CN114253133A - Sliding mode fault-tolerant control method and device based on dynamic event trigger mechanism - Google Patents
Sliding mode fault-tolerant control method and device based on dynamic event trigger mechanism Download PDFInfo
- Publication number
- CN114253133A CN114253133A CN202111488737.9A CN202111488737A CN114253133A CN 114253133 A CN114253133 A CN 114253133A CN 202111488737 A CN202111488737 A CN 202111488737A CN 114253133 A CN114253133 A CN 114253133A
- Authority
- CN
- China
- Prior art keywords
- sliding mode
- observer
- matrix
- designing
- fault
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 66
- 230000007246 mechanism Effects 0.000 title claims abstract description 62
- 239000011159 matrix material Substances 0.000 claims description 75
- 238000013461 design Methods 0.000 claims description 43
- 230000006870 function Effects 0.000 claims description 39
- 238000005259 measurement Methods 0.000 claims description 21
- NAWXUBYGYWOOIX-SFHVURJKSA-N (2s)-2-[[4-[2-(2,4-diaminoquinazolin-6-yl)ethyl]benzoyl]amino]-4-methylidenepentanedioic acid Chemical compound C1=CC2=NC(N)=NC(N)=C2C=C1CCC1=CC=C(C(=O)N[C@@H](CC(=C)C(O)=O)C(O)=O)C=C1 NAWXUBYGYWOOIX-SFHVURJKSA-N 0.000 claims description 6
- 241000764238 Isis Species 0.000 claims 1
- YXIFDERYVOQAKL-UHFFFAOYSA-N n-[4-[3,5-bis(trifluoromethyl)pyrazol-1-yl]phenyl]-4-chlorobenzamide Chemical compound N1=C(C(F)(F)F)C=C(C(F)(F)F)N1C(C=C1)=CC=C1NC(=O)C1=CC=C(Cl)C=C1 YXIFDERYVOQAKL-UHFFFAOYSA-N 0.000 claims 1
- 230000001960 triggered effect Effects 0.000 description 8
- 230000005540 biological transmission Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 238000012545 processing Methods 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000011217 control strategy Methods 0.000 description 1
- 238000013500 data storage Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B13/00—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
- G05B13/02—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
- G05B13/04—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
- G05B13/042—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators in which a parameter or coefficient is automatically adjusted to optimise the performance
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P90/00—Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
- Y02P90/02—Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]
Landscapes
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Artificial Intelligence (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Evolutionary Computation (AREA)
- Medical Informatics (AREA)
- Software Systems (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Safety Devices In Control Systems (AREA)
- Feedback Control In General (AREA)
Abstract
Description
技术领域technical field
本发明涉及滑模控制技术领域,特别是指一种基于动态事件触发机制的滑模容错控制方法及装置。The invention relates to the technical field of sliding mode control, in particular to a sliding mode fault-tolerant control method and device based on a dynamic event trigger mechanism.
背景技术Background technique
滑模控制作为一种有效的鲁棒控制策略在工程应用中得到了广泛的关注,其主要是通过一种特殊的控制方法,将状态轨迹从初始状态驱动到某个预先设定的滑模面上并保持稳定。与传统的控制方法相比,滑模控制技术具有强鲁棒性、系统降阶和快速响应等优点,从而受到了人们的关注和研究。As an effective robust control strategy, sliding mode control has received extensive attention in engineering applications. It mainly drives the state trajectory from the initial state to a preset sliding mode surface through a special control method. up and remain stable. Compared with traditional control methods, sliding mode control technology has the advantages of strong robustness, system order reduction and fast response, so it has attracted people's attention and research.
在网络环境下,有限的带宽不足以保证数据的完全传输。需要提出一种事件触发方案来确定采样信号是否能够被传输,从而降低数据传输频率和减少网络化诱导现象发生。在实际的系统中,传感器很容易发生故障,如果处理不当则会造成系统的不稳定,甚至导致灾难性的事故。容错控制的出现既能保证闭环系统的稳定性,又能使故障系统的功能保持在可接受的范围内,从而提高系统的安全性和可靠性。将滑模控制与容错控制相结合设计控制器,能够有效的使状态轨迹到达滑模面并保持稳定状态。滑模控制方法由于具有较强的鲁棒性和抗干扰性,利用滑模容错控制方法处理带有事件触发和传感器故障的网络化系统具有十分重要的现实意义。In the network environment, the limited bandwidth is not enough to guarantee the complete transmission of data. It is necessary to propose an event-triggered scheme to determine whether the sampled signal can be transmitted, thereby reducing the frequency of data transmission and reducing the occurrence of network-induced phenomena. In practical systems, sensors are prone to failure, and if handled improperly, the system will become unstable and even lead to catastrophic accidents. The emergence of fault-tolerant control can not only ensure the stability of the closed-loop system, but also keep the function of the faulty system within an acceptable range, thereby improving the safety and reliability of the system. Combining sliding mode control and fault-tolerant control to design a controller can effectively make the state trajectory reach the sliding mode surface and maintain a stable state. Due to the strong robustness and anti-interference of sliding mode control method, it is of great practical significance to use sliding mode fault-tolerant control method to deal with networked systems with event-triggered and sensor faults.
现有的滑模容错控制问题的研究主要是围绕执行器故障展开的,但是在实际的工程系统中,传感器发生故障也是不可避免的。此外,在网络环境下,数据传输往往受到网络带宽的影响,相比于时间触发来说,采用动态事件触发机制来降低数据的传输量,能够更好的缓解网络带宽的压力,降低计算量。对此,目前针对网络化控制系统还未有同时考虑动态事件触发和传感器故障的滑模容错控制方案。The existing researches on the sliding mode fault-tolerant control problem mainly focus on the actuator failure, but in the actual engineering system, the sensor failure is also inevitable. In addition, in the network environment, data transmission is often affected by network bandwidth. Compared with time triggering, the use of dynamic event triggering mechanism to reduce the amount of data transmission can better relieve the pressure of network bandwidth and reduce the amount of calculation. In this regard, there is currently no sliding-mode fault-tolerant control scheme that considers both dynamic event triggering and sensor faults for networked control systems.
发明内容SUMMARY OF THE INVENTION
本发明针对网络化控制系统还未有在动态事件触发机制下考虑传感器故障的滑模容错控制方案的问题,提出了本发明。Aiming at the problem that the networked control system has no sliding mode fault-tolerant control scheme considering sensor faults under the dynamic event trigger mechanism, the present invention proposes the present invention.
为解决上述技术问题,本发明提供如下技术方案:In order to solve the above-mentioned technical problems, the present invention provides the following technical solutions:
一方面,本发明提供了一种基于动态事件触发机制的滑模容错控制方法,该方法由电子设备实现,该方法包括:In one aspect, the present invention provides a sliding mode fault-tolerant control method based on a dynamic event trigger mechanism, the method is implemented by an electronic device, and the method includes:
S1、建立离散网络化控制系统的动态模型。S1. Establish a dynamic model of the discrete networked control system.
S2、基于系统发生传感器故障的情况,设计离散网络化控制系统的状态滑模观测器。S2. Design the state sliding mode observer of the discrete networked control system based on the sensor failure in the system.
S3、设计基于观测器估计信息的滑模面。S3. Design a sliding mode surface based on the estimated information of the observer.
S4、设计动态事件触发机制。S4. Design a dynamic event triggering mechanism.
S5、设计基于观测器方法的滑模容错控制器。S5. Design a sliding mode fault-tolerant controller based on the observer method.
可选地,该方法还包括:将等效控制律代入到所述观测器中得到闭环系统,基于李雅普诺夫函数理论和线性矩阵不等式方法,得到满足闭环系统渐近稳定以及H∞性能指标的充分判据。Optionally, the method further includes: substituting an equivalent control law into the observer to obtain a closed-loop system, and based on the Lyapunov function theory and the linear matrix inequality method, obtaining a closed-loop system that satisfies the asymptotic stability and H ∞ performance index. sufficient evidence.
可选地,S1中离散网络化控制系统的动态模型的状态空间形式如下式(1)所示:Optionally, the state space form of the dynamic model of the discrete networked control system in S1 is shown in the following formula (1):
其中,为系统的n维状态向量;表示实数集;为系统的m维控制输入;为系统的p维测量输出;为系统的q维被控输出;A1为系统矩阵;B为系统的输入矩阵;C为系统的测量矩阵;D1和D2为系统的外部扰动矩阵,A2为系统的输出矩阵;A1,A2,B,C,D1和D2为具有适当维数的已知矩阵;和分别为w维和v维属于l2[0,∞)的外部扰动,其中l2[0,∞)为Hilbert空间的平方可积函数;ΔA代表参数不确定性,满足ΔA=MFN,其中F是一个未知矩阵,满足FTF≤I,M和N为具有适当维数的已知矩阵;g(xk)是非线性扰动,满足‖g(xk)‖≤r‖xk‖,其中,‖g(xk)‖为g(xk)的范数,‖xk‖为xk的范数,r>0代表一个已知常数。in, is the n-dimensional state vector of the system; represents the set of real numbers; is the m-dimensional control input of the system; is the p-dimensional measurement output of the system; is the q-dimensional controlled output of the system; A 1 is the system matrix; B is the input matrix of the system; C is the measurement matrix of the system; D 1 and D 2 are the external disturbance matrices of the system, and A 2 is the output matrix of the system; A 1 , A 2 , B, C, D 1 and D 2 are known matrices with appropriate dimensions; and are external disturbances belonging to l 2 [0, ∞) in w dimension and v dimension, respectively, where l 2 [0, ∞) is the square integrable function of Hilbert space; ΔA represents parameter uncertainty, satisfying ΔA=MFN, where F is An unknown matrix satisfying F T F≤I, M and N are known matrices with appropriate dimensions; g(x k ) is a nonlinear perturbation satisfying ‖g(x k )‖≤r‖x k ‖, where, ‖g(x k )‖ is the norm of g(x k ), ‖x k ‖ is the norm of x k , and r>0 represents a known constant.
可选地,S2中的传感器故障模型如下式(2)所示:Optionally, the sensor failure model in S2 is shown in the following formula (2):
其中,in,
其中,Fs=diag{f1,f2,…,fq},diag为对角矩阵;i=1,2,…,q,fi 为fi的下界,为fi的上界,满足 Wherein, F s =diag{f 1 ,f 2 ,...,f q }, and diag is a diagonal matrix; i=1,2,...,q, f i is the lower bound of f i , is the upper bound of f i , satisfying
当fi=1,i=1,2,…,q时,传感器处于正常工作。When f i =1, i=1,2,...,q, the sensor is in normal operation.
当fi=0,i=1,2,…,q时,传感器完全不能工作。When f i = 0, i = 1, 2, . . . , q, the sensor does not work at all.
当fi∈(0,1),i=1,2,…,q时,传感器发生故障。When f i ∈ (0,1), i=1,2,...,q, the sensor fails.
将带有传感器故障的测量输出表示为yF=Fsyk。Denote the measurement output with sensor failure as y F =F s y k .
可选地,S2中的滑模观测器由下式(3)表示:Optionally, the sliding mode observer in S2 is represented by the following equation (3):
其中,表示观测器状态,表示被控输出zk的估计值,L表示观测器增益矩阵。in, represents the observer state, represents the estimated value of the controlled output z k , and L represents the observer gain matrix.
可选地,S3中的滑模面函数由下式(4)表示:Optionally, the sliding mode surface function in S3 is represented by the following formula (4):
其中,Sk表示k时刻的滑模函数,是待设计的滑模面参数矩阵,G=BTP1,P1>0是待求解的正定矩阵。Among them, Sk represents the sliding mode function at time k, is the sliding mode surface parameter matrix to be designed, G=B T P 1 , and P 1 >0 is the positive definite matrix to be solved.
可选地,S4中的动态事件触发机制模型如下式(5)所示:Optionally, the dynamic event trigger mechanism model in S4 is shown in the following formula (5):
其中,表示正整数集合;{l0,l1,…}为从观测器到控制器当前状态所处的时间序列;定义l0=0;σ、θ为给定的正标量;其中为k时刻的状态估计,为最新释放的状态;ηk表示内部动态变量,满足其中,T为矩阵的转置,λ∈(0,1)为给定的常数,η0≥0为给定的初始条件。in, represents a set of positive integers; {l 0 , l 1 ,...} is the time series from the observer to the current state of the controller; define l 0 =0; σ, θ are given positive scalars; in is the state estimate at time k, is the latest released state; η k represents the internal dynamic variable, satisfying Among them, T is the transpose of the matrix, λ∈(0,1) is a given constant, and η 0 ≥0 is a given initial condition.
可选地,S5中的设计基于观测器方法的滑模容错控制器包括:Optionally, the design of the observer-based sliding mode fault-tolerant controller in S5 includes:
根据Sk+1=Sk=0,等效控制律由下式(6)表示:According to Sk+1 = Sk = 0, the equivalent control law is expressed by the following equation (6):
其中,-1为逆矩阵。where -1 is the inverse matrix.
基于动态事件触发机制,将等效控制律重新写成下式(7):Based on the dynamic event triggering mechanism, the equivalent control law is rewritten as the following equation (7):
当滑模面函数的差分满足下式(8)(9)时,When the difference of the sliding mode surface function satisfies the following equations (8) and (9),
ΔSk≤-ωe-μksgn(Sk)-κSk如果Sk>0 (8)ΔS k ≤ -ωe -μk sgn(S k )-κS k if S k > 0 (8)
ΔSk≥-ωe-μksgn(Sk)-κSk如果Sk<0 (9)ΔS k ≥ -ωe -μk sgn(S k )-κS k if S k <0 (9)
其中,0<κ<1,ω>0,μ≥0。Among them, 0<κ<1, ω>0, and μ≥0.
设计滑模容错控制器,如下式(10)所示:Design a sliding mode fault-tolerant controller, as shown in the following formula (10):
其中, in,
另一方面,本发明提供了一种基于动态事件触发机制的滑模容错控制装置,该装置应用于实现基于动态事件触发机制的滑模容错控制方法,该装置包括:On the other hand, the present invention provides a sliding mode fault-tolerant control device based on a dynamic event trigger mechanism, the device is applied to realize a sliding mode fault-tolerant control method based on the dynamic event trigger mechanism, and the device includes:
动态模型建立模块,用于建立离散网络化控制系统的动态模型。The dynamic model establishment module is used to establish the dynamic model of the discrete networked control system.
观测器设计模块,用于基于系统发生传感器故障的情况,设计离散网络化控制系统的状态滑模观测器。The observer design module is used to design the state sliding mode observer of the discrete networked control system based on the situation of sensor failure in the system.
滑模面设计模块,用于设计基于观测器估计信息的滑模面。The sliding surface design module is used to design sliding surfaces based on the estimated information of the observer.
动态事件触发机制设计模块,用于设计动态事件触发机制。The dynamic event trigger mechanism design module is used to design the dynamic event trigger mechanism.
滑模容错控制器设计模块,用于设计基于观测器方法的滑模容错控制器。The sliding mode fault tolerant controller design module is used to design a sliding mode fault tolerant controller based on the observer method.
可选地,该方法还包括:将等效控制律代入到所述观测器中得到闭环系统,基于李雅普诺夫函数理论和线性矩阵不等式方法,得到满足闭环系统渐近稳定以及H∞性能指标的充分判据。Optionally, the method further includes: substituting an equivalent control law into the observer to obtain a closed-loop system, and based on the Lyapunov function theory and the linear matrix inequality method, obtaining a closed-loop system that satisfies the asymptotic stability and H ∞ performance index. sufficient evidence.
可选地,离散网络化控制系统的动态模型的状态空间形式如下式(1)所示:Optionally, the state space form of the dynamic model of the discrete networked control system is shown in the following formula (1):
其中,为系统的n维状态向量;表示实数集;为系统的m维控制输入;为系统的p维测量输出;为系统的q维被控输出;A1为系统矩阵;B为系统的输入矩阵;C为系统的测量矩阵;D1和D2为系统的外部扰动矩阵,A2为系统的输出矩阵;A1,A2,B,C,D1和D2为具有适当维数的已知矩阵;和分别为w维和v维属于l2[0,∞)的外部扰动,其中l2[0,∞)为Hilbert空间的平方可积函数;ΔA代表参数不确定性,满足ΔA=MFN,其中F是一个未知矩阵,满足FTF≤I,M和N为具有适当维数的已知矩阵;g(xk)是非线性扰动,满足‖g(xk)‖≤r‖xk‖,其中,‖g(xk)‖为g(xk)的范数,‖xk‖为xk的范数,r>0代表一个已知常数。in, is the n-dimensional state vector of the system; represents the set of real numbers; is the m-dimensional control input of the system; is the p-dimensional measurement output of the system; is the q-dimensional controlled output of the system; A 1 is the system matrix; B is the input matrix of the system; C is the measurement matrix of the system; D 1 and D 2 are the external disturbance matrices of the system, and A 2 is the output matrix of the system; A 1 , A 2 , B, C, D 1 and D 2 are known matrices with appropriate dimensions; and are external disturbances belonging to l 2 [0, ∞) in w dimension and v dimension, respectively, where l 2 [0, ∞) is the square integrable function of Hilbert space; ΔA represents parameter uncertainty, satisfying ΔA=MFN, where F is An unknown matrix satisfying F T F≤I, M and N are known matrices with appropriate dimensions; g(x k ) is a nonlinear perturbation satisfying ‖g(x k )‖≤r‖x k ‖, where, ‖g(x k )‖ is the norm of g(x k ), ‖x k ‖ is the norm of x k , and r>0 represents a known constant.
可选地,传感器故障模型如下式(2)所示:Optionally, the sensor failure model is shown in the following formula (2):
其中,in,
其中,Fs=diag{f1,f2,…,fq},diag为对角矩阵;i=1,2,…,q,fi 为fi的下界,为fi的上界,满足 Wherein, F s =diag{f 1 ,f 2 ,...,f q }, and diag is a diagonal matrix; i=1,2,...,q, f i is the lower bound of f i , is the upper bound of f i , satisfying
当fi=1,i=1,2,…,q时,传感器处于正常工作。When f i =1, i=1,2,...,q, the sensor is in normal operation.
当fi=0,i=1,2,…,q时,传感器完全不能工作。When f i = 0, i = 1, 2, . . . , q, the sensor does not work at all.
当fi∈(0,1),i=1,2,…,q时,传感器发生故障。When f i ∈ (0,1), i=1,2,...,q, the sensor fails.
将带有传感器故障的测量输出表示为yF=Fsyk。Denote the measurement output with sensor failure as y F =F s y k .
可选地,滑模观测器由下式(3)表示:Optionally, the sliding mode observer is represented by the following equation (3):
其中,表示观测器状态,表示被控输出zk的估计值,L表示观测器增益矩阵。in, represents the observer state, represents the estimated value of the controlled output z k , and L represents the observer gain matrix.
可选地,滑模面函数由下式(4)表示:Optionally, the sliding mode surface function is represented by the following formula (4):
其中,Sk表示k时刻的滑模函数,是待设计的滑模面参数矩阵,G=BTP1,P1>0是待求解的正定矩阵。Among them, Sk represents the sliding mode function at time k, is the sliding mode surface parameter matrix to be designed, G=B T P 1 , and P 1 >0 is the positive definite matrix to be solved.
可选地,动态事件触发机制模型如下式(5)所示:Optionally, the dynamic event triggering mechanism model is shown in the following formula (5):
其中,表示正整数集合;{l0,l1,…}为从观测器到控制器当前状态所处的时间序列;定义l0=0;σ、θ为给定的正标量;其中为k时刻的状态估计,为最新释放的状态;ηk表示内部动态变量,满足其中,T为矩阵的转置,λ∈(0,1)为给定的常数,η0≥0为给定的初始条件。in, represents a set of positive integers; {l 0 , l 1 ,...} is the time series from the observer to the current state of the controller; define l 0 =0; σ, θ are given positive scalars; in is the state estimate at time k, is the latest released state; η k represents the internal dynamic variable, satisfying Among them, T is the transpose of the matrix, λ∈(0,1) is a given constant, and η 0 ≥0 is a given initial condition.
可选地,滑模容错控制器设计模块,进一步用于:Optionally, the sliding mode fault tolerant controller design module is further used to:
根据Sk+1=Sk=0,等效控制律由下式(6)表示:According to Sk+1 = Sk = 0, the equivalent control law is expressed by the following equation (6):
其中,-1为逆矩阵。where -1 is the inverse matrix.
基于动态事件触发机制,将等效控制律重新写成下式(7):Based on the dynamic event triggering mechanism, the equivalent control law is rewritten as the following equation (7):
当滑模面函数的差分满足下式(8)(9)时,When the difference of the sliding mode surface function satisfies the following equations (8) and (9),
ΔSk≤-ωe-μksgn(Sk)-κSk如果Sk>0 (8)ΔS k ≤ -ωe -μk sgn(S k )-κS k if S k > 0 (8)
ΔSk≥-ωe-μksgn(Sk)-κSk如果Sk<0 (9)ΔS k ≥ -ωe -μk sgn(S k )-κS k if S k <0 (9)
其中,0<κ<1,ω>0,μ≥0。Among them, 0<κ<1, ω>0, and μ≥0.
设计滑模容错控制器,如下式(10)所示:Design a sliding mode fault-tolerant controller, as shown in the following formula (10):
其中, in,
一方面,提供了一种电子设备,所述电子设备包括处理器和存储器,所述存储器中存储有至少一条指令,所述至少一条指令由所述处理器加载并执行以实现上述基于动态事件触发机制的滑模容错控制方法。In one aspect, an electronic device is provided, the electronic device includes a processor and a memory, the memory stores at least one instruction, and the at least one instruction is loaded and executed by the processor to implement the above-mentioned dynamic event-based triggering A sliding-mode fault-tolerant control method for the mechanism.
一方面,提供了一种计算机可读存储介质,所述存储介质中存储有至少一条指令,所述至少一条指令由处理器加载并执行以实现上述基于动态事件触发机制的滑模容错控制方法。In one aspect, a computer-readable storage medium is provided, wherein at least one instruction is stored in the storage medium, and the at least one instruction is loaded and executed by a processor to implement the above-mentioned sliding mode fault-tolerant control method based on a dynamic event triggering mechanism.
本发明实施例提供的技术方案带来的有益效果至少包括:The beneficial effects brought by the technical solutions provided by the embodiments of the present invention include at least:
上述方案中,对于事件触发机制产生的误差进行处理,在发生传感器故障的前提下,研究基于观测器方法的具有动态事件触发机制的网络化控制系统滑模容错控制问题。首次在滑模容错控制问题中,将事件触发机制产生的误差当作一种扰动,利用H∞范数有界进行衰减。通过李雅普诺夫函数的方法,给出保证闭环系统渐近稳定和满足H∞性能指标的充分判据。进一步地,设计合适的滑模容错控制器使闭环系统的状态轨迹能够到达预先设定的滑模面上,并在有限时间内保持稳定。In the above scheme, the error generated by the event-triggered mechanism is processed, and under the premise of sensor failure, the sliding-mode fault-tolerant control problem of a networked control system with a dynamic event-triggered mechanism based on the observer method is studied. For the first time in the sliding mode fault-tolerant control problem, the error generated by the event-triggered mechanism is regarded as a disturbance, and the bounded H ∞ norm is used for attenuation. Through the method of Lyapunov function, the sufficient criterion to ensure the asymptotic stability of the closed-loop system and satisfy the H ∞ performance index is given. Furthermore, a suitable sliding mode fault-tolerant controller is designed so that the state trajectory of the closed-loop system can reach the preset sliding mode surface and remain stable within a limited time.
附图说明Description of drawings
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to illustrate the technical solutions in the embodiments of the present invention more clearly, the following briefly introduces the accompanying drawings used in the description of the embodiments. Obviously, the accompanying drawings in the following description are only some embodiments of the present invention. For those of ordinary skill in the art, other drawings can also be obtained from these drawings without creative effort.
图1是本发明基于动态事件触发机制的滑模容错控制方法流程示意图;1 is a schematic flowchart of a sliding mode fault-tolerant control method based on a dynamic event trigger mechanism of the present invention;
图2是本发明基于动态事件触发机制的滑模容错控制方法流程示意图;2 is a schematic flowchart of a sliding mode fault-tolerant control method based on a dynamic event trigger mechanism of the present invention;
图3是本发明基于动态事件触发机制的滑模容错控制系统示意图;3 is a schematic diagram of a sliding mode fault-tolerant control system based on a dynamic event trigger mechanism of the present invention;
图4是本发明基于动态事件触发机制的滑模容错控制装置框图;4 is a block diagram of a sliding mode fault-tolerant control device based on a dynamic event trigger mechanism of the present invention;
图5是本发明一种电子设备的结构示意图。FIG. 5 is a schematic structural diagram of an electronic device of the present invention.
具体实施方式Detailed ways
为使本发明要解决的技术问题、技术方案和优点更加清楚,下面将结合附图及具体实施例进行详细描述。In order to make the technical problems, technical solutions and advantages to be solved by the present invention more clear, the following will be described in detail with reference to the accompanying drawings and specific embodiments.
如图1所示,本发明实施例提供了一种基于动态事件触发机制的滑模容错控制方法,该方法由电子设备实现。如图1所示的基于动态事件触发机制的滑模容错控制方法流程图,该方法的处理流程可以包括如下的步骤:As shown in FIG. 1 , an embodiment of the present invention provides a sliding mode fault-tolerant control method based on a dynamic event trigger mechanism, and the method is implemented by an electronic device. As shown in Figure 1, the flow chart of the sliding mode fault-tolerant control method based on the dynamic event trigger mechanism, the processing flow of the method may include the following steps:
S11、建立离散网络化控制系统的动态模型。S11, establish a dynamic model of the discrete networked control system.
S12、基于系统发生传感器故障的情况,设计离散网络化控制系统的状态滑模观测器。S12. Design a state sliding mode observer of the discrete networked control system based on the sensor failure in the system.
S13、设计基于观测器估计信息的滑模面。S13 , designing a sliding mode surface based on the estimated information of the observer.
S14、设计动态事件触发机制。S14. Design a dynamic event triggering mechanism.
S15、设计基于观测器方法的滑模容错控制器。S15. Design a sliding mode fault-tolerant controller based on the observer method.
可选地,该方法还包括:将等效控制律代入到所述观测器中得到闭环系统,基于李雅普诺夫函数理论和线性矩阵不等式方法,得到闭环系统渐近稳定以及H∞性能指标的充分判据。Optionally, the method further includes: substituting an equivalent control law into the observer to obtain a closed-loop system, and based on the Lyapunov function theory and the linear matrix inequality method, obtaining asymptotic stability of the closed-loop system and sufficient H ∞ performance index. Criterion.
可选地,S11中离散网络化控制系统的动态模型的状态空间形式如下式(1)所示:Optionally, the state space form of the dynamic model of the discrete networked control system in S11 is shown in the following formula (1):
其中,为系统的n维状态向量;表示实数集;为系统的m维控制输入;为系统的p维测量输出;为系统的q维被控输出;A1为系统矩阵;B为系统的输入矩阵;C为系统的测量矩阵;D1和D2为系统的外部扰动矩阵,A2为系统的输出矩阵;A1,A2,B,C,D1和D2为具有适当维数的已知矩阵;和分别为w维和v维属于l2[0,∞)的外部扰动,其中l2[0,∞)为Hilbert空间的平方可积函数;ΔA代表参数不确定性,满足ΔA=MFN,其中F是一个未知矩阵,满足FTF≤I,M和N为具有适当维数的已知矩阵;g(xk)是非线性扰动,满足‖g(xk)‖≤r‖xk‖,其中,‖g(xk)‖为g(xk)的范数,‖xk‖为xk的范数,r>0代表一个已知常数。in, is the n-dimensional state vector of the system; represents the set of real numbers; is the m-dimensional control input of the system; is the p-dimensional measurement output of the system; is the q-dimensional controlled output of the system; A 1 is the system matrix; B is the input matrix of the system; C is the measurement matrix of the system; D 1 and D 2 are the external disturbance matrices of the system, and A 2 is the output matrix of the system; A 1 , A 2 , B, C, D 1 and D 2 are known matrices with appropriate dimensions; and are external disturbances belonging to l 2 [0, ∞) in w dimension and v dimension, respectively, where l 2 [0, ∞) is the square integrable function of Hilbert space; ΔA represents parameter uncertainty, satisfying ΔA=MFN, where F is An unknown matrix satisfying F T F≤I, M and N are known matrices with appropriate dimensions; g(x k ) is a nonlinear perturbation satisfying ‖g(x k )‖≤r‖x k ‖, where, ‖g(x k )‖ is the norm of g(x k ), ‖x k ‖ is the norm of x k , and r>0 represents a known constant.
可选地,S12中的传感器故障模型如下式(2)所示:Optionally, the sensor failure model in S12 is shown in the following formula (2):
其中,in,
其中,Fs=diag{f1,f2,…,fq},diag为对角矩阵;i=1,2,…,q,fi 为fi的下界,为fi的上界,满足 Wherein, F s =diag{f 1 ,f 2 ,...,f q }, and diag is a diagonal matrix; i=1,2,...,q, f i is the lower bound of f i , is the upper bound of f i , satisfying
当fi=1,i=1,2,…,q时,传感器处于正常工作。When f i =1, i=1,2,...,q, the sensor is in normal operation.
当fi=0,i=1,2,…,q时,传感器完全不能工作。When f i = 0, i = 1, 2, . . . , q, the sensor does not work at all.
当fi∈(0,1),i=1,2,…,q时,传感器发生故障。When f i ∈ (0,1), i=1,2,...,q, the sensor fails.
将带有传感器故障的测量输出表示为yF=Fsyk。Denote the measurement output with sensor failure as y F =F s y k .
可选地,S12中的滑模观测器由下式(3)表示:Optionally, the sliding mode observer in S12 is represented by the following equation (3):
其中,表示观测器状态,表示被控输出zk的估计值,L表示观测器增益矩阵。in, represents the observer state, represents the estimated value of the controlled output z k , and L represents the observer gain matrix.
可选地,S13中的滑模面函数由下式(4)表示:Optionally, the sliding mode surface function in S13 is represented by the following formula (4):
其中,Sk表示k时刻的滑模函数,是待设计的滑模面参数矩阵,G=BTP1,P1>0是待求解的正定矩阵。Among them, Sk represents the sliding mode function at time k, is the sliding mode surface parameter matrix to be designed, G=B T P 1 , and P 1 >0 is the positive definite matrix to be solved.
可选地,S14中的动态事件触发机制模型如下式(5)所示:Optionally, the dynamic event trigger mechanism model in S14 is shown in the following formula (5):
其中,表示正整数集合;{l0,l1,…}为从观测器到控制器当前状态所处的时间序列;定义l0=0;σ、θ为给定的正标量;其中为k时刻的状态估计,为最新释放的状态;ηk表示内部动态变量,满足其中,T为矩阵的转置,λ∈(0,1)为给定的常数,η0≥0为给定的初始条件。in, represents a set of positive integers; {l 0 , l 1 ,...} is the time series from the observer to the current state of the controller; define l 0 =0; σ, θ are given positive scalars; in is the state estimate at time k, is the latest released state; η k represents the internal dynamic variable, satisfying Among them, T is the transpose of the matrix, λ∈(0,1) is a given constant, and η 0 ≥0 is a given initial condition.
可选地,S15中的设计基于观测器方法的滑模容错控制器包括:Optionally, designing a sliding mode fault-tolerant controller based on the observer method in S15 includes:
根据Sk+1=Sk=0,等效控制律由下式(6)表示:According to Sk+1 = Sk = 0, the equivalent control law is expressed by the following equation (6):
其中,-1为逆矩阵。where -1 is the inverse matrix.
基于动态事件触发机制,将等效控制律重新写成下式(7):Based on the dynamic event triggering mechanism, the equivalent control law is rewritten as the following equation (7):
当滑模面函数的差分满足下式(8)(9)时,When the difference of the sliding mode surface function satisfies the following equations (8) and (9),
ΔSk≤-ωe-μksgn(Sk)-κSk如果Sk>0 (8)ΔS k ≤ -ωe -μk sgn(S k )-κS k if S k > 0 (8)
ΔSk≥-ωe-μksgn(Sk)-κSk如果Sk<0 (9)ΔS k ≥ -ωe -μk sgn(S k )-κS k if S k <0 (9)
其中,0<κ<1,ω>0,μ≥0。Among them, 0<κ<1, ω>0, and μ≥0.
设计滑模容错控制器,如下式(10)所示:Design a sliding mode fault-tolerant controller, as shown in the following formula (10):
其中, in,
本发明实施例中,对于事件触发机制产生的误差进行处理,在发生传感器故障的前提下,研究基于观测器方法的具有动态事件触发机制的网络化控制系统滑模容错控制问题。首次在滑模容错控制问题中,将事件触发机制产生的误差当作一种扰动,利用H∞范数有界进行衰减。通过李雅普诺夫函数的方法,给出保证闭环系统渐近稳定和满足H∞性能指标的充分判据。进一步地,设计合适的滑模容错控制器使闭环系统的状态轨迹能够到达预先设定的滑模面上,并在有限时间内保持稳定。In the embodiment of the present invention, the error generated by the event trigger mechanism is processed, and under the premise of sensor failure, the sliding mode fault-tolerant control problem of a networked control system with a dynamic event trigger mechanism based on the observer method is studied. For the first time in the sliding mode fault-tolerant control problem, the error generated by the event-triggered mechanism is regarded as a disturbance, and the bounded H ∞ norm is used for attenuation. Through the method of Lyapunov function, the sufficient criterion to ensure the asymptotic stability of the closed-loop system and satisfy the H ∞ performance index is given. Furthermore, a suitable sliding mode fault-tolerant controller is designed so that the state trajectory of the closed-loop system can reach the preset sliding mode surface and remain stable within a limited time.
如图2所示,本发明实施例提供了一种基于动态事件触发机制的滑模容错控制方法,该方法由电子设备实现。如图2所示的基于动态事件触发机制的滑模容错控制方法流程图,该方法的处理流程可以包括如下的步骤:As shown in FIG. 2 , an embodiment of the present invention provides a sliding mode fault-tolerant control method based on a dynamic event trigger mechanism, and the method is implemented by an electronic device. As shown in Figure 2, the flow chart of the sliding mode fault-tolerant control method based on the dynamic event trigger mechanism, the processing flow of the method may include the following steps:
S21、建立离散网络化控制系统的动态模型,其状态空间形式如下式(1)所示:S21, establish a dynamic model of the discrete networked control system, and its state space form is shown in the following formula (1):
其中,为系统的n维状态向量;表示实数集;为系统的m维控制输入;为系统的p维测量输出;为系统的q维被控输出;A1为系统矩阵;B为系统的输入矩阵;C为系统的测量矩阵;D1和D2为系统的外部扰动矩阵,A2为系统的输出矩阵;A1,A2,B,C,D1和D2为具有适当维数的已知矩阵;和分别为w维和v维属于l2[0,∞)的外部扰动,其中l2[0,∞)为Hilbert空间的平方可积函数;ΔA代表参数不确定性,满足ΔA=MFN,其中F是一个未知矩阵,满足FTF≤I,M和N为具有适当维数的已知矩阵;g(xk)是非线性扰动,满足‖g(xk)‖≤r‖xk‖,其中,‖g(xk)‖为g(xk)的范数,‖xk‖为xk的范数,r>0代表一个已知常数。in, is the n-dimensional state vector of the system; represents the set of real numbers; is the m-dimensional control input of the system; is the p-dimensional measurement output of the system; is the q-dimensional controlled output of the system; A 1 is the system matrix; B is the input matrix of the system; C is the measurement matrix of the system; D 1 and D 2 are the external disturbance matrices of the system, and A 2 is the output matrix of the system; A 1 , A 2 , B, C, D 1 and D 2 are known matrices with appropriate dimensions; and are the external perturbations of the w-dimension and v-dimension belonging to l 2 [0, ∞), respectively, where l 2 [0, ∞) is the square integrable function of the Hilbert space; ΔA represents the parameter uncertainty, satisfying ΔA=MFN, where F is An unknown matrix satisfying F T F≤I, M and N are known matrices with appropriate dimensions; g(x k ) is a nonlinear perturbation satisfying ‖g(x k )‖≤r‖x k ‖, where, ‖g(x k )‖ is the norm of g(x k ), ‖x k ‖ is the norm of x k , and r>0 represents a known constant.
其中,离散网络化控制系统的动态模型可以是具有不确定性和外部扰动的网络化控制系统的动态模型;Among them, the dynamic model of the discrete networked control system can be the dynamic model of the networked control system with uncertainty and external disturbance;
S22、建立传感器故障模型,如下式(2)所示:S22, establish a sensor fault model, as shown in the following formula (2):
其中,in,
其中,Fs=diag{f1,f2,…,fq},diag为对角矩阵;i=1,2,…,q,fi 为fi的下界,为fi的上界,满足 Wherein, F s =diag{f 1 ,f 2 ,...,f q }, and diag is a diagonal matrix; i=1,2,...,q, f i is the lower bound of f i , is the upper bound of f i , satisfying
其中,传感器故障与矩阵Fs之间的关系可以是:where the relationship between the sensor failure and the matrix F s can be:
当fi=1,i=1,2,…,q时,传感器处于正常工作。When f i =1, i=1,2,...,q, the sensor is in normal operation.
当fi=0,i=1,2,…,q时,传感器完全不能工作。When f i = 0, i = 1, 2, . . . , q, the sensor does not work at all.
当fi∈(0,1),i=1,2,…,q时,传感器发生故障。When f i ∈ (0,1), i=1,2,...,q, the sensor fails.
因此,可以将带有传感器故障的测量输出表示为yF=Fsyk。Therefore, the measurement output with sensor failure can be expressed as y F =F s y k .
S23、建立动态事件触发机制模型,如下式(3)所示:S23, establish a dynamic event trigger mechanism model, as shown in the following formula (3):
其中,为了节省计算机资源,定义表示正整数集合;定义{l0,l1,…}为从观测器到控制器当前状态所处的时间序列;定义l0=0;σ、θ为给定的正数;Among them, in order to save computer resources, define Represents a set of positive integers; defines {l 0 , l 1 ,...} as the time series from the observer to the current state of the controller; defines l 0 =0; σ, θ are given positive numbers;
其中为k时刻的状态估计,为最新释放的状态;ηk表示内部动态变量,满足其中,T为矩阵的转置,λ∈(0,1)为给定的常数,η0≥0为给定的初始条件。 in is the state estimate at time k, is the latest released state; η k represents the internal dynamic variable, satisfying Among them, T is the transpose of the matrix, λ∈(0,1) is a given constant, and η 0 ≥0 is a given initial condition.
S24、设计滑模观测器,由下式(4)表示:S24. Design a sliding mode observer, which is represented by the following formula (4):
其中,表示观测器状态,表示被控输出zk的估计值,L表示观测器增益矩阵。in, represents the observer state, represents the estimated value of the controlled output z k , and L represents the observer gain matrix.
一种可行的实施方式中,利用已发生传感器故障的测量信息设计滑模观测器;可以是基于公式(2)的传感器故障模型得到传感器故障的测量信息,根据测量信息得到公式(4)的滑模观测器。In a feasible implementation, the sliding mode observer is designed by using the measurement information of the sensor failure; the measurement information of the sensor failure can be obtained based on the sensor failure model of formula (2), and the sliding mode of formula (4) can be obtained according to the measurement information. Mode observer.
S25、设计滑模面函数,由下式(5)表示:S25. Design the sliding mode surface function, which is represented by the following formula (5):
其中,Sk表示k时刻的滑模函数,是待设计的滑模面参数矩阵,G=BTP1,P1>0是待求解的正定矩阵。Among them, Sk represents the sliding mode function at time k, is the sliding mode surface parameter matrix to be designed, G=B T P 1 , and P 1 >0 is the positive definite matrix to be solved.
一种可行的实施方式中,可以利用滑模观测器得到的观测信息设计滑模面函数;可以是基于公式(4)的滑模观测器得到观测信息,根据观测信息得到公式(5)的滑模面函数。In a feasible implementation, the sliding mode surface function can be designed by using the observation information obtained by the sliding mode observer; the sliding mode surface function can be obtained by the sliding mode observer based on formula (4), and the sliding mode surface function of formula (5) can be obtained according to the observation information. Die-face function.
S26、设计基于观测器方法的滑模容错控制器。S26. Design a sliding mode fault-tolerant controller based on the observer method.
根据Sk+1=Sk=0,等效控制律由下式(6)表示:According to Sk+1 = Sk = 0, the equivalent control law is expressed by the following equation (6):
其中,-1为逆矩阵。where -1 is the inverse matrix.
基于动态事件触发机制,将等效控制律重新写成下式(7):Based on the dynamic event triggering mechanism, the equivalent control law is rewritten as the following equation (7):
当滑模面函数的差分满足下式(8)(9)时,When the difference of the sliding mode surface function satisfies the following equations (8) and (9),
ΔSk≤-ωe-μksgn(Sk)-κSk如果Sk>0 (8)ΔS k ≤ -ωe -μk sgn(S k )-κS k if S k > 0 (8)
ΔSk≥-ωe-μksgn(Sk)-κSk如果Sk<0 (9)ΔS k ≥ -ωe -μk sgn(S k )-κS k if S k <0 (9)
其中,0<κ<1,ω>0,μ≥0。Among them, 0<κ<1, ω>0, and μ≥0.
设计滑模容错控制器,如下式(10)所示:Design a sliding mode fault-tolerant controller, as shown in the following formula (10):
其中, in,
一种可行的实施方式中,如图3所示的基于动态事件触发机制的滑模容错控制系统,在动态事件触发机制下考虑传感器故障,设计基于观测器方法的滑模容错控制器,保证离散情形下滑模面的可达性,并且保证在故障发生时系统仍能正常运行。该闭环系统的轨迹可以在有限时间内收敛到滑模面上并保持稳定。In a feasible implementation, as shown in Figure 3, the sliding mode fault-tolerant control system based on the dynamic event-triggering mechanism, considers the sensor fault under the dynamic event-triggering mechanism, and designs the sliding-mode fault-tolerant controller based on the observer method to ensure discrete The accessibility of the die surface in the event of a failure, and to ensure the normal operation of the system in the event of a failure. The trajectory of this closed-loop system can converge to the sliding mode surface within a finite time and remain stable.
本发明实施例中,对于事件触发机制产生的误差进行处理,在发生传感器故障的前提下,研究基于观测器方法的具有动态事件触发机制的网络化控制系统滑模容错控制问题。首次在滑模容错控制问题中,将事件触发机制产生的误差当作一种扰动,利用H∞范数有界进行衰减。通过李雅普诺夫函数的方法,给出保证闭环系统渐近稳定和满足H∞性能指标的充分判据。进一步地,设计合适的滑模容错控制器使闭环系统的状态轨迹能够到达预先设定的滑模面上,并在有限时间内保持稳定。In the embodiment of the present invention, the error generated by the event trigger mechanism is processed, and the sliding mode fault-tolerant control problem of a networked control system with a dynamic event trigger mechanism based on the observer method is studied under the premise of sensor failure. For the first time in the sliding mode fault-tolerant control problem, the error generated by the event-triggered mechanism is regarded as a disturbance, and the bounded H ∞ norm is used for attenuation. Through the method of Lyapunov function, the sufficient criterion to ensure the asymptotic stability of the closed-loop system and satisfy the H ∞ performance index is given. Furthermore, a suitable sliding mode fault-tolerant controller is designed so that the state trajectory of the closed-loop system can reach the preset sliding mode surface and remain stable within a limited time.
如图4所示,本发明实施例提供了一种基于动态事件触发机制的滑模容错控制装置400,该装置400应用于实现基于动态事件触发机制的滑模容错控制方法,该装置400包括:As shown in FIG. 4 , an embodiment of the present invention provides a sliding mode fault-
动态模型建立模块410,用于建立离散网络化控制系统的动态模型。The dynamic
观测器设计模块420,用于基于系统发生传感器故障的情况,设计离散网络化控制系统的状态滑模观测器。The
滑模面设计模块430,用于设计基于观测器估计信息的滑模面。The sliding mode
动态事件触发机制设计模块440,用于设计动态事件触发机制。The dynamic event trigger
滑模容错控制器设计模块450,用于设计基于观测器方法的滑模容错控制器。The sliding mode fault tolerant
可选地,该方法还包括:将等效控制律代入到所述观测器中得到闭环系统,基于李雅普诺夫函数理论和线性矩阵不等式方法,得到满足闭环系统渐近稳定以及H∞性能指标的充分判据。Optionally, the method further includes: substituting an equivalent control law into the observer to obtain a closed-loop system, and based on the Lyapunov function theory and the linear matrix inequality method, obtaining a closed-loop system that satisfies the asymptotic stability and H ∞ performance index. sufficient evidence.
可选地,离散网络化控制系统的动态模型的状态空间形式如下式(1)所示:Optionally, the state space form of the dynamic model of the discrete networked control system is shown in the following formula (1):
其中,为系统的n维状态向量;表示实数集;为系统的m维控制输入;为系统的p维测量输出;为系统的q维被控输出;A1为系统矩阵;B为系统的输入矩阵;C为系统的测量矩阵;D1和D2为系统的外部扰动矩阵,A2为系统的输出矩阵;A1,A2,B,C,D1和D2为具有适当维数的已知矩阵;和分别为w维和v维属于l2[0,∞)的外部扰动,其中l2[0,∞)为Hilbert空间的平方可积函数;ΔA代表参数不确定性,满足ΔA=MFN,其中F是一个未知矩阵,满足FTF≤I,M和N为具有适当维数的已知矩阵;g(xk)是非线性扰动,满足‖g(xk)‖≤r‖xk‖,其中,‖g(xk)‖为g(xk)的范数,‖xk‖为xk的范数,r>0代表一个已知常数。in, is the n-dimensional state vector of the system; represents the set of real numbers; is the m-dimensional control input of the system; is the p-dimensional measurement output of the system; is the q-dimensional controlled output of the system; A 1 is the system matrix; B is the input matrix of the system; C is the measurement matrix of the system; D 1 and D 2 are the external disturbance matrices of the system, and A 2 is the output matrix of the system; A 1 , A 2 , B, C, D 1 and D 2 are known matrices with appropriate dimensions; and are the external disturbances belonging to l 2 [0, ∞) in w dimension and v dimension, respectively, where l 2 [0, ∞) is the square integrable function of Hilbert space; ΔA represents parameter uncertainty, satisfying ΔA=MFN, where F is An unknown matrix satisfying F T F≤I, M and N are known matrices with appropriate dimensions; g(x k ) is a nonlinear perturbation satisfying ‖g(x k )‖≤r‖x k ‖, where, ‖g(x k )‖ is the norm of g(x k ), ‖x k ‖ is the norm of x k , and r>0 represents a known constant.
可选地,传感器故障模型如下式(2)所示:Optionally, the sensor failure model is shown in the following formula (2):
其中,in,
其中,Fs=diag{f1,f2,…,fq},diag为对角矩阵;i=1,2,…,q,fi 为fi的下界,为fi的上界,满足 Wherein, F s =diag{f 1 ,f 2 ,...,f q }, and diag is a diagonal matrix; i=1,2,...,q, f i is the lower bound of f i , is the upper bound of f i , satisfying
当fi=1,i=1,2,…,q时,传感器处于正常工作。When f i =1, i=1,2,...,q, the sensor is in normal operation.
当fi=0,i=1,2,…,q时,传感器完全不能工作。When f i = 0, i = 1, 2, . . . , q, the sensor does not work at all.
当fi∈(0,1),i=1,2,…,q时,传感器发生故障。When f i ∈ (0,1), i=1,2,...,q, the sensor fails.
将带有传感器故障的测量输出表示为yF=Fsyk。Denote the measurement output with sensor failure as y F =F s y k .
可选地,滑模观测器由下式(3)表示:Optionally, the sliding mode observer is represented by the following equation (3):
其中,表示观测器状态,表示被控输出zk的估计值,L表示观测器增益矩阵。in, represents the observer state, represents the estimated value of the controlled output z k , and L represents the observer gain matrix.
可选地,滑模面函数由下式(4)表示:Optionally, the sliding mode surface function is represented by the following formula (4):
其中,Sk表示k时刻的滑模函数,是待设计的滑模面参数矩阵,G=BTP1,P1>0是待求解的正定矩阵。Among them, Sk represents the sliding mode function at time k, is the sliding mode surface parameter matrix to be designed, G=B T P 1 , and P 1 >0 is the positive definite matrix to be solved.
可选地,事件触发机制模型如下式(5)所示:Optionally, the event triggering mechanism model is shown in the following formula (5):
其中,表示正整数集合;{l0,l1,…}为从观测器到控制器当前状态所处的时间序列;定义l0=0;σ、θ为给定的正标量;其中为k时刻的状态估计,为最新释放的状态;ηk表示内部动态变量,满足其中,T为矩阵的转置,λ∈(0,1)为给定的常数,η0≥0为给定的初始条件。in, represents a set of positive integers; {l 0 , l 1 ,...} is the time series from the observer to the current state of the controller; define l 0 =0; σ, θ are given positive scalars; in is the state estimate at time k, is the latest released state; η k represents the internal dynamic variable, satisfying Among them, T is the transpose of the matrix, λ∈(0,1) is a given constant, and η 0 ≥0 is a given initial condition.
可选地,滑模容错控制器设计模块450,进一步用于:Optionally, the sliding mode fault-tolerant
根据Sk+1=Sk=0,等效控制律由下式(6)表示:According to Sk+1 = Sk = 0, the equivalent control law is expressed by the following equation (6):
其中,-1为逆矩阵。where -1 is the inverse matrix.
基于动态事件触发机制,将等效控制律重新写成下式(7):Based on the dynamic event triggering mechanism, the equivalent control law is rewritten as the following equation (7):
当滑模面函数的差分满足下式(8)(9)时,When the difference of the sliding mode surface function satisfies the following equations (8) and (9),
ΔSk≤-ωe-μksgn(Sk)-κSk如果Sk>0 (8)ΔS k ≤ -ωe -μk sgn(S k )-κS k if S k > 0 (8)
ΔSk≥-ωe-μksgn(Sk)-κSk如果Sk<0 (9)ΔS k ≥ -ωe -μk sgn(S k )-κS k if S k <0 (9)
其中,0<κ<1,ω>0,μ≥0。Among them, 0<κ<1, ω>0, and μ≥0.
设计滑模容错控制器,如下式(10)所示:Design a sliding mode fault-tolerant controller, as shown in the following formula (10):
其中, in,
本发明实施例中,对于事件触发机制产生的误差进行处理,在发生传感器故障的前提下,研究基于观测器方法的具有动态事件触发机制的网络化控制系统滑模容错控制问题。首次在滑模容错控制问题中,将事件触发机制产生的误差当作一种扰动,利用H∞范数有界进行衰减。通过李雅普诺夫函数的方法,给出保证闭环系统渐近稳定和满足H∞性能指标的充分判据。进一步地,设计合适的滑模容错控制器使闭环系统的状态轨迹能够到达预先设定的滑模面上,并在有限时间内保持稳定。In the embodiment of the present invention, the error generated by the event trigger mechanism is processed, and the sliding mode fault-tolerant control problem of a networked control system with a dynamic event trigger mechanism based on the observer method is studied under the premise of sensor failure. For the first time in the sliding mode fault-tolerant control problem, the error generated by the event-triggered mechanism is regarded as a disturbance, and the bounded H ∞ norm is used for attenuation. Through the method of Lyapunov function, the sufficient criterion to ensure the asymptotic stability of the closed-loop system and satisfy the H ∞ performance index is given. Furthermore, a suitable sliding mode fault-tolerant controller is designed so that the state trajectory of the closed-loop system can reach the preset sliding mode surface and remain stable within a limited time.
图5是本发明实施例提供的一种电子设备500的结构示意图,该电子设备500可因配置或性能不同而产生比较大的差异,可以包括一个或一个以上处理器(centralprocessing units,CPU)501和一个或一个以上的存储器502,其中,存储器502中存储有至少一条指令,至少一条指令由处理器501加载并执行以实现下述基于动态事件机制的滑模容错控制方法:5 is a schematic structural diagram of an
S1、建立离散网络化控制系统的动态模型。S1. Establish a dynamic model of the discrete networked control system.
S2、基于系统发生传感器故障的情况,设计离散网络化控制系统的状态滑模观测器。S2. Design the state sliding mode observer of the discrete networked control system based on the sensor failure in the system.
S3、设计基于观测器估计信息的滑模面。S3. Design a sliding mode surface based on the estimated information of the observer.
S4、设计动态事件触发机制。S4. Design a dynamic event triggering mechanism.
S5、设计基于观测器方法的滑模容错控制器。S5. Design a sliding mode fault-tolerant controller based on the observer method.
在示例性实施例中,还提供了一种计算机可读存储介质,例如包括指令的存储器,上述指令可由终端中的处理器执行以完成上述基于动态事件触发机制的滑模容错控制方法。例如,计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。In an exemplary embodiment, a computer-readable storage medium, such as a memory including instructions, is also provided, and the instructions can be executed by a processor in the terminal to implement the above sliding mode fault-tolerant control method based on the dynamic event triggering mechanism. For example, the computer-readable storage medium may be ROM, random access memory (RAM), CD-ROM, magnetic tape, floppy disk, optical data storage device, and the like.
本领域普通技术人员可以理解实现上述实施例的全部或部分步骤可以通过硬件来完成,也可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,上述提到的存储介质可以是只读存储器,磁盘或光盘等。Those of ordinary skill in the art can understand that all or part of the steps of implementing the above embodiments can be completed by hardware, or can be completed by instructing relevant hardware through a program, and the program can be stored in a computer-readable storage medium. The storage medium mentioned may be a read-only memory, a magnetic disk or an optical disk, etc.
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The above are only preferred embodiments of the present invention and are not intended to limit the present invention. Any modification, equivalent replacement, improvement, etc. made within the spirit and principle of the present invention shall be included in the protection of the present invention. within the range.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111488737.9A CN114253133B (en) | 2021-12-07 | 2021-12-07 | Sliding mode fault-tolerant control method and device based on dynamic event trigger mechanism |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111488737.9A CN114253133B (en) | 2021-12-07 | 2021-12-07 | Sliding mode fault-tolerant control method and device based on dynamic event trigger mechanism |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114253133A true CN114253133A (en) | 2022-03-29 |
CN114253133B CN114253133B (en) | 2023-09-01 |
Family
ID=80791811
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111488737.9A Active CN114253133B (en) | 2021-12-07 | 2021-12-07 | Sliding mode fault-tolerant control method and device based on dynamic event trigger mechanism |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114253133B (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115793469A (en) * | 2022-12-16 | 2023-03-14 | 南京工业大学 | Dynamic event trigger fault-tolerant control method of wind power generation system based on permanent magnet synchronous generator |
CN116382097A (en) * | 2023-05-26 | 2023-07-04 | 北京科技大学 | Limited time class switching sliding mode fault-tolerant control method of discrete information physical system |
CN118655761A (en) * | 2024-08-16 | 2024-09-17 | 北京科技大学 | A method and device for finite-time sliding mode fault-tolerant safety control of information-physical system |
Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050096793A1 (en) * | 2003-10-30 | 2005-05-05 | Kabushiki Kaisha Toshiba | Reference model tracking control system and method |
WO2007035559A2 (en) * | 2005-09-19 | 2007-03-29 | Cleveland State University | Controllers, observers, and applications thereof |
CN104932512A (en) * | 2015-06-24 | 2015-09-23 | 北京科技大学 | Quadrotor posture control method based on MIMO nonlinear uncertain backstepping approach |
CN107658871A (en) * | 2017-10-20 | 2018-02-02 | 安徽大学 | Control method of electric power system based on event triggering Dynamic trigger mechanism |
CN110333661A (en) * | 2019-08-06 | 2019-10-15 | 大连海事大学 | UMV adaptive sliding mode fault-tolerant control method considering quantization and state time lag |
CN110518573A (en) * | 2019-07-29 | 2019-11-29 | 浙江工业大学 | A kind of multi-region electric network design method based on adaptive event triggering sliding formwork control |
CN110658724A (en) * | 2019-11-20 | 2020-01-07 | 电子科技大学 | Adaptive fuzzy fault-tolerant control method for a class of nonlinear systems |
CN110789350A (en) * | 2019-11-20 | 2020-02-14 | 电子科技大学 | Fault-tolerant control method for four-wheel drive electric vehicle |
CN111880416A (en) * | 2020-09-18 | 2020-11-03 | 哈尔滨理工大学 | Networked system fault-tolerant control method based on dynamic event trigger mechanism |
CN112034712A (en) * | 2020-09-04 | 2020-12-04 | 华北电力大学 | An event-triggered sliding mode fault-tolerant control method |
CN112207834A (en) * | 2020-12-10 | 2021-01-12 | 北京科技大学 | Robot joint system control method and system based on disturbance observer |
CN113419431A (en) * | 2021-07-23 | 2021-09-21 | 北京航空航天大学 | Stratospheric airship trajectory tracking control method and system based on event triggering |
GB202111727D0 (en) * | 2021-05-13 | 2021-09-29 | Univ Guizhou | Adaptive event-triggered control method for permanent magnet synchronous generator coupled chaotic network system |
CN113488993A (en) * | 2021-06-24 | 2021-10-08 | 西安理工大学 | Event-triggered sliding mode load frequency control method for multi-region interconnected power system |
CN113741309A (en) * | 2021-09-16 | 2021-12-03 | 云境商务智能研究院南京有限公司 | Dual-dynamic event trigger controller model design method based on observer |
-
2021
- 2021-12-07 CN CN202111488737.9A patent/CN114253133B/en active Active
Patent Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050096793A1 (en) * | 2003-10-30 | 2005-05-05 | Kabushiki Kaisha Toshiba | Reference model tracking control system and method |
WO2007035559A2 (en) * | 2005-09-19 | 2007-03-29 | Cleveland State University | Controllers, observers, and applications thereof |
CN104932512A (en) * | 2015-06-24 | 2015-09-23 | 北京科技大学 | Quadrotor posture control method based on MIMO nonlinear uncertain backstepping approach |
CN107658871A (en) * | 2017-10-20 | 2018-02-02 | 安徽大学 | Control method of electric power system based on event triggering Dynamic trigger mechanism |
CN110518573A (en) * | 2019-07-29 | 2019-11-29 | 浙江工业大学 | A kind of multi-region electric network design method based on adaptive event triggering sliding formwork control |
CN110333661A (en) * | 2019-08-06 | 2019-10-15 | 大连海事大学 | UMV adaptive sliding mode fault-tolerant control method considering quantization and state time lag |
CN110658724A (en) * | 2019-11-20 | 2020-01-07 | 电子科技大学 | Adaptive fuzzy fault-tolerant control method for a class of nonlinear systems |
CN110789350A (en) * | 2019-11-20 | 2020-02-14 | 电子科技大学 | Fault-tolerant control method for four-wheel drive electric vehicle |
CN112034712A (en) * | 2020-09-04 | 2020-12-04 | 华北电力大学 | An event-triggered sliding mode fault-tolerant control method |
CN111880416A (en) * | 2020-09-18 | 2020-11-03 | 哈尔滨理工大学 | Networked system fault-tolerant control method based on dynamic event trigger mechanism |
CN112207834A (en) * | 2020-12-10 | 2021-01-12 | 北京科技大学 | Robot joint system control method and system based on disturbance observer |
GB202111727D0 (en) * | 2021-05-13 | 2021-09-29 | Univ Guizhou | Adaptive event-triggered control method for permanent magnet synchronous generator coupled chaotic network system |
CN113488993A (en) * | 2021-06-24 | 2021-10-08 | 西安理工大学 | Event-triggered sliding mode load frequency control method for multi-region interconnected power system |
CN113419431A (en) * | 2021-07-23 | 2021-09-21 | 北京航空航天大学 | Stratospheric airship trajectory tracking control method and system based on event triggering |
CN113741309A (en) * | 2021-09-16 | 2021-12-03 | 云境商务智能研究院南京有限公司 | Dual-dynamic event trigger controller model design method based on observer |
Non-Patent Citations (6)
Title |
---|
GUAN, X., HU, J., CUI, Y., & XU, L: "Observer-based sliding mode control for discrete nonlinear systems with packet losses: an event-triggered method", 《SYSTEMS SCIENCE & CONTROL ENGINEERING》, vol. 8, no. 1, pages 175 - 188 * |
GUAN, X., HU, J., QI, J., CHEN, D., ZHANG, F., & YANG, G: "Observer-based H∞ sliding mode control for networked systems subject to communication channel fading and randomly varying nonlinearities", 《NEUROCOMPUTING》, no. 437, pages 312 - 324 * |
ZHENG KUNMING: "Intelligent fuzzy sliding mode control for complex robot system with disturbances", 《EUROPEAN JOURNAL OF CONTROL》, no. 51, pages 95 - 109 * |
向勇;杨晓梅;: "含扩展状态观测器的双馈风机事件触发滑模控制", 《电机与控制应用》, no. 05, pages 42 - 49 * |
王杰勋;: "T-S模糊系统事件触发传输机制H_∞控制器设计", 《哈尔滨理工大学学报》, no. 06, pages 121 - 128 * |
胡艳艳;金增旺;薛晓玲;孙长银;: "基于异步IMM融合滤波的网络化系统故障诊断", 《自动化学报》, no. 08, pages 43 - 52 * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115793469A (en) * | 2022-12-16 | 2023-03-14 | 南京工业大学 | Dynamic event trigger fault-tolerant control method of wind power generation system based on permanent magnet synchronous generator |
CN116382097A (en) * | 2023-05-26 | 2023-07-04 | 北京科技大学 | Limited time class switching sliding mode fault-tolerant control method of discrete information physical system |
CN116382097B (en) * | 2023-05-26 | 2023-08-15 | 北京科技大学 | Finite-time switching sliding mode fault-tolerant control method for discrete cyber-physical systems |
CN118655761A (en) * | 2024-08-16 | 2024-09-17 | 北京科技大学 | A method and device for finite-time sliding mode fault-tolerant safety control of information-physical system |
Also Published As
Publication number | Publication date |
---|---|
CN114253133B (en) | 2023-09-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN114253133B (en) | Sliding mode fault-tolerant control method and device based on dynamic event trigger mechanism | |
CN106257873B (en) | A Nonfragile H∞ Fault Tolerant Control Method for Nonlinear Networked Control Systems | |
Wang et al. | Finite-time adaptive fuzzy tracking control design for nonlinear systems | |
CN110209148B (en) | Fault estimation method of networked system based on description system observer | |
Gao et al. | A novel event-triggered strategy for networked switched control systems | |
Li et al. | Fuzzy adaptive output feedback fault-tolerant tracking control of a class of uncertain nonlinear systems with nonaffine nonlinear faults | |
CN110879533B (en) | Scheduled time projection synchronization method of delay memristive neural network with unknown disturbance resistance | |
CN109116737B (en) | Fault Assessment and Fault Tolerant Consistency Control Algorithm for Multi-Agent Systems under Observer | |
CN111158343A (en) | Asynchronous fault-tolerant control method for switching system with actuator and sensor faults | |
CN109062041A (en) | The control method of T-S FUZZY NETWORK system based on event triggering | |
Wang et al. | Observer-based finite time control of nonlinear systems with actuator failures | |
CN111208734B (en) | Data drive anti-interference control structure for controlling gain-unknown uncertain system | |
Li et al. | Command filter‐based event‐triggered adaptive neural network control for uncertain nonlinear time‐delay systems | |
CN108319147A (en) | One kind has the H of the networking Linear Parameter-Varying Systems of short time-delay and data packetloss∞Fault tolerant control method | |
CN112099347A (en) | Event trigger control method of saturated nonlinear networked industrial control system | |
CN113189876A (en) | Anti-saturation fault-tolerant control method for uncertain nonlinear system based on preset performance | |
Lei et al. | Adaptive asymptotic tracking control of constrained multi‐input multi‐output nonlinear systems via event‐triggered strategy | |
Zhao et al. | Robust adaptive fault‐tolerant quantized control of nonlinear systems with constraints on system behaviors and states | |
CN114063457B (en) | Event triggering fault-tolerant control method of mechanical arm system | |
Bechlioulis et al. | Robust adaptive fuzzy control of nonaffine systems guaranteeing transient and steady state error bounds | |
Chen et al. | MT‐filters‐based event‐triggered adaptive prescribed performance tracking control of multi‐agent systems with unknown direction actuator failure | |
CN112034712A (en) | An event-triggered sliding mode fault-tolerant control method | |
CN110611599B (en) | Network control system and control method thereof | |
Zheng et al. | Stability analysis and dynamic output feedback control for nonlinear TS fuzzy system with multiple subsystems and normalized membership functions | |
CN112664468A (en) | Fan control system fault-tolerant control method considering random time delay |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |