CN114266752A - Wheat spike number identification method, system and medium based on fast R-CNN - Google Patents
Wheat spike number identification method, system and medium based on fast R-CNN Download PDFInfo
- Publication number
- CN114266752A CN114266752A CN202111589730.6A CN202111589730A CN114266752A CN 114266752 A CN114266752 A CN 114266752A CN 202111589730 A CN202111589730 A CN 202111589730A CN 114266752 A CN114266752 A CN 114266752A
- Authority
- CN
- China
- Prior art keywords
- wheat
- ears
- ear
- cnn
- model
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 241000209140 Triticum Species 0.000 title claims abstract description 61
- 235000021307 Triticum Nutrition 0.000 title claims abstract description 61
- 238000000034 method Methods 0.000 title claims abstract description 49
- 241001024327 Oenanthe <Aves> Species 0.000 claims abstract description 61
- 241000495841 Oenanthe oenanthe Species 0.000 claims abstract description 36
- 238000012549 training Methods 0.000 claims abstract description 22
- 238000010586 diagram Methods 0.000 claims abstract description 19
- 238000000605 extraction Methods 0.000 claims abstract description 17
- 210000005069 ears Anatomy 0.000 claims description 14
- 239000012634 fragment Substances 0.000 claims description 10
- 238000011176 pooling Methods 0.000 claims description 10
- 108090000623 proteins and genes Proteins 0.000 claims description 9
- 238000002372 labelling Methods 0.000 claims description 7
- 230000001629 suppression Effects 0.000 claims description 7
- YBJHBAHKTGYVGT-ZKWXMUAHSA-N (+)-Biotin Chemical compound N1C(=O)N[C@@H]2[C@H](CCCCC(=O)O)SC[C@@H]21 YBJHBAHKTGYVGT-ZKWXMUAHSA-N 0.000 claims description 6
- 239000002773 nucleotide Substances 0.000 claims description 6
- 125000003729 nucleotide group Chemical group 0.000 claims description 6
- 238000005096 rolling process Methods 0.000 claims description 6
- 239000000523 sample Substances 0.000 claims description 6
- 238000003860 storage Methods 0.000 claims description 6
- 239000000758 substrate Substances 0.000 claims description 6
- 238000013507 mapping Methods 0.000 claims description 5
- 230000003321 amplification Effects 0.000 claims description 4
- 238000003199 nucleic acid amplification method Methods 0.000 claims description 4
- UFBJCMHMOXMLKC-UHFFFAOYSA-N 2,4-dinitrophenol Chemical compound OC1=CC=C([N+]([O-])=O)C=C1[N+]([O-])=O UFBJCMHMOXMLKC-UHFFFAOYSA-N 0.000 claims description 3
- 102000004533 Endonucleases Human genes 0.000 claims description 3
- 108010042407 Endonucleases Proteins 0.000 claims description 3
- 229960002685 biotin Drugs 0.000 claims description 3
- 235000020958 biotin Nutrition 0.000 claims description 3
- 239000011616 biotin Substances 0.000 claims description 3
- 238000004364 calculation method Methods 0.000 claims description 3
- 238000005520 cutting process Methods 0.000 claims description 3
- 238000004043 dyeing Methods 0.000 claims description 3
- 239000007850 fluorescent dye Substances 0.000 claims description 3
- 238000013412 genome amplification Methods 0.000 claims description 3
- 238000005406 washing Methods 0.000 claims description 3
- 239000002131 composite material Substances 0.000 claims description 2
- 230000002068 genetic effect Effects 0.000 claims description 2
- 239000011325 microbead Substances 0.000 claims 1
- 238000009395 breeding Methods 0.000 abstract description 6
- 230000001488 breeding effect Effects 0.000 abstract description 6
- 238000004458 analytical method Methods 0.000 abstract description 5
- 238000013527 convolutional neural network Methods 0.000 description 23
- 230000006870 function Effects 0.000 description 8
- 238000004590 computer program Methods 0.000 description 7
- 235000013339 cereals Nutrition 0.000 description 6
- 238000012545 processing Methods 0.000 description 6
- 238000013135 deep learning Methods 0.000 description 4
- 238000011160 research Methods 0.000 description 3
- 241000196324 Embryophyta Species 0.000 description 2
- 240000007594 Oryza sativa Species 0.000 description 2
- 235000007164 Oryza sativa Nutrition 0.000 description 2
- 239000011324 bead Substances 0.000 description 2
- 210000000349 chromosome Anatomy 0.000 description 2
- 238000013136 deep learning model Methods 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 230000005764 inhibitory process Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012634 optical imaging Methods 0.000 description 2
- 235000009566 rice Nutrition 0.000 description 2
- 238000012216 screening Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 238000012795 verification Methods 0.000 description 2
- 230000000007 visual effect Effects 0.000 description 2
- 241000287937 Colinus Species 0.000 description 1
- 229920000742 Cotton Polymers 0.000 description 1
- 244000183278 Nephelium litchi Species 0.000 description 1
- 240000008042 Zea mays Species 0.000 description 1
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 description 1
- 235000002017 Zea mays subsp mays Nutrition 0.000 description 1
- 238000013528 artificial neural network Methods 0.000 description 1
- 210000004027 cell Anatomy 0.000 description 1
- 235000005822 corn Nutrition 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 235000013399 edible fruits Nutrition 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000003205 genotyping method Methods 0.000 description 1
- 238000009396 hybridization Methods 0.000 description 1
- 230000004807 localization Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000003147 molecular marker Substances 0.000 description 1
- 238000003062 neural network model Methods 0.000 description 1
- 210000002569 neuron Anatomy 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000000306 recurrent effect Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 238000009394 selective breeding Methods 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Images
Landscapes
- Image Analysis (AREA)
Abstract
Description
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111589730.6A CN114266752A (en) | 2021-12-23 | 2021-12-23 | Wheat spike number identification method, system and medium based on fast R-CNN |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111589730.6A CN114266752A (en) | 2021-12-23 | 2021-12-23 | Wheat spike number identification method, system and medium based on fast R-CNN |
Publications (1)
Publication Number | Publication Date |
---|---|
CN114266752A true CN114266752A (en) | 2022-04-01 |
Family
ID=80829167
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111589730.6A Pending CN114266752A (en) | 2021-12-23 | 2021-12-23 | Wheat spike number identification method, system and medium based on fast R-CNN |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114266752A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116228782A (en) * | 2022-12-22 | 2023-06-06 | 中国农业科学院农业信息研究所 | Wheat Tian Sui number counting method and device based on unmanned aerial vehicle acquisition |
CN116740592A (en) * | 2023-06-16 | 2023-09-12 | 安徽农业大学 | Wheat yield estimation method and device based on unmanned aerial vehicle image |
WO2024160059A1 (en) * | 2023-02-01 | 2024-08-08 | 中国科学院植物研究所 | Wheat-ear point cloud segmentation method and system based on deep learning and geometric correction |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109055370A (en) * | 2018-09-17 | 2018-12-21 | 中国农业科学院作物科学研究所 | Stalk WSC content gene label and application based on middle wheat 895 |
CN110427839A (en) * | 2018-12-26 | 2019-11-08 | 西安电子科技大学 | Video object detection method based on multilayer feature fusion |
CN112488006A (en) * | 2020-12-05 | 2021-03-12 | 东南大学 | Target detection algorithm based on wheat image |
CN112529045A (en) * | 2020-11-20 | 2021-03-19 | 济南信通达电气科技有限公司 | Weather image identification method, equipment and medium related to power system |
CN112779348A (en) * | 2020-12-31 | 2021-05-11 | 四川农业大学 | Wheat unit area spike number major QTL site, KASP primer closely linked with same and application thereof |
CN113222991A (en) * | 2021-06-16 | 2021-08-06 | 南京农业大学 | Deep learning network-based field ear counting and wheat yield prediction |
-
2021
- 2021-12-23 CN CN202111589730.6A patent/CN114266752A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109055370A (en) * | 2018-09-17 | 2018-12-21 | 中国农业科学院作物科学研究所 | Stalk WSC content gene label and application based on middle wheat 895 |
CN110427839A (en) * | 2018-12-26 | 2019-11-08 | 西安电子科技大学 | Video object detection method based on multilayer feature fusion |
CN112529045A (en) * | 2020-11-20 | 2021-03-19 | 济南信通达电气科技有限公司 | Weather image identification method, equipment and medium related to power system |
CN112488006A (en) * | 2020-12-05 | 2021-03-12 | 东南大学 | Target detection algorithm based on wheat image |
CN112779348A (en) * | 2020-12-31 | 2021-05-11 | 四川农业大学 | Wheat unit area spike number major QTL site, KASP primer closely linked with same and application thereof |
CN113222991A (en) * | 2021-06-16 | 2021-08-06 | 南京农业大学 | Deep learning network-based field ear counting and wheat yield prediction |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116228782A (en) * | 2022-12-22 | 2023-06-06 | 中国农业科学院农业信息研究所 | Wheat Tian Sui number counting method and device based on unmanned aerial vehicle acquisition |
CN116228782B (en) * | 2022-12-22 | 2024-01-12 | 中国农业科学院农业信息研究所 | Wheat Tian Sui number counting method and device based on unmanned aerial vehicle acquisition |
WO2024160059A1 (en) * | 2023-02-01 | 2024-08-08 | 中国科学院植物研究所 | Wheat-ear point cloud segmentation method and system based on deep learning and geometric correction |
CN116740592A (en) * | 2023-06-16 | 2023-09-12 | 安徽农业大学 | Wheat yield estimation method and device based on unmanned aerial vehicle image |
CN116740592B (en) * | 2023-06-16 | 2024-02-02 | 安徽农业大学 | Wheat yield estimation method and device based on unmanned aerial vehicle image |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN114266752A (en) | Wheat spike number identification method, system and medium based on fast R-CNN | |
Kumari et al. | Leaf disease detection: feature extraction with K-means clustering and classification with ANN | |
Li et al. | Automatic organ-level point cloud segmentation of maize shoots by integrating high-throughput data acquisition and deep learning | |
US8321147B2 (en) | Statistical approach for optimal use of genetic information collected on historical pedigrees, genotyped with dense marker maps, into routine pedigree analysis of active maize breeding populations | |
Miao et al. | Automatic stem-leaf segmentation of maize shoots using three-dimensional point cloud | |
Feldmann et al. | Multi-dimensional machine learning approaches for fruit shape phenotyping in strawberry | |
Chen et al. | Assessing variability in root traits of wild Lupinus angustifolius germplasm: basis for modelling root system structure | |
CN114818909B (en) | Weed detection method and device based on crop growth characteristics | |
CN111462058B (en) | Method for rapidly detecting effective rice ears | |
CN112883915B (en) | Automatic wheat head identification method and system based on transfer learning | |
Hsieh et al. | Fruit maturity and location identification of beef tomato using R-CNN and binocular imaging technology | |
CN112575116B (en) | Soybean whole genome SNP locus combination, gene chip and application | |
CN111291686B (en) | Extraction method and system for crop root-fruit phenotype parameters and root-fruit phenotype discrimination method and system | |
CN110982933B (en) | Molecular marker closely linked with major QTL (quantitative trait locus) of wheat grain length and application thereof | |
CN107419000A (en) | A kind of full genome system of selection and its application that prediction Soybean Agronomic Characters phenotype is sampled based on haplotype | |
CN104615912A (en) | Modified whole genome correlation analysis algorithm based on channel | |
CN118216422B (en) | Phenotype assisted lemon breeding method based on deep learning | |
CN116580773A (en) | Breeding cross-representation type prediction method and system based on ensemble learning and electronic equipment | |
CN109727642B (en) | Whole genome prediction method and device based on random forest model | |
CN114937030A (en) | Phenotypic parameter calculation method for intelligent agricultural planting of lettuce | |
CN108291265A (en) | Method for predicting palm oil yield of a test oil palm plant | |
CN110692512A (en) | Method for rapidly predicting heterosis based on crop genome size | |
CN110245551A (en) | The recognition methods of field crops under the operating condition of grass more than a kind of | |
CN109472771A (en) | Detection method, device and the detection device of maize male ears | |
Sharma et al. | Genomic selection: a revolutionary approach for forest tree improvement in the wake of climate change |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
CB03 | Change of inventor or designer information |
Inventor after: Xiao Yonggui Inventor after: Li Lei Inventor after: Yang Mengjiao Inventor after: Muhammad adir Hassen Inventor after: Han Zhiguo Inventor after: Xia Xianchun Inventor after: He Zhonghu Inventor before: Xiao Yonggui Inventor before: Li Lei Inventor before: Yang Mengjiao Inventor before: Muhammad adir Hassen Inventor before: Han Zhiguo Inventor before: Xia Xianchun Inventor before: He Zhonghu |
|
CB03 | Change of inventor or designer information |