能参数进行调整来实现优化设计的目标。This embodiment does not limit the brand of electronic glass fiber cloth, all electronic glass fiber cloth used for PCB and IC packaging substrates are within the scope of protection of this application; there is no absolute correspondence between the major axis direction of the material involved and the axial direction of the yarn, only Strictly correspond in the determined PCB model, and achieve the goal of optimal design by adjusting the physical and chemical performance parameters of the material.
下面进行示例说明:An example is given below:
示例(一):某多层刚性PCB的室温尺寸为430mm×378mm×2mm,其铜箔/树脂混杂层数量为10层,制造该产品板的半固化片和CCL芯板为三种型号的电子玻纤布和环氧树脂的复合材料,铜箔为市面上用于制造CCL的电子行业通用压延铜箔,其中半固化片的电子玻纤布型号为1080/2116/3313,CCL芯板的电子玻纤布牌号为1080。其中,1080电子玻纤布经/纬纱的单丝直径5μm,纱布公称厚度0.053mm;2116电子玻纤布经/纬纱的单丝直径7μm,纱布公称厚度0.094mm;3313电子玻纤布经/纬纱的单丝直径6μm,纱布公称厚度0.084mm;采取该PCB为研究对象,进行电子玻纤布经/纬纱铺排方向的优化设计,具体包括如下过程:Example (1): The room temperature dimension of a multi-layer rigid PCB is 430mm×378mm×2mm, and the number of copper foil/resin mixed layers is 10 layers. The prepreg and CCL core board used to manufacture the product board are three types of electronic glass fibers. The composite material of cloth and epoxy resin, the copper foil is a general-purpose rolled copper foil used in the electronic industry for the manufacture of CCL on the market. is 1080. Among them, the monofilament diameter of 1080 electronic glass fiber cloth warp/weft yarn is 5 μm, and the nominal thickness of gauze is 0.053mm; the monofilament diameter of 2116 electronic glass fiber cloth warp/weft yarn is 7 μm, and the nominal thickness of gauze is 0.094mm; 3313 electronic glass fiber cloth warp / weft yarn The diameter of the monofilament is 6μm, and the nominal thickness of the gauze is 0.084mm; taking this PCB as the research object, the optimization design of the warp/weft laying direction of the electronic glass fiber cloth is carried out, which includes the following processes:
步骤一:根据PCB每一铜箔/树脂混杂层、半固化片层和CCL芯板层,在图形化界面或几何建模软件中建立层合板几何模型,然后导入有限元软件,建立树脂固化反应动力学方程、各向异性粘弹性应力应变本构方程、材料热本构方程等数学模型;Step 1: According to each copper foil/resin hybrid layer, prepreg layer and CCL core layer of the PCB, establish the geometric model of the laminate in the graphical interface or geometric modeling software, and then import the finite element software to establish the resin curing reaction kinetics Mathematical models such as equations, anisotropic viscoelastic stress-strain constitutive equations, and material thermal constitutive equations;
步骤二:根据实验测试和实际压合工艺参数确定初始条件和边界条件,统一经/纬纱铺排方向与材料方向的对应关系,即所有电子玻纤布的纬纱轴向均为模型的材料1方向,经纱轴向均为模型的材料2方向,此种经/纬纱铺排方向的方案编号为①;Step 2: Determine the initial conditions and boundary conditions according to the experimental test and actual lamination process parameters, and unify the corresponding relationship between the warp/weft laying direction and the material direction, that is, the weft axis of all electronic glass fiber cloths is the
步骤三:利用有限元模拟软件和计算机的数值计算能力进行模拟仿真和实验验证,分别得到PCB压合成型至焊接芯片时的翘曲变形量模拟结果A和实验结果,作为对照组;Step 3: Use the finite element simulation software and the numerical calculation ability of the computer to carry out simulation simulation and experimental verification, and obtain the simulation result A and the experimental result of the warpage deformation amount when the PCB is pressed and formed to the welding chip, as a control group;
步骤四:只改变某一型号(如1080)的电子玻纤布经/纬纱铺排方向,重新进行有限元模拟和实验验证,得到PCB压合成型至焊接芯片时的翘曲变形量结果B,此种经/纬纱铺排方向的方案编号为②;Step 4: Only change the warp/weft laying direction of a certain type of electronic glass fiber cloth (such as 1080), re-run the finite element simulation and experimental verification, and obtain the result B of the warpage deformation amount when the PCB is pressed and formed to the welding chip. The scheme number of the warp/weft laying direction is ②;
步骤五:若B>A,则舍弃当前B的值;若B<A,则令A=B。继续改变电子玻纤布的经/纬纱铺排方向(例如只改变1080半固化片和CCL芯板电子玻纤布经/纬纱铺排方向,此种经/纬纱铺排方向的方案编号为③),进行有限元模拟和实验验证,分别得到新的PCB压合成型至焊接芯片时的翘曲变形量模拟结果B和实验结果;Step 5: If B>A, discard the current value of B; if B<A, set A=B. Continue to change the warp/weft laying direction of the electronic glass fiber cloth (for example, only change the warp/weft laying direction of the 1080 prepreg and CCL core board electronic glass fiber cloth, the plan number of this warp/weft laying direction is ③), and perform finite element simulation and experimental verification, the simulation results B and experimental results of the warpage deformation amount when the new PCB is pressed and formed to the welding chip are obtained respectively;
步骤六:重复步骤五,直至从改变某一型号的电子玻纤布经/纬纱铺排方向到改变多个型号的电子玻纤布经/纬纱铺排方向的所有可选方案均有结果,并对这些方案进行编号;Step 6:
步骤七:改变半固化片和CCL芯板全部型号(1080/2116/3313)的电子玻纤布经/纬纱铺排方向并进行编号,重新进行有限元模拟和实验验证,分别得到PCB压合成型至焊接芯片时的翘曲变形量模拟结果B和实验结果,转步骤五;Step 7: Change the warp/weft arrangement direction of the electronic glass fiber cloth for all models (1080/2116/3313) of the prepreg and CCL core board and number them, re-run the finite element simulation and experimental verification, and obtain the PCB compression molding to the welding chip respectively. The simulation result B and the experimental result of the warpage deformation amount at the time, go to
步骤八:结果B对应电子玻纤布经/纬纱铺排方向即为使得PCB压合成型至焊接芯片时的翘曲变形量最小化或按需控制对应的电子玻纤布经/纬纱铺排方向。Step 8: Result B corresponds to the warp/weft laying direction of the electronic glass fiber cloth, which is to minimize the warpage deformation when the PCB is pressed and molded to the soldered chip or to control the corresponding electronic glass fiber cloth warp/weft laying direction as needed.
通过实施以上步骤,不同电子玻纤布经/纬纱铺排方向对应的PCB压合成型至焊接芯片时的翘曲变形量结果如图4所示,至此本次优化设计的目标达成,编号⑤对应的PCB电子玻纤布经/纬纱铺排方向是最优解。Through the implementation of the above steps, the warpage deformation results when the PCB corresponding to the warp/weft laying directions of the electronic glass fiber cloth is pressed into the soldered chip are shown in Figure 4. So far, the goal of this optimization design has been achieved, and the
示例(二):某多层刚性PCB的室温尺寸为400mm×350mm×2.2mm,其铜箔/树脂混杂层数量为8层,制造该产品板的半固化片和CCL芯板为三种型号的电子玻纤布和环氧树脂的复合材料,铜箔为市面上用于制造CCL的电子行业通用压延铜箔,其中半固化片的电子玻纤布型号为2116/3313,CCL芯板的电子玻纤布牌号为1078。其中,2116电子玻纤布经/纬纱的单丝直径7μm,纱布公称厚度0.094mm;3313电子玻纤布经/纬纱的单丝直径6μm,纱布公称厚度0.084mm;1078电子玻纤布经/纬纱的单丝直径5μm,纱布公称厚度0.043mm。采取该PCB为研究对象,进行电子玻纤布经/纬纱铺排方向的优化设计,具体包括:Example (2): The room temperature dimension of a multi-layer rigid PCB is 400mm×350mm×2.2mm, the number of copper foil/resin mixed layers is 8, and the prepreg and CCL core board used to manufacture the product board are three types of electronic glass. It is a composite material of fiber cloth and epoxy resin. The copper foil is a general-purpose rolled copper foil used in the electronic industry to manufacture CCL on the market. 1078. Among them, the monofilament diameter of 2116 electronic glass fiber cloth warp/weft yarn is 7 μm, and the nominal thickness of gauze is 0.094mm; the monofilament diameter of 3313 electronic glass fiber cloth warp / weft yarn is 6 μm, and the nominal thickness of gauze is 0.084mm; 1078 electronic glass fiber cloth warp / weft yarn The diameter of the monofilament is 5μm, and the nominal thickness of the gauze is 0.043mm. Taking the PCB as the research object, the optimization design of the warp/weft laying direction of the electronic glass fiber cloth is carried out, including:
首先根据PCB每一铜箔/树脂混杂层、半固化片层和CCL芯板层,在图形化界面或几何建模软件中建立层合板几何模型,然后导入有限元软件,建立树脂固化反应动力学方程、各向异性粘弹性应力应变本构方程、材料热本构方程等数学模型;接着根据实验测试和实际压合工艺参数确定初始条件和边界条件,并统一电子玻纤布经/纬纱铺排方向与材料方向的对应关系,即所有电子玻纤布的纬纱轴向均为模型的材料1方向,经纱轴向均为模型的材料2方向;然后按牌号找到所有电子玻纤布经/纬纱铺排方向的可能方案并进行编号,对应于数学模型中的参数修改之后,分别利用有限元模拟软件和计算机的数值计算能力进行模拟仿真,同时进行实验验证,得到PCB压合成型至焊接芯片时的翘曲变形量模拟结果与实验结果,以翘曲变形量为纵坐标,以编号为横坐标作图(柱状图、折线图、散点图均可),如图5所示,优选编号⑤对应的电子玻纤布经/纬纱铺排方向。First, according to each copper foil/resin hybrid layer, prepreg layer and CCL core layer of the PCB, the geometric model of the laminate is established in the graphical interface or geometric modeling software, and then imported into the finite element software to establish the resin curing reaction kinetic equation, Mathematical models such as anisotropic viscoelastic stress-strain constitutive equation and material thermal constitutive equation; then determine initial conditions and boundary conditions according to experimental tests and actual lamination process parameters, and unify the warp/weft laying direction and material of electronic glass fiber cloth The corresponding relationship of the directions, that is, the weft axis of all electronic glass fiber cloths is the
示例(三):某多层刚性PCB的室温尺寸为350mm×365mm×2.0mm,其铜箔/树脂混杂层数量为8层,制造该产品板的半固化片和CCL芯板为四种型号的电子玻纤布和环氧树脂的复合材料,铜箔为市面上用于制造CCL的电子行业通用压延铜箔,其中半固化片的电子玻纤布型号为1081/1678/2313,CCL芯板的电子玻纤布牌号为1081。其中,1081电子玻纤布经/纬纱的单丝直径5μm,纱布公称厚度0.060mm;1678电子玻纤布经/纬纱的单丝直径9μm,纱布公称厚度0.091mm;2313电子玻纤布经纱的单丝直径7μm,纬纱单丝直径5μm,纱布公称厚度0.084mm。采取该PCB为研究对象,进行电子玻纤布经/纬纱铺排方向的优化设计。Example (3): The room temperature dimension of a multi-layer rigid PCB is 350mm×365mm×2.0mm, and the number of copper foil/resin mixed layers is 8 layers. The composite material of fiber cloth and epoxy resin, the copper foil is a general-purpose rolled copper foil used in the electronic industry for the manufacture of CCL on the market. The grade is 1081. Among them, the monofilament diameter of 1081 electronic glass fiber cloth warp/weft yarn is 5 μm, and the nominal thickness of gauze is 0.060 mm; the monofilament diameter of 1678 electronic glass fiber cloth warp/weft yarn is 9 μm, and the nominal thickness of gauze is 0.091 mm; 2313 electronic glass fiber cloth warp yarn The wire diameter is 7μm, the weft monofilament diameter is 5μm, and the nominal thickness of the gauze is 0.084mm. Taking the PCB as the research object, the optimal design of the warp/weft laying direction of the electronic glass fiber cloth is carried out.
首先根据该PCB每一铜箔/树脂混杂层、半固化片层和CCL芯板层建立层合板几何模型和数学模型;接着根据实验测试和实际压合工艺参数确定有限元模拟所需的初始条件和边界条件,并统一电子玻纤布经/纬纱铺排方向与材料方向的对应关系,对于本实施例,规定电子玻纤布的经纱轴向为模型的材料1方向,纬纱轴向为模型的材料2方向,然后按玻纤布牌号找到所有电子玻纤布经/纬纱铺排方向的可能方案并进行编号,对应于数学模型中的参数修改之后,分别利用有限元模拟软件和计算机的数值计算能力进行模拟仿真,同时进行实验验证,分别得到PCB压合成型至焊接芯片时的翘曲变形量模拟结果与实验结果,以翘曲变形量为纵坐标,以编号为横坐标作折线图,如图6所示,优选编号⑤对应的电子玻纤布经/纬纱铺排方向。Firstly, the laminate geometric model and mathematical model are established according to each copper foil/resin hybrid layer, prepreg layer and CCL core layer of the PCB; then the initial conditions and boundaries required for finite element simulation are determined according to experimental tests and actual lamination process parameters conditions, and unify the corresponding relationship between the warp/weft laying direction and the material direction of the electronic glass fiber cloth. For this embodiment, it is specified that the warp axis of the electronic glass fiber cloth is the
示例(四):某多层刚性PCB的室温尺寸为400mm×380mm×2.2mm,其铜箔/树脂混杂层数量为8层,制造该产品板的半固化片和CCL芯板为四种型号的电子玻纤布和环氧树脂、氰酸树脂的复合材料,铜箔为市面上用于制造CCL的电子行业通用压延铜箔,其中半固化片的电子玻纤布型号为1065/2150/3070,CCL芯板的电子玻纤布牌号为1065。1065电子玻纤布经/纬纱的单丝直径5μm,纱布公称厚度0.053mm,2150电子玻纤布经/纬纱的单丝直径5μm,纱布公称厚度0.075mm,3070电子玻纤布经/纬纱的单丝直径6μm,纱布公称厚度0.078mm。采取该PCB为研究对象,进行电子玻纤布经/纬纱铺排方向的优化设计。Example (4): The room temperature dimension of a multi-layer rigid PCB is 400mm×380mm×2.2mm, and the number of copper foil/resin mixed layers is 8 layers. The composite material of fiber cloth, epoxy resin and cyanic acid resin, the copper foil is a general-purpose rolled copper foil used in the electronic industry to manufacture CCL on the market. The grade of electronic glass fiber cloth is 1065. The monofilament diameter of 1065 electronic glass fiber cloth warp/weft yarn is 5 μm, the nominal thickness of gauze is 0.053mm, the monofilament diameter of 2150 electronic glass fiber cloth warp / weft yarn is 5 μm, the nominal thickness of gauze is 0.075mm, and the 3070 electronic fiberglass cloth has a monofilament diameter of 5 μm. The monofilament diameter of the warp/weft yarn of the glass fiber cloth is 6μm, and the nominal thickness of the gauze is 0.078mm. Taking the PCB as the research object, the optimal design of the warp/weft laying direction of the electronic glass fiber cloth is carried out.
首先根据该PCB每一铜箔/树脂混杂层、半固化片层和CCL芯板层建立层合板几何模型和数学模型;接着根据实验测试和实际压合工艺参数确定有限元模拟所需的初始条件和边界条件,并统一电子玻纤布经/纬纱铺排方向与材料方向的对应关系,对于本实施例,规定电子玻纤布的纬纱轴向为模型的材料1方向,经纱轴向为模型的材料2方向,然后按玻纤布牌号找到所有电子玻纤布经/纬纱铺排方向的可能方案并进行编号,对应于数学模型中的参数修改之后,分别利用有限元模拟软件和计算机的数值计算能力进行模拟仿真,同时进行实验验证,分别得到PCB压合成型至焊接芯片时的翘曲变形量模拟结果与实验结果,以翘曲变形量为纵坐标,以编号为横坐标作折线图,如图7所示,优选编号⑥对应的电子玻纤布经/纬纱铺排方向。Firstly, the laminate geometric model and mathematical model are established according to each copper foil/resin hybrid layer, prepreg layer and CCL core layer of the PCB; then the initial conditions and boundaries required for finite element simulation are determined according to experimental tests and actual lamination process parameters conditions, and unify the corresponding relationship between the warp/weft laying direction and the material direction of the electronic glass fiber cloth. For this embodiment, it is specified that the weft axis of the electronic glass fiber cloth is the
实施例二
在一个或多个实施方式中,公开了一种PCB用玻纤布经/纬纱铺排方向优化设计系统,包括:In one or more embodiments, a system for optimizing the warp/weft arrangement direction of glass fiber cloth for PCB is disclosed, including:
数学建模模块,用于建立多层PCB的几何模型和PCB压合成型至焊接芯片的数学模型;Mathematical modeling module, used to establish the geometric model of multilayer PCB and the mathematical model of PCB compression molding to soldered chips;
参数设置模块,用于通过实验测试和实际工艺确定有限元模拟所需要的材料性能参数和初边值条件;确定经/纬纱铺排方向与材料方向的对应关系;The parameter setting module is used to determine the material performance parameters and initial boundary value conditions required by the finite element simulation through experimental tests and actual processes; to determine the corresponding relationship between the warp/weft yarn laying direction and the material direction;
数值模拟模块,用于分别通过有限元模拟和实验验证,得到PCB压合成型至焊接芯片时的翘曲变形量模拟结果和实验结果;The numerical simulation module is used to obtain the simulation results and experimental results of the warpage deformation amount when the PCB is pressed and formed to the welding chip through finite element simulation and experimental verification respectively;
优化设计模块,用于基于所述模拟结果和实验结果,不断优化电子玻纤布经/纬纱铺排方向对应的材料物理和化学性能参数,得到使得PCB翘曲变形量最小化或按需控制对应的电子玻纤布经/纬纱铺排方向的优化方案。The optimization design module is used to continuously optimize the material physical and chemical performance parameters corresponding to the warp/weft laying direction of the electronic glass fiber cloth based on the simulation results and experimental results, and obtain the corresponding parameters that minimize the warpage deformation of the PCB or control it on demand. Optimization scheme of warp/weft laying direction of electronic glass fiber cloth.
上述各模块的具体实现方式已经在实施例一中进行了说明,此处不再详述。The specific implementation of the above modules has been described in the first embodiment, and will not be described in detail here.
实施例三
在一个或多个实施方式中,公开了一种终端设备,包括服务器,所述服务器包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述程序时实现实施例一中的PCB用玻纤布经/纬纱铺排方向优化设计方法。为了简洁,在此不再赘述。In one or more embodiments, a terminal device is disclosed, including a server, the server including a memory, a processor, and a computer program stored on the memory and executable on the processor, the processor executing the During the program, the optimal design method for the warp/weft arrangement direction of the glass fiber cloth for PCB in the first embodiment is realized. For brevity, details are not repeated here.
应理解,本实施例中,处理器可以是中央处理单元CPU,处理器还可以是其他通用处理器、数字信号处理器DSP、专用集成电路ASIC,现成可编程门阵列FPGA或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。It should be understood that, in this embodiment, the processor may be a central processing unit CPU, and the processor may also be other general-purpose processors, digital signal processors DSP, application-specific integrated circuits ASIC, off-the-shelf programmable gate array FPGA or other programmable logic devices , discrete gate or transistor logic devices, discrete hardware components, etc. A general purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
存储器可以包括只读存储器和随机存取存储器,并向处理器提供指令和数据、存储器的一部分还可以包括非易失性随机存储器。例如,存储器还可以存储设备类型的信息。The memory may include read-only memory and random access memory and provide instructions and data to the processor, and a portion of the memory may also include non-volatile random access memory. For example, the memory may also store device type information.
在实现过程中,上述方法的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。In the implementation process, each step of the above-mentioned method can be completed by a hardware integrated logic circuit in a processor or an instruction in the form of software.
实施例四
在一个或多个实施方式中,公开了一种计算机可读存储介质,其中存储有多条指令,所述指令适于由终端设备的处理器加载并执行实施例一中所述的PCB用玻纤布经/纬纱铺排方向优化设计方法。In one or more embodiments, a computer-readable storage medium is disclosed, in which a plurality of instructions are stored, and the instructions are adapted to be loaded by a processor of a terminal device and execute the PCB glass used in the first embodiment. Optimal design method of fiber cloth warp/weft laying direction.
上述虽然结合附图对本发明的具体实施方式进行了描述,但并非对本发明保护范围的限制,所属领域技术人员应该明白,在本发明的技术方案的基础上,本领域技术人员不需要付出创造性劳动即可做出的各种修改或变形仍在本发明的保护范围以内。Although the specific embodiments of the present invention have been described above in conjunction with the accompanying drawings, they do not limit the scope of protection of the present invention. Those skilled in the art should understand that on the basis of the technical solutions of the present invention, those skilled in the art do not need to pay creative efforts. Various modifications or deformations that can be made are still within the protection scope of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111603889.9A CN114282414A (en) | 2021-12-24 | 2021-12-24 | Method and system for optimal design of warp/weft laying direction of glass fiber cloth for PCB |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111603889.9A CN114282414A (en) | 2021-12-24 | 2021-12-24 | Method and system for optimal design of warp/weft laying direction of glass fiber cloth for PCB |
Publications (1)
Publication Number | Publication Date |
---|---|
CN114282414A true CN114282414A (en) | 2022-04-05 |
Family
ID=80875399
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111603889.9A Pending CN114282414A (en) | 2021-12-24 | 2021-12-24 | Method and system for optimal design of warp/weft laying direction of glass fiber cloth for PCB |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114282414A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116644619A (en) * | 2023-07-27 | 2023-08-25 | 北京理工大学 | Pressure optimization method, device, equipment and medium for fiber preform molding process |
-
2021
- 2021-12-24 CN CN202111603889.9A patent/CN114282414A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116644619A (en) * | 2023-07-27 | 2023-08-25 | 北京理工大学 | Pressure optimization method, device, equipment and medium for fiber preform molding process |
CN116644619B (en) * | 2023-07-27 | 2023-09-22 | 北京理工大学 | Pressure optimization method, device, equipment and medium for fiber preform forming process |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109241650B (en) | Carbon fiber reinforced composite material mechanical property prediction method based on cross-scale simulation | |
Peeters et al. | Thermally-induced shapes of unsymmetric laminates | |
CN101543150B (en) | Multilayer-wired substrate | |
CN109101692B (en) | Composite material laminated plate ultimate load calculation method based on maximum stress criterion | |
CN108268692A (en) | Automatic fiber placement composite material curing deformation forecasting procedure | |
CN108664731A (en) | A kind of multiple dimensioned method for numerical simulation of composite material Googol motion controller | |
CN114282414A (en) | Method and system for optimal design of warp/weft laying direction of glass fiber cloth for PCB | |
CN107966354B (en) | Fatigue life prediction method and device for composite material and electronic equipment | |
CN106599507A (en) | Hierarchical prediction method for composite material multi-direction lamination board by considering fiber bridge connection influence based on improved B-K criterion | |
CN113784502A (en) | Anti-warping printed circuit board and method for improving warping of printed circuit board | |
Wan et al. | Highly efficient and accurate algorithm for multiscale equivalent modeling and mechanical performance simulation of printed circuit boards | |
Yang et al. | Numerical simulation of tensile behavior of 3D orthogonal woven composites | |
CN106055731A (en) | Method for non-probability reliability optimization of composite laminated plate | |
Kim et al. | Mechanism of warpage orientation rotation due to viscoelastic polymer substrates during thermal processing | |
Kim et al. | Simulation of warpage during fabrication of printed circuit boards | |
Weck et al. | Embedded sensor networks for textile‐reinforced thermoplastics: Sensor network design and mechanical composite performance | |
CN100456176C (en) | Optimizing method of pressure system in hot-pressing process of resin-based composites equal-thick laminates | |
CN113784522A (en) | Method for improving warping of printed circuit boards and preventing warping of printed circuit boards | |
Weninger et al. | Evaluation of thermomechanical behavior of electronic devices through the use of a reduced order modelling approach | |
CN115345121A (en) | Full life cycle numerical simulation method and system for printed circuit board | |
Kim | Viscoelastic effect of FR-4 material on packaging stress development | |
CN114189999A (en) | Temperature optimization design method and system for reducing warping deformation of PCB after lamination | |
CN115422881A (en) | A stack structure optimization method and system for reducing printed circuit board warpage | |
US20090265028A1 (en) | Organic Substrate with Asymmetric Thickness for Warp Mitigation | |
CN114282415A (en) | A method and system for optimizing holding time in a press-molding process of a printed circuit board |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |