CN114279902B - Organophosphorus pesticide detector based on intelligent response surface and organophosphorus pesticide detection method thereof - Google Patents
Organophosphorus pesticide detector based on intelligent response surface and organophosphorus pesticide detection method thereof Download PDFInfo
- Publication number
- CN114279902B CN114279902B CN202111613867.0A CN202111613867A CN114279902B CN 114279902 B CN114279902 B CN 114279902B CN 202111613867 A CN202111613867 A CN 202111613867A CN 114279902 B CN114279902 B CN 114279902B
- Authority
- CN
- China
- Prior art keywords
- organophosphorus
- organophosphorus pesticide
- intelligent response
- response surface
- pesticides
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000003987 organophosphate pesticide Substances 0.000 title claims abstract description 82
- 230000004044 response Effects 0.000 title claims abstract description 63
- 238000001514 detection method Methods 0.000 title claims abstract description 37
- 239000000575 pesticide Substances 0.000 claims abstract description 67
- 239000000243 solution Substances 0.000 claims abstract description 32
- 238000000034 method Methods 0.000 claims abstract description 18
- 108010022752 Acetylcholinesterase Proteins 0.000 claims abstract description 17
- 229940022698 acetylcholinesterase Drugs 0.000 claims abstract description 17
- 230000005660 hydrophilic surface Effects 0.000 claims abstract description 10
- AVYKQOAMZCAHRG-UHFFFAOYSA-N triethoxy(3,3,4,4,5,5,6,6,7,7,8,8,8-tridecafluorooctyl)silane Chemical compound CCO[Si](OCC)(OCC)CCC(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)F AVYKQOAMZCAHRG-UHFFFAOYSA-N 0.000 claims abstract description 9
- 229940089951 perfluorooctyl triethoxysilane Drugs 0.000 claims abstract description 8
- 239000007864 aqueous solution Substances 0.000 claims abstract description 7
- 239000011521 glass Substances 0.000 claims abstract description 7
- 239000000758 substrate Substances 0.000 claims abstract description 7
- 230000008859 change Effects 0.000 claims description 23
- 230000005661 hydrophobic surface Effects 0.000 claims description 19
- 102100033639 Acetylcholinesterase Human genes 0.000 claims description 16
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 14
- OEBRKCOSUFCWJD-UHFFFAOYSA-N dichlorvos Chemical compound COP(=O)(OC)OC=C(Cl)Cl OEBRKCOSUFCWJD-UHFFFAOYSA-N 0.000 claims description 12
- 108010053652 Butyrylcholinesterase Proteins 0.000 claims description 11
- 239000005944 Chlorpyrifos Substances 0.000 claims description 11
- 102100032404 Cholinesterase Human genes 0.000 claims description 11
- SBPBAQFWLVIOKP-UHFFFAOYSA-N chlorpyrifos Chemical compound CCOP(=S)(OCC)OC1=NC(Cl)=C(Cl)C=C1Cl SBPBAQFWLVIOKP-UHFFFAOYSA-N 0.000 claims description 11
- 229950001327 dichlorvos Drugs 0.000 claims description 10
- 239000005949 Malathion Substances 0.000 claims description 9
- JXSJBGJIGXNWCI-UHFFFAOYSA-N diethyl 2-[(dimethoxyphosphorothioyl)thio]succinate Chemical compound CCOC(=O)CC(SP(=S)(OC)OC)C(=O)OCC JXSJBGJIGXNWCI-UHFFFAOYSA-N 0.000 claims description 9
- 229960000453 malathion Drugs 0.000 claims description 9
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 9
- PNVJTZOFSHSLTO-UHFFFAOYSA-N Fenthion Chemical compound COP(=S)(OC)OC1=CC=C(SC)C(C)=C1 PNVJTZOFSHSLTO-UHFFFAOYSA-N 0.000 claims description 8
- 239000005562 Glyphosate Substances 0.000 claims description 8
- 229940097068 glyphosate Drugs 0.000 claims description 8
- XDDAORKBJWWYJS-UHFFFAOYSA-N glyphosate Chemical compound OC(=O)CNCP(O)(O)=O XDDAORKBJWWYJS-UHFFFAOYSA-N 0.000 claims description 8
- RLBIQVVOMOPOHC-UHFFFAOYSA-N parathion-methyl Chemical compound COP(=S)(OC)OC1=CC=C([N+]([O-])=O)C=C1 RLBIQVVOMOPOHC-UHFFFAOYSA-N 0.000 claims description 8
- 239000005916 Methomyl Substances 0.000 claims description 7
- UHXUZOCRWCRNSJ-QPJJXVBHSA-N methomyl Chemical compound CNC(=O)O\N=C(/C)SC UHXUZOCRWCRNSJ-QPJJXVBHSA-N 0.000 claims description 7
- QYMMJNLHFKGANY-UHFFFAOYSA-N profenofos Chemical group CCCSP(=O)(OCC)OC1=CC=C(Br)C=C1Cl QYMMJNLHFKGANY-UHFFFAOYSA-N 0.000 claims description 6
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 claims description 5
- 239000002953 phosphate buffered saline Substances 0.000 claims description 5
- 238000002360 preparation method Methods 0.000 claims description 5
- ZNOLGFHPUIJIMJ-UHFFFAOYSA-N fenitrothion Chemical compound COP(=S)(OC)OC1=CC=C([N+]([O-])=O)C(C)=C1 ZNOLGFHPUIJIMJ-UHFFFAOYSA-N 0.000 claims description 4
- 238000001027 hydrothermal synthesis Methods 0.000 claims description 4
- 239000000203 mixture Substances 0.000 claims description 4
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims description 2
- 238000001035 drying Methods 0.000 claims description 2
- -1 fenithion Chemical compound 0.000 claims description 2
- LCCNCVORNKJIRZ-UHFFFAOYSA-N parathion Chemical compound CCOP(=S)(OCC)OC1=CC=C([N+]([O-])=O)C=C1 LCCNCVORNKJIRZ-UHFFFAOYSA-N 0.000 claims description 2
- 229910052698 phosphorus Inorganic materials 0.000 claims description 2
- 239000011574 phosphorus Substances 0.000 claims description 2
- 230000035484 reaction time Effects 0.000 claims description 2
- 229910019142 PO4 Inorganic materials 0.000 claims 1
- CWAFVXWRGIEBPL-UHFFFAOYSA-N ethoxysilane Chemical compound CCO[SiH3] CWAFVXWRGIEBPL-UHFFFAOYSA-N 0.000 claims 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 claims 1
- 239000010452 phosphate Substances 0.000 claims 1
- 235000013339 cereals Nutrition 0.000 abstract description 2
- 235000013399 edible fruits Nutrition 0.000 abstract description 2
- 235000013311 vegetables Nutrition 0.000 abstract description 2
- 102000012440 Acetylcholinesterase Human genes 0.000 abstract 1
- 108090000371 Esterases Proteins 0.000 abstract 1
- YRIBGSCJIMXMPJ-UHFFFAOYSA-N butyrylcholine Chemical compound CCCC(=O)OCC[N+](C)(C)C YRIBGSCJIMXMPJ-UHFFFAOYSA-N 0.000 abstract 1
- 230000004048 modification Effects 0.000 description 5
- 238000012986 modification Methods 0.000 description 5
- 235000013305 food Nutrition 0.000 description 4
- 238000001000 micrograph Methods 0.000 description 4
- 230000003993 interaction Effects 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 241000607479 Yersinia pestis Species 0.000 description 2
- 238000012271 agricultural production Methods 0.000 description 2
- 238000002290 gas chromatography-mass spectrometry Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000000447 pesticide residue Substances 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 230000003075 superhydrophobic effect Effects 0.000 description 2
- XYZZKVRWGOWVGO-UHFFFAOYSA-N Glycerol-phosphate Chemical compound OP(O)(O)=O.OCC(O)CO XYZZKVRWGOWVGO-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000004071 biological effect Effects 0.000 description 1
- 239000005388 borosilicate glass Substances 0.000 description 1
- 238000004587 chromatography analysis Methods 0.000 description 1
- 238000004737 colorimetric analysis Methods 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005518 electrochemistry Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 235000021393 food security Nutrition 0.000 description 1
- 238000004128 high performance liquid chromatography Methods 0.000 description 1
- 231100000053 low toxicity Toxicity 0.000 description 1
- 238000004949 mass spectrometry Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 125000001424 substituent group Chemical group 0.000 description 1
Landscapes
- Agricultural Chemicals And Associated Chemicals (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
本发明公开了一种基于智能响应表面的有机磷农药检测器及其检测有机磷农药的方法,属于有机磷农药检测技术领域。本发明基于智能响应表面的有机磷农药检测器是将玻璃基底浸入CoCl2·6H2O和(NH2)2CO的混合水溶液中构建超亲水表面,然后进行乙酰胆碱酯酶或丁酰胆碱酯酶修饰,最后浸入全氟辛基三乙氧基硅烷溶液中制得。本发明通过观察不同有机磷农药在检测器表面接触角的变化可以实现对不同有机磷农药的检测,不需要大型仪器,不受环境光线和颜色的干扰。而且,基于智能响应表面的有机磷农药检测器可用于现场检测有机磷农药,方便携带,可应用于蔬菜水果粮食上的有机磷农药残留检测。
The invention discloses an organophosphorus pesticide detector based on an intelligent response surface and a method for detecting organophosphorus pesticides, and belongs to the technical field of organophosphorus pesticide detection. The organophosphorus pesticide detector based on the intelligent response surface of the present invention immerses the glass substrate in a mixed aqueous solution of CoCl 2 ·6H 2 O and (NH 2 ) 2 CO to construct a super hydrophilic surface, and then performs acetylcholinesterase or butyrylcholine It is modified with esterase and finally immersed in perfluorooctyltriethoxysilane solution. The present invention can realize the detection of different organophosphorus pesticides by observing the changes in the contact angle of different organophosphorus pesticides on the surface of the detector. It does not require large instruments and is not interfered by ambient light and color. Moreover, the organophosphorus pesticide detector based on the intelligent response surface can be used for on-site detection of organophosphorus pesticides. It is easy to carry and can be applied to the detection of organophosphorus pesticide residues on vegetables, fruits and grains.
Description
技术领域Technical field
本发明属于有机磷农药检测技术领域,具体涉及一种基于智能响应表面的有机磷农药检测器及其检测有机磷农药的方法。The invention belongs to the technical field of organophosphorus pesticide detection, and specifically relates to an organophosphorus pesticide detector based on an intelligent response surface and a method for detecting organophosphorus pesticides.
背景技术Background technique
近年来随着我国农药产业规模的不断扩大,技术的不断升级,农药开发开始向高效、低毒、低残留、高生物活性和高选择性的方向发展。我国农业的生产规模也在不断扩大,但也随之产生了一些病虫害相关的问题,为了确保粮食安全,粮食从种植、生产到储藏各个阶段都要使用农药防治虫害,有机磷农药作为一类高效、广谱、易于被降解的杀虫剂正被广泛地用于粮食生产与储藏过程中,是化学防治最常用的选择。这也使得有农药的使用量日益增长,再从而导致农药的使用始终渗透在农业生产中,致使粮食中的农药残留一直影响着消费者的食用安全。In recent years, with the continuous expansion of the scale of my country's pesticide industry and the continuous upgrading of technology, pesticide development has begun to develop in the direction of high efficiency, low toxicity, low residue, high biological activity and high selectivity. The scale of agricultural production in our country is also constantly expanding, but some problems related to pests and diseases have also arisen. In order to ensure food security, pesticides must be used to prevent and control pests at all stages from planting, production to storage. Organophosphorus pesticides are a type of highly efficient pesticides. Pesticides that are broad-spectrum and easily degraded are being widely used in food production and storage, and are the most commonly used choice for chemical control. This has also led to the increasing use of pesticides, which has led to the use of pesticides permeating agricultural production, causing pesticide residues in food to continue to affect consumers' food safety.
目前对于有机磷农药的检测主要有气相色谱/质谱联用技术(GC/MS)和高效液相色谱(HPLC)技术,尽管能比较准确地检测农药的残留量,但这些方法操作繁琐,样品常要进行预处理,且分析所需仪器大都昂贵笨重,须由专业人员操作,不能满足现场快速检测的需要。因此,建立快速、可靠、灵敏和实用的有机磷农药检测的分析器件和方法,对于环境保护和食品安全等具有重要的现实意义。At present, the main methods for detecting organophosphorus pesticides are gas chromatography/mass spectrometry (GC/MS) and high-performance liquid chromatography (HPLC). Although they can detect pesticide residues more accurately, these methods are cumbersome to operate and require frequent samples. Pretreatment is required, and most of the instruments required for analysis are expensive and bulky and must be operated by professionals, which cannot meet the needs of rapid on-site detection. Therefore, establishing fast, reliable, sensitive and practical analytical devices and methods for detecting organophosphorus pesticides is of great practical significance for environmental protection and food safety.
发明内容Contents of the invention
针对现有技术中存在的问题,本发明的目的之一在于提供一种基于智能响应表面的有机磷农药检测器的制备方法,具体步骤如下:In view of the problems existing in the prior art, one of the purposes of the present invention is to provide a preparation method for an organophosphorus pesticide detector based on an intelligent response surface. The specific steps are as follows:
(1)将玻璃基底浸入CoCl2·6H2O和(NH2)2CO的混合水溶液中,温度为55-65℃的条件下进行水热反应,干燥后获得超亲水表面;(1) Immerse the glass substrate into a mixed aqueous solution of CoCl 2 ·6H 2 O and (NH 2 ) 2 CO, perform a hydrothermal reaction at a temperature of 55-65°C, and obtain a super-hydrophilic surface after drying;
(2)每4-6cm2的亲水表面上滴100μL响应分子溶液,在室温下干燥;(2) Drop 100 μL of the response molecule solution on every 4-6 cm 2 hydrophilic surface and dry at room temperature;
(3)将步骤(2)获得的修饰后的亲水表面,浸入全氟辛基三乙氧基硅烷溶液中30-40min,干燥,获得疏水表面;即得基于智能响应表面的有机磷农药检测器;(3) Dip the modified hydrophilic surface obtained in step (2) into the perfluorooctyltriethoxysilane solution for 30-40 minutes, and dry it to obtain a hydrophobic surface; that is, organophosphorus pesticide detection based on intelligent response surfaces is obtained device;
所述响应分子溶液为乙酰胆碱酯酶磷酸缓冲盐溶液或丁酰胆碱酯酶磷酸缓冲盐溶液,浓度为1U·mL-1。丁酰胆碱酯酶和乙酰胆碱酯酶性质相似,取代基团不同,都可以与有机磷农药响应,与不同有机磷农药响应强度不同,可以通过调整响应分子种类,构建不同的检测阵列。The response molecule solution is acetylcholinesterase phosphate buffered saline solution or butyrylcholinesterase phosphate buffered saline solution, with a concentration of 1U·mL -1 . Butyrylcholinesterase and acetylcholinesterase have similar properties but different substituent groups. Both can respond to organophosphorus pesticides. Different organophosphorus pesticides have different response strengths. Different detection arrays can be constructed by adjusting the types of response molecules.
所述CoCl2·6H2O和(NH2)2CO的混合水溶液中CoCl2·6H2O浓度为0.20-0.50g L-1,(NH2)2CO的浓度为150-250g L-1。In the mixed aqueous solution of CoCl 2 ·6H 2 O and (NH 2 ) 2 CO, the concentration of CoCl 2 ·6H 2 O is 0.20-0.50g L -1 and the concentration of (NH 2 ) 2 CO is 150-250g L -1 .
所述步骤(1)中,水热反应的时间为22-26h;所采用的玻璃基底可以是任何类型的玻璃类材质。In the step (1), the hydrothermal reaction time is 22-26 hours; the glass substrate used can be any type of glass material.
所述步骤(3)中,全氟辛基三乙氧基硅烷溶液为全氟辛基三乙氧基硅烷(PFOTES,CAS号:51851-37-7)的乙醇水溶液,其中乙醇和水的体积比为1:1,PFOTES的体积百分数为1%。In the step (3), the perfluorooctyltriethoxysilane solution is an ethanol aqueous solution of perfluorooctyltriethoxysilane (PFOTES, CAS No.: 51851-37-7), where the volume of ethanol and water is The ratio is 1:1 and the volume percentage of PFOTES is 1%.
本发明的目的之二在于提供上述方法制备的基于智能响应表面的有机磷农药检测器。The second object of the present invention is to provide an organophosphorus pesticide detector based on an intelligent response surface prepared by the above method.
本发明的目的之三在于提供上述基于智能响应表面的有机磷农药检测器在有机磷农药检测中的应用。其中,所述有机磷农药可为丙溴磷、敌敌畏、杀螟硫磷、毒死蜱、马拉硫磷、甲基对硫磷、草甘膦、毒死蜱、灭多威、倍硫磷中的一种或几种,已知但不局限于这些有机磷农药分子。The third object of the present invention is to provide the application of the above-mentioned organophosphorus pesticide detector based on intelligent response surface in the detection of organophosphorus pesticides. Wherein, the organophosphorus pesticide may be one of profenofos, dichlorvos, fenitrothion, chlorpyrifos, malathion, methyl parathion, glyphosate, chlorpyrifos, methomyl, and fenthion or several, known but not limited to these organophosphorus pesticide molecules.
本发明的目的之四在于提供一种检测检测有机磷农药的方法,具体是将已知不同类型不同浓度的有机磷农药或已知不同浓度不同类型有机磷农药的混合物滴加到上述基于智能响应表面的有机磷农药检测器表面,检测有机磷农药在基于智能响应表面的有机磷农药检测器表面接触角的变化范围,构建基于有机磷农药的智能响应表面接触角变化范围数据库;The fourth object of the present invention is to provide a method for detecting organophosphorus pesticides. Specifically, known organophosphorus pesticides of different types and concentrations or a mixture of known organophosphorus pesticides of different concentrations and types are added dropwise to the above-mentioned intelligent response-based On the surface of the organophosphorus pesticide detector, detect the change range of the contact angle of the organophosphorus pesticide on the surface of the organophosphorus pesticide detector based on the intelligent response surface, and build a database of the change range of the contact angle of the organophosphorus pesticide-based intelligent response surface;
将待测样品滴加到上述基于智能响应表面的有机磷农药检测器表面,检测待测样品在基于智能响应表面的有机磷农药检测器表面接触角的变化范围,对照构建的基于有机磷农药的智能响应表面接触角变化范围数据库,获得待测样品中有机磷农药的类型及浓度;Drop the sample to be tested onto the surface of the above-mentioned smart response surface-based organophosphorus pesticide detector, detect the change range of the contact angle of the sample to be tested on the surface of the smart response surface-based organophosphorus pesticide detector, and compare it with the constructed organophosphorus pesticide-based detector. Intelligent response surface contact angle change range database to obtain the type and concentration of organophosphorus pesticides in the sample to be tested;
其中,检测的温度为20-40℃,检测时间为20-60min;所述有机磷农药可为丙溴磷、敌敌畏、杀螟硫磷、毒死蜱、马拉硫磷、甲基对硫磷、草甘膦、毒死蜱、灭多威、倍硫磷中的一种或几种,已知但不局限于这些有机磷农药分子。Among them, the detection temperature is 20-40°C, and the detection time is 20-60 minutes; the organophosphorus pesticide can be profenofos, dichlorvos, fenithion, chlorpyrifos, malathion, methyl parathion, parathion, One or more of glyphosate, chlorpyrifos, methomyl, and fenthion are known but not limited to these organophosphorus pesticide molecules.
本发明技术方案的优点Advantages of the technical solution of the present invention
传统有机磷农药检测方法往往借助于电化学、质谱、色谱等大型实验室仪器,需要专业的操作人员和相对较长的检测过程,无法进行现场检测。后期发展了比色法,但是颜色变化的观察往往需要借助光学激发仪器,且对于光线暗淡环境、对颜色显示有干扰的样品无法做到精确测试,一些色弱人士也无法使用相关检测方法。本发明借助于肉眼可观察的接触角的变化指示有机磷农药的种类和浓度,借助于手机软件便可精确测量角度的变化,不需要大型仪器,不受环境光线和颜色的干扰。Traditional organophosphorus pesticide detection methods often rely on large laboratory instruments such as electrochemistry, mass spectrometry, and chromatography, which require professional operators and a relatively long detection process, making on-site detection impossible. Colorimetric methods were developed in the later period, but the observation of color changes often requires the use of optical excitation instruments, and it is impossible to accurately test samples in dim light environments that interfere with color display, and some people with color weakness cannot use related detection methods. The present invention indicates the type and concentration of organophosphorus pesticides by means of changes in contact angle observable by the naked eye, and can accurately measure changes in angles with the help of mobile phone software, without the need for large instruments and without interference from ambient light and color.
本发明在玻璃基底上制备了超亲水表面,引入乙酰胆碱酯酶或丁酰胆碱酯酶进行修饰,获得疏水表面,然后通过接触角的变化可以实现对不同有机磷农药的检测。通过调整响应分子的种类和浓度(乙酰胆碱酯酶,丁酰胆碱酯酶),构建基于有机磷农药检测的阵列,通过对不同浓度、不同种类的有机磷农药以及混合有机磷农药样品的实验室检测,建立完备的基于有机磷农药的智能响应表面接触角变化范围数据库,现场检测时可通过与数据库的比对,确定有机磷农药的种类和残留量。The present invention prepares a super-hydrophilic surface on a glass substrate, introduces acetylcholinesterase or butyrylcholinesterase for modification, and obtains a hydrophobic surface. Then, different organophosphorus pesticides can be detected through changes in contact angle. By adjusting the type and concentration of response molecules (acetylcholinesterase, butyrylcholinesterase), an array based on organophosphorus pesticide detection was constructed. Through the laboratory testing of different concentrations, different types of organophosphorus pesticides and mixed organophosphorus pesticide samples Detection, establish a complete database of contact angle change range of intelligent response surfaces based on organophosphorus pesticides. During on-site detection, the type and residual amount of organophosphorus pesticides can be determined by comparing with the database.
本发明基于智能响应表面的有机磷农药检测器可用于现场检测有机磷农药,方便携带,它可应用于蔬菜水果粮食上的有机磷农药残留检测。The organophosphorus pesticide detector based on the intelligent response surface of the present invention can be used for on-site detection of organophosphorus pesticides and is easy to carry. It can be applied to the detection of organophosphorus pesticide residues on vegetables, fruits and grains.
附图说明Description of the drawings
图1是本发明制备的亲水表面的扫描电镜图及接触角;Figure 1 is a scanning electron microscope image and contact angle of the hydrophilic surface prepared by the present invention;
图2是本发明制备的疏水表面的扫描电镜图及接触角;Figure 2 is a scanning electron microscope image and contact angle of the hydrophobic surface prepared by the present invention;
图3是本发明制备的疏水表面的图片;Figure 3 is a picture of the hydrophobic surface prepared by the present invention;
图4不同浓度梯度的敌敌畏溶液接触角变化;Figure 4 Changes in contact angle of dichlorvos solution with different concentration gradients;
图5不同浓度梯度的马拉硫磷溶液接触角变化;Figure 5 Changes in contact angle of malathion solution with different concentration gradients;
图6不同浓度梯度的草甘膦溶液接触角变化;Figure 6 Changes in contact angle of glyphosate solution at different concentration gradients;
图7不同浓度梯度的毒死蜱溶液接触角变化;Figure 7 Changes in contact angle of chlorpyrifos solutions with different concentration gradients;
图8不同浓度梯度的甲基对硫磷溶液接触角变化;Figure 8 Changes in contact angle of methyl parathion solution with different concentration gradients;
图9不同浓度梯度的丙溴磷溶液接触角变化;Figure 9 Changes in contact angle of profenofos solutions with different concentration gradients;
图10不同浓度梯度的灭多威溶液接触角变化;Figure 10 Changes in contact angle of methomyl solutions with different concentration gradients;
图11不同浓度梯度的杀螟硫磷溶液接触角变化;Figure 11 Changes in contact angle of fenitrothion solutions with different concentration gradients;
图12 20℃条件下9种相同浓度的有机磷农药接触角变化柱状图;Figure 12 Histogram of contact angle changes of nine organophosphorus pesticides of the same concentration at 20°C;
图13 30℃条件下9种相同浓度的有机磷农药接触角变化柱状图。Figure 13 Histogram of contact angle changes of nine organophosphorus pesticides of the same concentration under 30°C.
具体实施方式Detailed ways
在本发明中所使用的术语,除非有另外说明,一般具有本领域普通技术人员通常理解的含义。The terms used in the present invention generally have the meanings commonly understood by those of ordinary skill in the art, unless otherwise stated.
下面结合具体实施例,并参照数据进一步详细的描述本发明。以下实施例只是为了举例说明本发明,而非以任何方式限制本发明的范围。The present invention will be described in further detail below with reference to specific embodiments and data. The following examples are only intended to illustrate the present invention and do not limit the scope of the present invention in any way.
本发明的原理为:The principle of the present invention is:
在玻璃基底表面构建超亲水表面,然后采用乙酰胆碱酯酶或丁酰胆碱酯酶修饰,通过乙酰胆碱酯酶(或丁酰胆碱酯酶)与不同有机磷农药分子的相互作用强度的差异,以及乙酰胆碱酯酶(或丁酰胆碱酯酶)与超疏水表面之间的弱基底相互作用,产生对有机磷农药分子的检测相互作用,对疏水表面结构产生不同程度的破坏,进而产生表面接触角的变化。通过调整响应分子的种类和浓度(乙酰胆碱酯酶,丁酰胆碱酯酶),构建基于有机磷农药检测的阵列,通过对不同浓度、不同种类的有机磷农药以及混合有机磷农药样品的实验室检测,建立完备的基于有机磷农药的智能响应表面接触角变化范围数据库,现场检测时可通过与数据库的比对,确定有机磷农药的种类和残留量。A superhydrophilic surface is constructed on the surface of the glass substrate, and then modified with acetylcholinesterase or butyrylcholinesterase. Through the difference in the interaction strength between acetylcholinesterase (or butyrylcholinesterase) and different organophosphorus pesticide molecules, And the weak substrate interaction between acetylcholinesterase (or butyrylcholinesterase) and the superhydrophobic surface produces detection interactions for organophosphorus pesticide molecules, causing varying degrees of damage to the hydrophobic surface structure, thereby producing surface contact Angle changes. By adjusting the type and concentration of response molecules (acetylcholinesterase, butyrylcholinesterase), an array based on organophosphorus pesticide detection was constructed. Through the laboratory testing of different concentrations, different types of organophosphorus pesticides and mixed organophosphorus pesticide samples Detection, establish a complete database of contact angle change range of intelligent response surfaces based on organophosphorus pesticides. During on-site detection, the type and residual amount of organophosphorus pesticides can be determined by comparing with the database.
在上述检测体系中,乙酰胆碱酯酶(或丁酰胆碱酯酶)为有机磷农药响应分子,与不同有机磷农药结合强度不同,产生不同程度的反应;反应会对疏水表面结构产生不同程度的破坏,进而产生表面接触角变化的信号。不同浓度的有机磷农药将在一定范围内产生不同的接触角变化,而与乙酰胆碱酯酶(或丁酰胆碱酯酶)没有响应的非有机磷农药分子将不会产生接触角变化信号。将待检测的有机磷农药分子滴在制备的基于智能响应表面的有机磷农药检测器的疏水表面上,并进行接触角测量;有机磷农药种类和浓度不同,将获得不同的接触角信息,进而得出不同的有机磷农药分子信息。In the above detection system, acetylcholinesterase (or butyrylcholinesterase) is an organophosphorus pesticide-responsive molecule. It has different binding strengths with different organophosphorus pesticides and produces different degrees of reaction; the reaction will produce different degrees of changes in the hydrophobic surface structure. damage, thereby producing a signal of change in surface contact angle. Different concentrations of organophosphorus pesticides will produce different contact angle changes within a certain range, while non-organophosphorus pesticide molecules that do not respond to acetylcholinesterase (or butyrylcholinesterase) will not produce contact angle change signals. The organophosphorus pesticide molecules to be detected are dropped on the hydrophobic surface of the prepared organophosphorus pesticide detector based on intelligent response surface, and the contact angle is measured; different types and concentrations of organophosphorus pesticides will obtain different contact angle information, and then Obtain molecular information on different organophosphorus pesticides.
实施例1Example 1
一种基于智能响应表面的有机磷农药检测器,由以下方法制备而成:An organophosphorus pesticide detector based on an intelligent response surface, prepared by the following method:
(1)亲水表面的制备:将CoCl2·6H2O和(NH2)2CO的水溶液放入密封的容器中,其中,CoCl2·6H2O浓度为0.36g L-1,(NH2)2CO的浓度为200g L-1,并以常见的硼硅酸盐载玻片作为沉积基质,在60℃下反应24小时后,用去离子水冲洗沉积后的表面,干燥后制备成亲水表面;(1) Preparation of hydrophilic surface: Put the aqueous solution of CoCl 2 ·6H 2 O and (NH 2 ) 2 CO into a sealed container, where the concentration of CoCl 2 ·6H 2 O is 0.36g L -1 , (NH 2 ) The concentration of 2 CO is 200g L -1 , and a common borosilicate glass slide is used as the deposition matrix. After reacting at 60°C for 24 hours, the deposited surface is rinsed with deionized water and dried to prepare hydrophilic surface;
(2)乙酰胆碱酯酶的修饰:每5cm2的亲水表面上滴100μL浓度为1U·mL-1的乙酰胆碱酯酶磷酸缓冲盐溶液,在室温下干燥(2) Modification of acetylcholinesterase: Drop 100 μL of acetylcholinesterase phosphate buffered saline solution with a concentration of 1U·mL -1 on every 5 cm 2 hydrophilic surface, and dry at room temperature.
(3)疏水表面的制备:将修饰后的表面在PFOTES溶液中浸入40分钟,将制成的表面用乙醇溶液冲洗,然后自然干燥,得到疏水表面;即得基于智能响应表面的有机磷农药检测器。(3) Preparation of hydrophobic surface: Immerse the modified surface in PFOTES solution for 40 minutes, rinse the prepared surface with ethanol solution, and then dry naturally to obtain a hydrophobic surface; that is, organophosphorus pesticide detection based on intelligent response surface device.
所述步骤(3)中,PFOTES溶液为PFOTES的乙醇水溶液,其中乙醇和水的体积比为1:1,PFOTES的体积百分数为1%。In the step (3), the PFOTES solution is an aqueous ethanol solution of PFOTES, where the volume ratio of ethanol and water is 1:1, and the volume percentage of PFOTES is 1%.
上述步骤(1)制备的亲水表面的扫描电镜图及接触角如图1所示,步骤(3)制备成的疏水表面的扫描电镜图及接触角如图2所示,最终制成的基于智能响应表面的有机磷农药检测器的疏水表面的图片如图3所示。The scanning electron microscope image and contact angle of the hydrophilic surface prepared in the above step (1) are shown in Figure 1, and the scanning electron microscope image and contact angle of the hydrophobic surface prepared in step (3) are shown in Figure 2. The final product based on A picture of the hydrophobic surface of the smart responsive surface organophosphorus pesticide detector is shown in Figure 3.
实施例2Example 2
采用实施例1制备的基于智能响应表面的有机磷农药检测器检测有机磷农药的方法,步骤如下:The method for detecting organophosphorus pesticides using the organophosphorus pesticide detector based on the intelligent response surface prepared in Example 1 is as follows:
(1)将已知不同类型不同浓度的有机磷农药或已知不同浓度不同类型有机磷农药的混合物3μL滴加到上述基于智能响应表面的有机磷农药检测器表面,检测有机磷农药在基于智能响应表面的有机磷农药检测器表面接触角的变化范围,构建基于有机磷农药的智能响应表面接触角变化范围数据库;(1) Add 3 μL of known different types of organophosphorus pesticides with different concentrations or a mixture of known different types of organophosphorus pesticides with different concentrations onto the surface of the above-mentioned organophosphorus pesticide detector based on intelligent response surface. Respond to the change range of the surface contact angle of the organophosphorus pesticide detector on the surface, and construct a database of the change range of the contact angle of the intelligent response surface based on organophosphorus pesticides;
(2)将待测样品滴加到上述基于智能响应表面的有机磷农药检测器表面,检测待测样品在基于智能响应表面的有机磷农药检测器表面接触角的变化范围,对照构建的基于有机磷农药的智能响应表面接触角变化范围数据库,获得待测样品中有机磷农药的类型及浓度;(2) Drop the sample to be tested onto the surface of the above-mentioned smart response surface-based organophosphorus pesticide detector, detect the change range of the contact angle of the sample to be tested on the surface of the smart response surface-based organophosphorus pesticide detector, and compare it with the constructed organic-based pesticide detector. Intelligent response surface contact angle change range database of phosphorus pesticides to obtain the type and concentration of organophosphorus pesticides in the sample to be tested;
其中,检测的温度为20-40℃,检测时间为20-60min。Among them, the detected temperature is 20-40°C, and the detection time is 20-60 minutes.
实施例3Example 3
不同浓度的有机磷农药分子在基于智能响应表面的有机磷农药检测器表面接触角的变化Changes in contact angle of organophosphorus pesticide molecules with different concentrations on the surface of organophosphorus pesticide detector based on smart response surface
分别将不同浓度的有机磷农药分子滴在上述实施例1制备的基于智能响应表面的有机磷农药检测器的疏水表面上,检测温度20℃。分别测量农药分子液滴初始接触疏水表面时的接触角和作用20min、25min、30min之后的接触角,并以接触角角度数值为纵坐标,乙酰胆碱酯酶与有机磷农药分子的响应时间作为横坐标作图,检测出不同种类和不同浓度的有机磷农药分子的接触角变化范围。Organophosphorus pesticide molecules of different concentrations were dropped on the hydrophobic surface of the organophosphorus pesticide detector based on the intelligent response surface prepared in the above Example 1, and the detection temperature was 20°C. Measure the contact angle when the pesticide molecule droplets initially contact the hydrophobic surface and the contact angle after 20 minutes, 25 minutes, and 30 minutes. The contact angle angle value is used as the ordinate, and the response time of acetylcholinesterase and organophosphorus pesticide molecules is used as the abscissa. Draw a graph to detect the change range of the contact angle of different types and concentrations of organophosphorus pesticide molecules.
结果如图4-11所示,其中,-1表示浓度为10-1mol/L,-2表示浓度为10-2mol/L,-3表示浓度为10-3mol/L,以此类推;water表示水的接触角在测量时间范围内的变化。在超疏水表面上,通过与水的接触角变化相比较,检测不同浓度的有机磷农药分子与乙酰胆碱酯酶的响应情况。检测初始阶段,四种浓度的溶液接触角差距较小,随着时间的推移,不同浓度的溶液之间接触角出现明显的差距。30分钟的时间内水的接触角变化大约稳定在10°左右,相比较水来言,草甘膦、毒死蜱、甲基对硫磷变化不明显。出现这种结果可能是这三种农药分子与乙酰胆碱酯酶响应强度较弱。马拉硫磷、丙溴磷、敌敌畏、灭多威、杀螟硫磷分别在10-3mol/L、10-1mol/L,10-1mol/L,10-1mol/L,10-3mol/L出现接触角的最大变化。通过综合各种有机磷农药分子检测数据,结果表明,农药分子的浓度越高,接触角变化越明显,但为保证在低浓度条件下就能找到最佳的检测效果,选取10-3mol/L为最优检测条件。The results are shown in Figure 4-11, where -1 means the concentration is 10 -1 mol/L, -2 means the concentration is 10 -2 mol/L, -3 means the concentration is 10 -3 mol/L, and so on. ;water represents the change in the contact angle of water within the measurement time range. On the superhydrophobic surface, the response of different concentrations of organophosphorus pesticide molecules to acetylcholinesterase was detected by comparing the contact angle changes with water. In the initial stage of detection, the difference in contact angles between the four concentrations of solutions was small. As time went by, there was an obvious gap in the contact angles between solutions of different concentrations. The contact angle of water changes approximately at about 10° within 30 minutes. Compared with water, the changes of glyphosate, chlorpyrifos, and methyl parathion are not obvious. This result may be due to the weak response intensity of these three pesticide molecules to acetylcholinesterase. Malathion, profenofos, dichlorvos, methomyl, and fenitrothion are respectively at 10 -3 mol/L, 10 -1 mol/L, 10 -1 mol/L, 10 -1 mol /L, 10 The maximum change in contact angle occurs at -3 mol/L. By comprehensively analyzing the detection data of various organophosphorus pesticide molecules, the results show that the higher the concentration of pesticide molecules, the more obvious the change in contact angle. However, in order to ensure that the best detection effect can be found under low concentration conditions, 10 -3 mol/ L is the optimal detection condition.
实施例4Example 4
相同浓度的有机磷农药分子在基于智能响应表面的有机磷农药检测器表面接触角的变化Changes in contact angle of organophosphorus pesticide molecules at the same concentration on the surface of an organophosphorus pesticide detector based on smart response surface
(1)分别将相同浓度(10-3mol/L)的有机磷农药分子滴在上述实施例1制备的基于智能响应表面的有机磷农药检测器的疏水表面上,检测温度20℃。分别测量农药分子液滴初始接触疏水表面时的接触角和作用30min之后的接触角,计算出不同种类相同浓度的有机磷农药分子的接触角变化范围。(1) Drop organophosphorus pesticide molecules at the same concentration (10 -3 mol/L) on the hydrophobic surface of the organophosphorus pesticide detector based on the intelligent response surface prepared in the above Example 1, and detect the temperature at 20°C. The contact angle when the pesticide molecule droplets initially contact the hydrophobic surface and the contact angle after 30 minutes of contact were measured respectively, and the change range of the contact angle of different types of organophosphorus pesticide molecules of the same concentration was calculated.
结果如图12所示,在相同的时间内,相同浓度梯度(30min,10-3mol/L)的不同有机磷农药接触角变化由大到小分别为,毒死蜱Chl(57.82°)>草甘膦Gly(47.63°)>倍硫磷Fent(34.92°)>杀螟硫磷Fen(33.85°)>敌敌畏DDVP(28.67°)>马拉硫磷Mal(26.77°)>丙溴磷Pro(25.23°)>甲基对硫磷Par(20.13°)>灭多威Thi(14.79°)。在此条件下,毒死蜱的接触角变化最大,灭多威的接触角变化最小。通过与疏水表面作用,可以初步区分不同的有机磷农药分子。The results are shown in Figure 12. In the same time and in the same concentration gradient (30 min, 10 -3 mol/L), the contact angle changes of different organophosphorus pesticides from large to small are, chlorpyrifos Chl (57.82°) > glycerin Phosphate Gly(47.63°)>Fenthion Fent(34.92°)>Fenthion Fen(33.85°)>Dichlorvos DDVP(28.67°)>Malathion Mal(26.77°)>Profenthion Pro(25.23° )> Methyl parathion Par (20.13°)> Methomyl Thi (14.79°). Under this condition, the contact angle of chlorpyrifos changed the most, and the contact angle of methomyl changed the smallest. By interacting with hydrophobic surfaces, different organophosphorus pesticide molecules can be preliminarily distinguished.
(2)分别将相同浓度(10-3mol/L)的有机磷农药分子滴在上述实施例1制备的基于智能响应表面的有机磷农药检测器的疏水表面上,检测温度30℃。分别测量农药分子液滴初始接触疏水表面时的接触角和作用60min之后的接触角,计算出不同种类相同浓度的有机磷农药分子的接触角变化范围。(2) Drop organophosphorus pesticide molecules at the same concentration (10 -3 mol/L) on the hydrophobic surface of the organophosphorus pesticide detector based on the intelligent response surface prepared in the above Example 1, and detect the temperature at 30°C. The contact angle when the pesticide molecule droplets initially contact the hydrophobic surface and the contact angle after 60 minutes of action were measured respectively, and the change range of the contact angle of different types of organophosphorus pesticide molecules of the same concentration was calculated.
结果如图13所示,在相同的时间内,相同浓度梯度的不同有机磷农药接触角变化由大到小分别为:敌敌畏DDVP(58.23°)>草甘膦Gly(54.65°)>丙溴磷Pro(38.55°)>杀螟硫磷Fen(30.24°)>灭多威Thi(27.98°)>甲基对硫磷Par(27.77°)>毒死蜱Chl(24.6°)>倍硫磷Fent(22.98°)>马拉硫磷Mal(18.76°)。在此条件下,敌敌畏的接触角变化最大,马拉硫磷的接触角变化最小。在此条件下,有利于筛选敌敌畏与草甘膦农药分子。The results are shown in Figure 13. In the same period of time, the changes in contact angles of different organophosphorus pesticides in the same concentration gradient from large to small are: dichlorvos DDVP (58.23°) > glyphosate Gly (54.65°) > profenofos Pro(38.55°)>Fenthion Fen(30.24°)>Methocarb Thi(27.98°)>Methyl parathion Par(27.77°)>Chlorpyrifos Chl(24.6°)>fenthion Fent(22.98° )>Malathion Mal(18.76°). Under this condition, the contact angle of dichlorvos changed the most, and that of malathion changed the smallest. Under these conditions, it is beneficial to screen dichlorvos and glyphosate pesticide molecules.
以上所述,仅是本发明的较佳实施例而已,并非是对本发明作其它形式的限制,任何熟悉本专业的技术人员可能利用上述揭示的技术内容加以变更或改型为等同变化的等效实施例。但是凡是未脱离本发明技术方案内容,依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与改型,仍属于本发明技术方案的保护范围。The above are only preferred embodiments of the present invention, and are not intended to limit the present invention in other forms. Any skilled person familiar with the art may make changes or modifications to equivalent changes using the technical contents disclosed above. Example. However, any simple modifications, equivalent changes and modifications made to the above embodiments based on the technical essence of the present invention without departing from the content of the technical solution of the present invention still fall within the protection scope of the technical solution of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111613867.0A CN114279902B (en) | 2021-12-27 | 2021-12-27 | Organophosphorus pesticide detector based on intelligent response surface and organophosphorus pesticide detection method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111613867.0A CN114279902B (en) | 2021-12-27 | 2021-12-27 | Organophosphorus pesticide detector based on intelligent response surface and organophosphorus pesticide detection method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114279902A CN114279902A (en) | 2022-04-05 |
CN114279902B true CN114279902B (en) | 2023-09-22 |
Family
ID=80876071
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111613867.0A Active CN114279902B (en) | 2021-12-27 | 2021-12-27 | Organophosphorus pesticide detector based on intelligent response surface and organophosphorus pesticide detection method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114279902B (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104865294A (en) * | 2015-05-25 | 2015-08-26 | 华中师范大学 | Meta-tolyl-N-methylcarbamate ternary signal sensing material as well as preparation method and application thereof |
DE102016118319A1 (en) * | 2016-09-28 | 2018-03-29 | Rheinisch-Westfälische Technische Hochschule (Rwth) Aachen | Biosensor for the detection of organophosphorus and carbamate compounds |
CN111175284A (en) * | 2020-03-19 | 2020-05-19 | 西南科技大学 | A kind of preparation method of surface-enhanced Raman substrate of layered micro/nano structure |
CN111406740A (en) * | 2020-03-18 | 2020-07-14 | 仲恺农业工程学院 | A nano-pesticide preparation based on boron nitride nanosheets grafted with hydrophilic macromolecule and preparation method thereof |
CN111848421A (en) * | 2020-08-19 | 2020-10-30 | 贵州省烟草科学研究院 | Polyether-based pesticide adjuvant and preparation method and application thereof |
-
2021
- 2021-12-27 CN CN202111613867.0A patent/CN114279902B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104865294A (en) * | 2015-05-25 | 2015-08-26 | 华中师范大学 | Meta-tolyl-N-methylcarbamate ternary signal sensing material as well as preparation method and application thereof |
DE102016118319A1 (en) * | 2016-09-28 | 2018-03-29 | Rheinisch-Westfälische Technische Hochschule (Rwth) Aachen | Biosensor for the detection of organophosphorus and carbamate compounds |
CN111406740A (en) * | 2020-03-18 | 2020-07-14 | 仲恺农业工程学院 | A nano-pesticide preparation based on boron nitride nanosheets grafted with hydrophilic macromolecule and preparation method thereof |
CN111175284A (en) * | 2020-03-19 | 2020-05-19 | 西南科技大学 | A kind of preparation method of surface-enhanced Raman substrate of layered micro/nano structure |
CN111848421A (en) * | 2020-08-19 | 2020-10-30 | 贵州省烟草科学研究院 | Polyether-based pesticide adjuvant and preparation method and application thereof |
Non-Patent Citations (1)
Title |
---|
《基于量子点/酶有机磷农药生物芯片构筑及传感性能探究》;栾恩骁;《中国优秀硕士学位论文全文数据库(农业科技辑)》(第02期);第1-54页 * |
Also Published As
Publication number | Publication date |
---|---|
CN114279902A (en) | 2022-04-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE69030004T2 (en) | METHOD AND DEVICE FOR DETECTING AN ANALYT | |
US20040091397A1 (en) | Multiwell insert device that enables label free detection of cells and other objects | |
Moon et al. | Bioinspired M-13 bacteriophage-based photonic nose for differential cell recognition | |
CN103739846B (en) | A kind of preparation method of quantum dot fluorescence imprinted polymer | |
US5387525A (en) | Method for activation of polyanionic fluorescent dyes in low dielectric media with quaternary onium compounds | |
CN106833628B (en) | The preparation method of the carbon nano dot of surface modification and as fluorescence probe detect Cu2+And the application of glutathione | |
US8574921B2 (en) | Optical sensing membranes, devices and methods for simultaneous detection of two or more parameters of dissolved oxygen concentration, pH and temperature | |
CN105190295B (en) | For the method and apparatus of bacterial monitoring | |
Khachornsakkul et al. | Rapid distance-based cardiac troponin quantification using paper analytical devices for the screening and the follow-up of acute myocardial infarction, using a single drop of human whole blood | |
US6521185B1 (en) | Fluorescent probes based on the affinity of a polymer matrix for an analyte of interest | |
CN112179882B (en) | Methods for the detection of organophosphorus pesticides using MOFs@QDs materials in farmland environments | |
CN107764757B (en) | Device, system, preparation method, target content determination method and kit for detecting target ion content | |
CN114279902B (en) | Organophosphorus pesticide detector based on intelligent response surface and organophosphorus pesticide detection method thereof | |
KR100940513B1 (en) | Optical Sensor Membrane, Apparatus and Method for Simultaneous Detection of Two or More Variables of Dissolved Oxygen, pH and Temperature | |
US20190277762A1 (en) | Nanohole array based sensors with various coating and temperature control | |
US20240230542A1 (en) | Method for highly-sensitive and rapid detection of pesticide residue based on imprinted metal-organic framework probe | |
CN114034659A (en) | Identification method of chiral serine based on S-type mirror image structure terahertz metamaterial | |
EP0709679B1 (en) | Method and micelle system to determine a substance | |
CN110749562B (en) | Method for measuring perfluorooctane sulfonic acid by double-wavelength ratio ultraviolet spectrometry and application | |
US4120754A (en) | Detection of alkylating compounds | |
US20020192653A1 (en) | Impedance-based chemical and biological imaging sensor apparatus and methods | |
EP1390746B1 (en) | Method for identifying volatile substances in solution | |
Dacres et al. | Highly sensitive optical humidity probe | |
CN106645129A (en) | Method for detecting chlorpyrifos through functionalized gold nanoparticle based novel colorimetric sensor | |
US20230053853A1 (en) | Surface plasmonic sensing |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |