CN114251360A - 一种微纳多孔节流静压气浮止推轴承 - Google Patents
一种微纳多孔节流静压气浮止推轴承 Download PDFInfo
- Publication number
- CN114251360A CN114251360A CN202011014238.1A CN202011014238A CN114251360A CN 114251360 A CN114251360 A CN 114251360A CN 202011014238 A CN202011014238 A CN 202011014238A CN 114251360 A CN114251360 A CN 114251360A
- Authority
- CN
- China
- Prior art keywords
- micro
- thrust bearing
- nano
- nano porous
- air
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 230000003068 static effect Effects 0.000 title claims abstract description 28
- 239000011148 porous material Substances 0.000 claims abstract description 16
- 238000005457 optimization Methods 0.000 claims abstract description 4
- 238000007667 floating Methods 0.000 claims description 13
- 238000005188 flotation Methods 0.000 claims description 5
- 238000005461 lubrication Methods 0.000 claims description 3
- 238000009828 non-uniform distribution Methods 0.000 claims description 3
- 238000009827 uniform distribution Methods 0.000 claims description 3
- 239000004065 semiconductor Substances 0.000 abstract 1
- 238000004519 manufacturing process Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 3
- 230000007547 defect Effects 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000003754 machining Methods 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- 238000013016 damping Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C32/00—Bearings not otherwise provided for
- F16C32/06—Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings
- F16C32/0603—Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings supported by a gas cushion, e.g. an air cushion
- F16C32/0614—Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings supported by a gas cushion, e.g. an air cushion the gas being supplied under pressure, e.g. aerostatic bearings
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C32/00—Bearings not otherwise provided for
- F16C32/06—Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings
- F16C32/0603—Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings supported by a gas cushion, e.g. an air cushion
- F16C32/0614—Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings supported by a gas cushion, e.g. an air cushion the gas being supplied under pressure, e.g. aerostatic bearings
- F16C32/0622—Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings supported by a gas cushion, e.g. an air cushion the gas being supplied under pressure, e.g. aerostatic bearings via nozzles, restrictors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C2240/00—Specified values or numerical ranges of parameters; Relations between them
- F16C2240/40—Linear dimensions, e.g. length, radius, thickness, gap
- F16C2240/44—Hole or pocket sizes
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Magnetic Bearings And Hydrostatic Bearings (AREA)
Abstract
本发明公开了一种微纳多孔节流静压气浮止推轴承装置,其特征在于:气浮止推轴承下表面布置一个或者多个微纳多孔节流器。微纳多孔节流器为薄片结构,厚度为0.1‑1mm,直径为1‑100mm,薄片结构上开有微纳多孔,微纳多孔直径为微米级和纳米级尺度,微纳多孔数目在几十到几百万之间,不同直径大小的多孔可以根据设计自由组合(微米级多孔组合、纳米级多孔组合或者微米级和纳米级混合多孔组合),通过优化进行合理布局。本发明不仅可以显著提高气浮止推轴承的稳定性和力学特性,而且可以有效降低气浮止推轴承的自激振动;此外,按照本发明的微纳多孔节流静压气浮止推轴承具有高速度和高精度等优点,因此尤其适用于超精密半导体设备和微/纳机电系统等领域。
Description
技术领域
本发明涉及一种微纳多孔节流静压气浮止推轴承,能够显著提高承载能力和稳定性,同时可以降低气浮止推轴承自激振动,主要应用于集成电路制造和精密光学等领域。
背景技术
气浮止推轴承具有高速度、高精度、无摩擦发热和超洁净等优点,广泛应用于微纳加工与制造等领域。 然而,气体轴承存在承载力低、刚度弱和微振动等问题:一方面高速气体的湍流流动引发的微振动会影响超精密运动系统的动力学特性。另一方面,传统气浮支承阻尼弱,难以快速衰减外界扰动。 传统气浮止推轴承节流方式主要包括小孔节流,狭缝节流和多孔介质节流。狭缝节流对加工要求精度高,价格昂贵;多孔节流中的多孔材料小孔大小及分布均不理想,材料的差异性会导致气浮止推轴承的稳定性不一致。由此可见,小孔节流是传统气浮止推轴承的主要节流方式。 但是,随着超精密加工和超精密定位要求越来越苛刻,小孔节流存在的湍流自激振动逐渐制约超紧密加工和超精密定位的提升。因此,需要设计一种高稳定性且自激振动小的气体轴承。
发明内容
本发明的目的是在于解决上述技术上的不足,改善上述气浮止推轴承自激振动的缺点,气浮止推轴承下表面布置一个或者多个微纳多孔节流器,微纳多孔直径大小为微米级和纳米级尺度,不同直径大小的多孔可根据设计自由组合(微米级多孔组合、纳米级多孔组合或者微米级和纳米级混合多孔组合),然后通过优化设计进行合理布局(包括均匀分布和非均匀分布)。因此,该气浮止推轴承更具有更高稳定性和良好的动力学特性。
为了解决上述问题,本发明采用的技术方案是一种微纳多孔节流静压气浮止推轴承,气浮止推轴承下表面布置一个或者多个微纳多孔节流器,即气浮止推轴承可以在气浮止推轴承中心处设置一个微纳多孔节流器、中心周围均匀分布多排微纳多孔节流器(每排可以设置多个微纳多孔节流器)、中心处设置一个微纳多孔节流器和中心周围均匀分布多排微纳多孔节流器(每排可以设置多个微纳多孔节流器)。该微纳多孔节流器为薄片结构,厚度为0.1-1mm,直径为1-100mm,薄片结构上开有微纳多孔,微纳多孔的直径为微米级或者纳米级尺度,不同直径大小的多孔可以根据设计自由组合(微米级多孔组合、纳米级多孔组合或者微米级和纳米级混合多孔组合),并对其进行优化设计和合理布局。
本发明提供的一种微纳多孔节流静压气浮止推轴承具有很多优点,其微纳多孔直径大小为微米级和纳米级,不同直径大小的多孔可以自由组合,然后通过优化进行合理布局。这样可以克服多孔介质易堵塞的问题,气流更均匀和更稳定。因此,能够显著改善气浮止推轴承动力学特性,并实现气浮止推轴承的更高稳定性,适用于微/纳机电系统、纳米加工与制造技术等超精密制造领域。
为实现上述目的,本发明是通过以下技术手段实现的: 提供了一种微纳多孔节流静压气浮止推轴承,包括气浮止推轴承本体、微纳多孔节流器和基座,其中:气浮止推轴承本体开设有气体通道,高压气体由进气口进入气体通道,先后流经气体通道、气腔、微纳多孔,扩散至气浮止推轴承本体下表面和基座上表面之间的间隙,最终排放至大气环境,构成了静压气体润滑支承,实现被支承物体的悬浮。
所述的微纳多孔节流器的微纳多孔直径大小为微米级和纳米级尺度,微纳多孔数目可多达上百万级别,不同直径大小的多孔可以根据设计自由组合(微米级多孔组合、纳米级多孔组合或者微米级和纳米级混合多孔组合),然后通过优化进行合理布局(包括均匀分布和非均匀分布)。
所述的微纳多孔节流静压气浮止推轴承下表面布置一个或者多个微纳多孔节流器,即气浮止推轴承可以在气浮止推轴承中心处设置一个微纳多孔节流器、中心周围均匀分布多排微纳多孔节流器(每排可以设置多个微纳多孔节流器)、中心处设置一个微纳多孔节流器和中心周围均匀分布多排微纳多孔节流器(每排可以设置多个微纳多孔节流器)。
所述的微纳多孔节流静压气浮球面轴承内表面分布的微纳多孔为通孔。
本发明所提供的一种微纳多孔节流静压气浮止推轴承采用微米级和纳米级多孔的自由组合,并进行优化布局,能够显著改善气浮止推轴承动力学特性,实现气浮止推轴承的更高的稳定性。
按照本发明的微纳多孔节流静压气浮止推轴承不仅可以改善气浮止推轴承动力学特性,而且可以有效的降低气浮止推轴承的自激振动,因此尤其适用于纳米制造与加工、高速主轴等领域。
附图说明
图1为本发明所述的微纳多孔节流静压气浮止推轴承结构示意图。
图2为本发明所述的微纳多孔节流静压气浮止推轴承结构俯视示意图。气浮止推轴承本体横截面为圆形。
图3为本发明所述的微纳多孔节流静压气浮止推轴承结构俯视示意图。气浮止推轴承本体横截面为矩形。
图4为本发明所述的微纳多孔节流器俯视放大示意图。微米级多孔组合或者纳米级多孔组合,且均匀分布。
图5为本发明所述的微纳多孔节流器截面放大示意图。微纳多孔为直孔。
图6为本发明所述的微纳多孔分布放大示意图。微纳多孔布局分别为放射状型、田字型、米字形、矩形。
图7为本发明所述的微纳多孔节流器俯视放大示意图。微米级多孔和纳米级多孔混合,且均匀分布。
图8为本发明所述的微纳多孔节流器俯视放大示意图。微米级多孔和纳米级多孔混合,且非均匀分布。 1、气浮止推轴承本体;2、微纳多孔节流器;3、气腔;4、微纳多孔;5、气体通道;6、进气口;7、基座;8、气膜。
具体实施方式
为了更详细的阐述本发明的技术手段及优点,下面结合实施例和附图,对本发明做进一步详细说明。此处所描述的实施例仅是说明性,非限定性的,本发明的保护范围不受这些实施例的限制。
图1是按照本发明优选实施例一所构建的微纳多孔节流静压气浮止推轴承结构示意图。如图1所示,该微纳多孔节流静压气浮止推轴承包括气浮止推轴承本体(1)、微纳多孔节流器(2)和基座(7)三部分。 如图1所示,高压气体沿进气口(6)流入气体通道(5),经过气腔(3)和微纳多孔(4),然后进入气浮止推轴承本体(1)下表面和基座(7)上表面之间的间隙,然后向四周扩散流动,最后经外边界排至大气环境,此过程形成具有特定压力的气体薄膜(7),实现气浮止推轴承本体(1)与支承部件(8)之间的无接触悬浮。
如图1所示,本实施案例中的气浮止推轴承的下表面和基座的上表面为光滑的平面。 如图1所示,本实施案例中的气浮止推轴承的微纳多孔节流器的横截面积为圆形。
如图2所示,本实施案例中的气浮止推轴承可以在气浮止推轴承为圆形,中心处设置一个微纳多孔节流器和中心周围设置单排微纳多孔节流器(单排设置4个微纳多孔节流器)。
如图3所示,本实施案例中的气浮止推轴承可以在气浮止推轴承为矩形,分布3排微纳多孔节流器(每排设置3个微纳多孔节流器)。
如图4所示,本实施案例中的气浮圆柱轴承本体(1)的微纳多孔节流器(2)的采用圆形。
如图4所示,本实施案例中微纳多孔节流器(2)中的微纳多孔采用放射状型,微米级或纳米级多孔(4)均匀分布在圆内。
如图5所示,本实施案例中微纳多孔(4)采用为直孔。
如图6所示,本实施案例中微纳多孔节流器(2)采用放射状型(a)、米字形(b)、矩形(c)、田字型(d)。
如图7所示,本实施案例中微纳多孔节流器(2)采用微米级多孔(4a)和纳米级多孔(4b)混合,且均匀分布。
如图8所示,本实施案例中微纳多孔节流器(2)采用微米级多孔(4a)和纳米级多孔(4b)混合,且非均匀分布。
以上所述为本发明的较佳实施例而已,但本发明不应该局限于该实施例和附图所公开的内容。所以凡是不脱离本发明所公开的精神下完成的等效或修改,都落入本发明保护范围。
Claims (7)
1.一种微纳多孔节流静压气浮止推轴承,包括气浮止推轴承本体(1)、微纳多孔节流器(2)和基座(6),其特征在于:气浮止推轴承的本体(1)下表面和基座(6)的上表面均为光滑的平面,气浮止推轴承本体(1)设有气体通道(5),高压气体由进气口(6)通过气体通道(5)进入气腔(3),再通过微纳多孔节流器(2)中的微纳多孔(4),然后扩散到气浮止推轴承本体(1)下表面和基座(6)上表面之间的间隙(7),形成一层具有一定压力的气体润滑薄膜(8),气膜内的气体最后经外部边界排出,从而构成了静压气体润滑支承,实现被支承物体无刚性接触地悬浮。
2.根据权利要求1所述的微纳多孔节流静压气浮止推轴承,其特征在于:气浮止推轴承本体(1)的下表面和基座(6)的上表面为光滑的平面。
3.根据权利要求1所述的微纳多孔节流静压气浮止推轴承,其特征在于:气浮止推轴承本体(1)的横截面积可以采用圆形、矩形、三角形、正方形等。
4.根据权利要求1所述的微纳多孔节流静压气浮止推轴承,其特征在于:气浮止推轴承本体(1)的微纳多孔(4)的分布可以采用十字型、米字形、井型、放射状型、口字型、H型、环形、矩形、圆形、三角形等。
5.根据权利要求1所述的微纳多孔节流静压气浮止推轴承,其特征在于:气浮轴承本体(1)下表面分布的微纳多孔(4)可以采用直孔、锥孔和斜孔等。
6.根据权利要求1所述的微纳多孔节流静压气浮止推轴承,其特征在于:气浮止推轴承本体(1)下表面布置一个或者多个微纳多孔节流器(2),即气浮止推轴承本体(1)可以在中心处设置一个微纳多孔节流器(2)、中心周围均匀分布多排微纳多孔节流器(2)(每排可以设置多个微纳多孔节流器)、中心处设置一个微纳多孔节流器(2)和中心周围均匀分布多排微纳多孔节流器(2)(每排可以设置多个微纳多孔节流器)。
7.根据权利要求1所述的微纳多孔节流静压气浮止推轴承,其特征在于:气浮止推轴承本体(1)的微纳多孔(4)直径大小为微米尺度和纳米级尺度,微纳多孔(4)数目可多达上百万级别,不同直径大小的多孔可以根据设计自由组合(微米级多孔组合、纳米级多孔组合或者微米级和纳米级混合多孔组合),然后通过优化进行合理布局(包括均匀分布和非均匀分布)。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011014238.1A CN114251360A (zh) | 2020-09-24 | 2020-09-24 | 一种微纳多孔节流静压气浮止推轴承 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011014238.1A CN114251360A (zh) | 2020-09-24 | 2020-09-24 | 一种微纳多孔节流静压气浮止推轴承 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN114251360A true CN114251360A (zh) | 2022-03-29 |
Family
ID=80789948
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202011014238.1A Withdrawn CN114251360A (zh) | 2020-09-24 | 2020-09-24 | 一种微纳多孔节流静压气浮止推轴承 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114251360A (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115263924A (zh) * | 2022-07-18 | 2022-11-01 | 中电科风华信息装备股份有限公司 | 一种气路及回路基于多孔材料和气道机构的混合型气浮轴承 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001027241A (ja) * | 1999-07-12 | 2001-01-30 | Hideo Nakajima | 静圧軸受装置および移動体案内装置 |
US20050117864A1 (en) * | 2003-12-01 | 2005-06-02 | Dziekan Michael E. | Method of synthesis and delivery of complex pharmaceuticals, chemical substances and polymers through the process of electrospraying, electrospinning or extrusion utilizing holey fibers |
CN101825142A (zh) * | 2010-06-01 | 2010-09-08 | 华中科技大学 | 一种单腔多孔式节流结构的气体轴承 |
CN102128206A (zh) * | 2011-03-15 | 2011-07-20 | 中国科学院光电技术研究所 | 一种空气静压止推轴承 |
CN105090950A (zh) * | 2015-08-31 | 2015-11-25 | 练敬忠 | 一种预蒸发自湍流油料燃烧机 |
CN106438701A (zh) * | 2016-10-21 | 2017-02-22 | 哈尔滨工业大学 | 多节流孔组合式的过缝能力增强型气足 |
-
2020
- 2020-09-24 CN CN202011014238.1A patent/CN114251360A/zh not_active Withdrawn
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001027241A (ja) * | 1999-07-12 | 2001-01-30 | Hideo Nakajima | 静圧軸受装置および移動体案内装置 |
US20050117864A1 (en) * | 2003-12-01 | 2005-06-02 | Dziekan Michael E. | Method of synthesis and delivery of complex pharmaceuticals, chemical substances and polymers through the process of electrospraying, electrospinning or extrusion utilizing holey fibers |
CN101825142A (zh) * | 2010-06-01 | 2010-09-08 | 华中科技大学 | 一种单腔多孔式节流结构的气体轴承 |
CN102128206A (zh) * | 2011-03-15 | 2011-07-20 | 中国科学院光电技术研究所 | 一种空气静压止推轴承 |
CN105090950A (zh) * | 2015-08-31 | 2015-11-25 | 练敬忠 | 一种预蒸发自湍流油料燃烧机 |
CN106438701A (zh) * | 2016-10-21 | 2017-02-22 | 哈尔滨工业大学 | 多节流孔组合式的过缝能力增强型气足 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115263924A (zh) * | 2022-07-18 | 2022-11-01 | 中电科风华信息装备股份有限公司 | 一种气路及回路基于多孔材料和气道机构的混合型气浮轴承 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110939656A (zh) | 一种倾斜节流式静压气浮轴承 | |
CN114251360A (zh) | 一种微纳多孔节流静压气浮止推轴承 | |
CN113124057B (zh) | 基于多环带排气的静压气浮止推轴承 | |
CN108825656A (zh) | 一种真空吸附型多孔质气体静压止推轴承 | |
CN114251362A (zh) | 一种微纳多孔节流气浮球面轴承 | |
CN114321178A (zh) | 一种微纳多孔节流静压气浮圆柱轴承 | |
CN101055000B (zh) | 高压大包角跑合型多孔变截面闭式气浮球轴承 | |
CN101968077B (zh) | 分体式并行微通道径向气体静压节流器 | |
CN106050919A (zh) | 一种真空预载气浮转台 | |
CN113217541A (zh) | 多孔质环带排气型静压气浮止推轴承 | |
CN205876987U (zh) | 一种真空预载气浮转台 | |
CN201013753Y (zh) | 一种高压大包角跑合型多孔变截面闭式气浮球轴承 | |
CN114251361A (zh) | 一种微纳多孔节流静压气浮圆锥轴承 | |
CN207728729U (zh) | 一种多孔质气体静压回转平台 | |
CN102207130A (zh) | 一种空气静压止推轴承 | |
CN219605837U (zh) | 精密球凹面气浮轴承 | |
CN111536150B (zh) | 一种表面节流的流体静压轴承、流体静压转台和流体静压主轴 | |
CN108061096A (zh) | 一种多孔质气体静压回转平台 | |
CN208919085U (zh) | 一种真空吸附型多孔质气体静压止推轴承 | |
CN117249166A (zh) | 一种气膜调控及气体回收的气浮轴承结构 | |
CN114517809B (zh) | 一种基于藕状定向多孔节流的气体静压轴承 | |
CN111237341A (zh) | 一种动静压混合作用的气体止推轴承 | |
CN211525346U (zh) | 一种倾斜节流式静压气浮轴承 | |
CN211525345U (zh) | V型节流式重载静压气浮轴承 | |
CN110939655A (zh) | V型节流式重载静压气浮轴承 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WW01 | Invention patent application withdrawn after publication |
Application publication date: 20220329 |
|
WW01 | Invention patent application withdrawn after publication |