CN114249727B - 基于阳离子型苝酰亚胺的全氟辛烷磺酸盐的荧光快速可视化检测方法 - Google Patents

基于阳离子型苝酰亚胺的全氟辛烷磺酸盐的荧光快速可视化检测方法 Download PDF

Info

Publication number
CN114249727B
CN114249727B CN202111141750.7A CN202111141750A CN114249727B CN 114249727 B CN114249727 B CN 114249727B CN 202111141750 A CN202111141750 A CN 202111141750A CN 114249727 B CN114249727 B CN 114249727B
Authority
CN
China
Prior art keywords
formula
perfluorooctane sulfonate
perylene bisimide
reaction
perylene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111141750.7A
Other languages
English (en)
Other versions
CN114249727A (zh
Inventor
姚志轶
张侨娟
廖梦雨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Agricultural University
Original Assignee
China Agricultural University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Agricultural University filed Critical China Agricultural University
Priority to CN202111141750.7A priority Critical patent/CN114249727B/zh
Publication of CN114249727A publication Critical patent/CN114249727A/zh
Application granted granted Critical
Publication of CN114249727B publication Critical patent/CN114249727B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
    • C07D471/06Peri-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • G01N21/643Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes" non-biological material
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1044Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • G01N2021/6432Quenching

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Molecular Biology (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Abstract

本发明提供了一种苝酰亚胺衍生物,具有式(I)所示结构。上述苝酰亚胺衍生物具有良好的水溶性,并且能够实现可视化且特异性地检测全氟辛烷磺酸盐。
Figure DDA0003284023770000011

Description

基于阳离子型苝酰亚胺的全氟辛烷磺酸盐的荧光快速可视化 检测方法
技术领域
本发明涉及持久性污染物检测技术领域,尤其涉及一种基于阳离子型苝酰亚胺的全氟辛烷磺酸盐的荧光快速可视化检测方法。
背景技术
全氟辛烷磺酸盐,是一种人工合成的、由磺酸基和全氟烷基构成的两亲性化合物,由于其良好的物理化学性质,使其在食品包装、纺织、化工等多个领域得到了广泛应用。但是全氟辛烷磺酸盐结构中大量的C-F键,使得该物质难以降解,造成环境污染和生物蓄积,是一种典型的持久性有机污染物。于2009年列入《关于持久性有机污染物的斯德哥尔摩公约》。
研究表明,全氟辛烷磺酸盐的蓄积会对动物以及人造成肝毒性、生殖毒性和神经毒性。因此,对环境样本例如水资源当中的全氟辛烷磺酸盐的快速准确检测,对于环境的监测和持久性有机污染物的预防具有重要意义。
发明内容
有鉴于此,本发明要解决的技术问题在于提供一种基于阳离子型苝酰亚胺的全氟辛烷磺酸盐的荧光快速可视化检测方法。
为解决上述技术问题,本发明提供了一种苝酰亚胺衍生物,具有式(I)所示结构:
Figure BDA0003284023750000011
上述式(I)所示结构的苝酰亚胺衍生物具有良好的水溶性,并且能够实现高灵敏度且特异性地检测全氟辛烷磺酸盐,在检测中呈现出明显的特异性和抗干扰能力。
另外,本发明提供的式(I)所示结构的苝酰亚胺衍生物是一种小分子阳离子型探针,包含具有良好光学活性的苝环结构和能够保证良好溶解性的侧链。
上述式(I)所示结构的化合物在溶液中构象和聚集状态对外界刺激展现出不同的状态,进而引起其光学特性的变化,如溶液荧光的开启或淬灭现象。
因此上述苝酰亚胺衍生物用于全氟辛烷磺酸盐的检测时,能够实现荧光响应的效果,即苝酰亚胺衍生物的荧光发生淬灭,并且在紫外灯照射下该淬灭效果肉眼可见。
并且,上述苝酰亚胺衍生物的检测限低至28nmol/L,且在溶液中的可视化效果明显,肉眼检测限低至5μmol/L。
本发明提供的苝酰亚胺衍生物之所以具有优异的全氟辛烷磺酸盐检测性能,可能是基于如下原理:本发明的苝酰亚胺衍生物与全氟辛烷磺酸盐可通过静电引力和疏水作用进行识别,在水溶液中二者形成稳定的超分子聚集体,导致探针荧光信号的改变。
本发明对于上述式(I)所示结构的苝酰亚胺衍生物的来源并无特殊限定,可以为一般市售或按照本领域技术人员熟知的方法制备。
为了获得更高质量和收率的式(I)所示结构的苝酰亚胺衍生物,本发明提供如下所述的优选的制备方法制备式(I)所示结构的苝酰亚胺衍生物,具体地:
本发明提供了上述苝酰亚胺衍生物的制备方法,包括以下步骤:
S1)将式(II)所示化合物与吡啶混合进行第一反应,得到式(Ⅲ)所示化合物;
S2)将式(Ⅲ)所示化合物与式(Ⅳ)所示化合物,在咪唑存在的条件下,进行第二反应,得到式(I)所示化合物;
Figure BDA0003284023750000021
Figure BDA0003284023750000022
Figure BDA0003284023750000023
Figure BDA0003284023750000031
本发明对上述式(Ⅳ)所示的化合物的来源没有特别的限制,例如可以通过商购获得,也可以通过采用现有技术提供的方法合成得到。
本发明优选的,所述第一反应的温度为70-80℃,更优选70℃;反应时间为4-6h,更优选4h。
本发明优选的,所述第二反应的温度为90-120℃,更优选90℃;反应时间为8-10h,更优选为8h。
本发明优选的,所述第二反应结束后,对体系进行后处理:
所得反应混合物依次进行除溶剂处理和沉淀处理,得到式(I)所示的化合物。
本发明优选的,所述沉淀处理具体包括:用盐酸沉淀产物,离心后将沉淀产物用水清洗后真空干燥。
本发明提供了上述式(I)所示的苝酰亚胺衍生物在检测全氟辛烷磺酸盐中的应用;
Figure BDA0003284023750000032
本发明还提供了一种检测全氟辛烷磺酸盐的方法,以式(I)所示的苝酰亚胺衍生物作为探针;
Figure BDA0003284023750000033
本发明优选的,所述探针的浓度为2μmol/L。
在本发明的一些实施例中,本发明具体检测方法如下:在5mmol/L pH=7.0的N-2-羟乙基哌嗪-N-2-乙磺酸(HEPES)缓冲液中,上述探针浓度为2μmol/L进行全氟辛烷磺酸盐检测的光谱测试,检测时激发波长为495nm,激发光和发射光的狭缝宽度为5.0nm。选择发射波长为547nm处的荧光强度计算荧光淬灭程度,以全氟辛烷磺酸盐的浓度作为横坐标,以荧光淬灭程度作为纵坐标,建立检测标准曲线。在5mmol/L pH=7.0的HEPES缓冲液中,上述探针为0.5μmol/L进行全氟辛烷磺酸盐的可视化检测,在紫外灯365nm照射下探针发生肉眼可识别的荧光淬灭。
实验结果表明,本发明提供的检测方法具有较高的检测效率和灵敏度。
本发明还提供了一种检测全氟辛烷磺酸盐的试剂、试纸或试剂盒,包括式(I)所示的苝酰亚胺衍生物;
Figure BDA0003284023750000041
与现有技术相比,本发明提供了一种苝酰亚胺衍生物,具有式(I)所示结构。上述苝酰亚胺衍生物具有良好的水溶性,并且能够实现可视化且特异性地检测全氟辛烷磺酸盐。
附图说明
图1为HEPES缓冲液中(5mmol/L pH=7.0)加入不同浓度全氟辛烷磺酸盐后苝酰亚胺衍生物探针(2μmol/L)的荧光淬灭程度(λex=495nm,λem=547nm);
图2为Tris缓冲液中(5mmol/L pH=7.0)苝酰亚胺衍生物探针(0.5μmol/L)与不同物质(5μmol/L)作用的相对荧光强度(λex=495nm,λem=547nm),(1Na+;2K+;3Ca2+;4Zn2+;5Al3 +;6Cu2+;7Fe3+;8Mg2+;9Ba2+;10Ag+;11Cd2+;12Cr3+;13NH4 +;14NO3 -;15SO4 2-;16Cl-;17I-;18全氟辛酸;19五氟丙酸;202,2,3,3,3,4,4,4,4-七氟-1-丁醇;21全氟乙酸;22全氟辛烷;23辛烷磺酸钠;24全氟丁烷磺酸25十二烷基硫酸钠;26十二烷基苯磺酸钠;27blank;28全氟辛烷磺酸盐);
图3为加入不同浓度全氟辛烷磺酸盐后(0,1,3,5,7μmol/L),苝酰亚胺衍生物探针(0.5μmol/L)在紫外灯365nm照射下荧光变化;
图4为加入不同物质(5μmol/L)后苝酰亚胺衍生物探针(0.5μmol/L)在紫外灯365nm照射下荧光变化(1NaCl;2KI;3CaCl2;4ZnCl2;5Al2(SO4)3;6CuCl2;7FeCl3;8MgCl2;9BaCl2;10AgNO3;11CdCl2;12CrCl3;13(NH4)2SO414全氟辛酸;15五氟丙酸;16 2,2,3,3,3,4,4,4,4-七氟-1-丁醇;17全氟乙酸;18全氟辛烷;19辛烷磺酸钠;20全氟丁烷磺酸21十二烷基硫酸钠;22十二烷基苯磺酸钠;23blank;24全氟辛烷磺酸盐);
图5为在自来水样品中(5mmol/L pH=7.0)加入不同浓度全氟辛烷磺酸盐后苝酰亚胺衍生物探针(2μmol/L)的荧光淬灭程度(λex=495nm,λem=547nm)。
具体实施方式
为了进一步说明本发明,下面结合实施例对本发明提供的基于阳离子型苝酰亚胺的全氟辛烷磺酸盐的荧光快速可视化检测方法进行详细描述。
备用物质的制备:
缓冲液的制备:称取N-2-羟乙基哌嗪-N-2-乙磺酸(HEPES)固体,用蒸馏水配制成250ml浓度为5mmol/L的HEPES缓冲溶液,用1mmol/L的氢氧化钠标准溶液调节其pH值为7.0。将其放于4℃冰箱中保存备用。
探针母液的制备:称取式(I)所述的固体,用蒸馏水配制成浓度为1mmol/L的母液,将其分装成相同体积的溶液于小瓶中备用。光谱测试时用配好的HEPES缓冲溶液(5mmol/L,pH=7.0)稀释至一定浓度用于测试。
待测物及干扰物的制备:将全氟辛烷磺酸盐用蒸馏水配制成浓度为1mmol/L储备液备用。其他干扰物用蒸馏水配制成1mmol/L的储备液。将这些溶液放于4℃冰箱中保存备用。
实际样品的制备:自来水取自当地实验室,经0.22μm微孔滤膜过滤,滤液用于实验。
实施例1
式(I)所示化合物的制备:
取247.96mg 2-溴乙胺氢溴酸盐与474.6mg吡啶加入到Schlenk管中,在70℃反应条件下搅拌4小时,得到式(Ⅲ)所示化合物。然后加入3.0g咪唑,在95℃条件下使溶液受热变为澄清暗黄色液体。加入196.0mg 3,4,9,10-苝四羧酸二酐,在90℃条件下搅拌8小时,冷却至室温后,将产物转移到离心管中,用2.0mol/L的HCl溶液降低溶液pH,直至不再产生沉淀。然后在条件设置为1000r/min的离心机中离心10min,去除上清液。加入纯净水清洗,反复清洗三次,真空干燥后即可获得最终产物,得到式(Ⅰ)所示化合物(以下简称为探针或苝酰亚胺衍生物)。
其表征如下:1H-NMR(500MHz,CF3COOD,ppm):9.189-9.111(d,4H),9.043-8.969(d,4H),8.943-8.865(d,4H),8.753-8.679(m,2H),8.265-8.190(m,4H),6.353-5.247(s,4H),5.184-5.107(s,4H).13C-NMR(125MHz,CF3COOD,ppm):165.389,146.405,144.859,136.600,133.012,129.527,128.584,126.562,124.461,121.498,59.740,40.816.Exact masscalcd for C38H26N4O4+:602.19.Found:602.19.
该探针在水中溶解良好,加水即可溶解。
实施例2
荧光光谱的测试:
取2μL的探针母液和950μL 5mmol/L的HEPES缓冲液混合加入到1mL的样品池中,混合均匀后,测定探针缓冲液的荧光光谱,记波长为547nm下荧光强度为I0。随后,向样品池中逐渐加入一定浓度梯度的全氟辛烷磺酸盐,混合均匀后测定相应的荧光光谱,并记录547nm下荧光强度为I。
结果如图1所示(也即,图1表示,HEPES(5mmol/L,pH=7.0)缓冲液中,前述苝酰亚胺衍生物在547nm处的荧光随全氟辛烷磺酸盐浓度的淬灭程度I/I0ex=495nm,激发光和发射光的狭缝宽度为5.0nm。)
前述苝酰亚胺衍生物在495nm的激发波长下被激发,发射出在547nm处最大发射峰,随着全氟辛烷磺酸盐的加入,前述苝酰亚胺衍生物的荧光发射强度逐渐降低,当全氟辛烷磺酸盐浓度滴加至5μmol/L时,前述苝酰亚胺衍生物的淬灭程度达到了96%。根据检测限的推算方法可知,苝酰亚胺衍生物对全氟辛烷磺酸盐的检测限为28nmol/L。
实施例3
选择性研究:
选取全氟辛烷磺酸盐所在的环境样本如水中可能出现的干扰物包括常见的阴、阳离子,其他全氟类干扰物以及其他常见表面活性剂:
Na+、K+、Ca2+、Zn2+、Al3+、Cu2+、Fe3+、Mg2+、Ba2+、Ag+、Cd2+、Cr3+、NH4 +、NO3 -、SO4 2-、Cl-、I-、全氟辛酸、五氟丙酸、2,2,3,3,3,4,4,4,4-七氟-1-丁醇、全氟乙酸、全氟辛烷、辛烷磺酸钠、全氟丁烷磺酸、十二烷基硫酸钠、十二烷基苯磺酸钠。测试中前述苝酰亚胺衍生物浓度为2μmol/L,所有干扰物浓度均为5μmol/L,在相同的测试条件下进行荧光光谱的测试。将加入干扰物前后苝酰亚胺衍生物在547nm处的吸收值作比值,I0/I作为衡量前述苝酰亚胺衍生物对待测物的影响程度的参数。
结果如图2所示(也即,图2表示,HEPES(5mmol/L,pH=7.0)缓冲液中,前述苝酰亚胺衍生物与全氟辛烷磺酸盐以及其他干扰物作用的相对吸收值图)。
从图中可以看出,除了全氟辛烷磺酸盐之外,所有其它物质的I0/I≈1,而全氟辛烷磺酸盐的I0/I=7.69,远高于其它化合物,此结果表明前述苝酰亚胺衍生物对全氟辛烷磺酸盐具有优异的选择性。
实施例4
可视化检测:
前述苝酰亚胺衍生物浓度为0.5μmol/L,加入不同浓度的全氟辛烷磺酸盐。
图3是加入不同浓度全氟辛烷磺酸盐在365nm的紫外灯照射下的照片,可以看出,随着全氟辛烷磺酸盐浓度的增加,相应的溶液荧光从黄色逐渐变暗直到完全淬灭,肉眼检测限为5μmol/L。
实施例5
为了更直观的观察前述苝酰亚胺衍生物与全氟辛烷磺酸盐及其干扰物相互作用后的效果图,在365nm的紫外灯照射下监测了前述苝酰亚胺衍生物在水溶液中对全氟辛烷磺酸盐选择性考察过程中的溶液荧光变化。
选择全氟辛烷磺酸盐以及前述干扰物质,如图4所示,当向0.5μmol/L前述苝酰亚胺衍生物中加入浓度为5μmol/L的干扰物后,溶液的荧光没有发生变化,而当全氟辛烷磺酸盐加入后,溶液荧光发生强烈淬灭。
实施例6
图5为自来水中全氟辛烷磺酸盐滴定的荧光响应。发现在0.1-1.0μmol/L的范围内存在良好线性,说明前述苝酰亚胺衍生物一定程度上可用于实际环境样本全氟辛烷磺酸盐的定量检测。
由上述结果可知,本发明的式(I)所示结构的苝酰亚胺衍生物具有良好的水溶性,并且能够实现高灵敏度且特异性地检测全氟辛烷磺酸盐,能够进行全氟辛烷磺酸盐的可视化检测。
以上实施例的说明只是用于帮助理解本发明的方法及其核心思想。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以对本发明进行若干改进和修饰,这些改进和修饰也落入本发明权利要求的保护范围内。

Claims (9)

1.一种苝酰亚胺衍生物,具有式(I)所示结构:
Figure FDA0003959462340000011
2.权利要求1所述的苝酰亚胺衍生物的制备方法,包括以下步骤:
S1)将式(II)所示化合物与吡啶混合进行第一反应,得到式(Ⅲ)所示化合物;
S2)将式(Ⅲ)所示化合物与式(Ⅳ)所示化合物,在咪唑存在的条件下,进行第二反应,得到式(I)所示化合物;
Figure FDA0003959462340000012
3.根据权利要求2所述的制备方法,其特征在于,所述第一反应的温度为70-80℃,反应时间为4-6h。
4.根据权利要求2所述的制备方法,其特征在于,所述第二反应的温度为90-120℃,反应时间为8-10h。
5.根据权利要求2所述的制备方法,其特征在于,所述第二反应结束后,对体系进行后处理:
所得反应混合物依次进行除溶剂处理和沉淀处理,得到式(I)所示的化合物。
6.根据权利要求5所述的制备方法,其特征在于,所述沉淀处理具体包括:用盐酸沉淀产物,离心后将沉淀产物用水清洗后真空干燥。
7.式(I)所示的苝酰亚胺衍生物在检测全氟辛烷磺酸盐中的应用;
Figure FDA0003959462340000021
8.一种检测全氟辛烷磺酸盐的方法,其特征在于,以式(I)所示的苝酰亚胺衍生物作为探针;
Figure FDA0003959462340000022
9.一种检测全氟辛烷磺酸盐的试剂、试纸或试剂盒,其特征在于,包括式(I)所示的苝酰亚胺衍生物;
Figure FDA0003959462340000023
CN202111141750.7A 2021-09-28 2021-09-28 基于阳离子型苝酰亚胺的全氟辛烷磺酸盐的荧光快速可视化检测方法 Active CN114249727B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111141750.7A CN114249727B (zh) 2021-09-28 2021-09-28 基于阳离子型苝酰亚胺的全氟辛烷磺酸盐的荧光快速可视化检测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111141750.7A CN114249727B (zh) 2021-09-28 2021-09-28 基于阳离子型苝酰亚胺的全氟辛烷磺酸盐的荧光快速可视化检测方法

Publications (2)

Publication Number Publication Date
CN114249727A CN114249727A (zh) 2022-03-29
CN114249727B true CN114249727B (zh) 2023-03-24

Family

ID=80790340

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111141750.7A Active CN114249727B (zh) 2021-09-28 2021-09-28 基于阳离子型苝酰亚胺的全氟辛烷磺酸盐的荧光快速可视化检测方法

Country Status (1)

Country Link
CN (1) CN114249727B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117447335B (zh) * 2023-12-26 2024-03-05 应急管理部天津消防研究所 一种pfos荧光探针及其应用和制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107238687A (zh) * 2017-05-27 2017-10-10 北京化工大学 一种利用羊角月牙藻检测水中全氟辛烷磺酸毒性的方法
CN110749562B (zh) * 2019-11-05 2021-11-30 广东药科大学 双波长比率紫外光谱法测定全氟辛烷磺酸的方法和应用
CN111521593B (zh) * 2020-05-12 2021-05-11 中国农业大学 一种基于水溶性苝酰亚胺衍生物的快速可视化检测方法

Also Published As

Publication number Publication date
CN114249727A (zh) 2022-03-29

Similar Documents

Publication Publication Date Title
Erdemir Fluorometric dual sensing of Hg2+ and Al3+ by novel triphenylamine appended rhodamine derivative in aqueous media
Yu et al. Cu 2+-selective naked-eye and fluorescent probe: its crystal structure and application in bioimaging
Cheng et al. “Reactive” probe for hydrogen sulfite:“turn-on” fluorescent sensing and bioimaging application
Yan et al. A selective turn-on fluorescent chemosensor based on rhodamine for Hg2+ and its application in live cell imaging
Hu et al. A colorimetric and “turn-on” fluorimetric chemosensor for the selective detection of cyanide and its application in food samples
Tian et al. A novel turn-on Schiff-base fluorescent sensor for aluminum (III) ions in living cells
Qin et al. A thiocoumarin-based colorimetric and ratiometric fluorescent probe for Hg 2+ in aqueous solution and its application in live-cell imaging
Mandal et al. Selective sensing of Hg2+ using rhodamine–thiophene conjugate: red light emission and visual detection of intracellular Hg2+ at nanomolar level
Yuan et al. Highly sensitive and selective turn-on fluorescent probes for Cu 2+ based on rhodamine B
Wang et al. A white-light-emitting single MOF sensor-based array for berberine homologue discrimination
Han et al. Colorimetric hydrazine detection and fluorescent hydrogen peroxide imaging by using a multifunctional chemical probe
Zhang et al. A BODIPY-based dual-responsive turn-on fluorescent probe for NO and nitrite
Li et al. A “turn-on” fluorescent chemosensor for zinc ion with facile synthesis and application in live cell imaging
CN106008343A (zh) 基于萘酰亚胺的汞离子荧光探针及其制备方法和应用
CN107629008B (zh) 一种菲并咪唑小分子Fe3+荧光探针及其合成方法
CN109134452B (zh) 一种荧光探针及其制备和应用
Xu et al. Selective fluorescence detection of anilines and Fe 3+ ions by two lanthanide metal–organic frameworks
CN114249727B (zh) 基于阳离子型苝酰亚胺的全氟辛烷磺酸盐的荧光快速可视化检测方法
Jeong et al. An ‘OFF–ON’fluorescent chemosensor based on rhodamine 6G-2-chloronicotinaldehyde for the detection of Al3+ ions: Part II
Gao et al. Ratiometric detection of hydroxy radicals based on functionalized europium (III) coordination polymers
Sun et al. An A–π–A′ structural ratiometric fluorescent probe based on benzo [e] indolium for bisulfite and its application in sugar samples and living cells
Wang et al. Two highly sensitive Schiff-base fluorescent indicators for the detection of Zn 2+
CN117447465B (zh) “on-off-on”型荧光探针、试剂、化学传感器、制备方法及用途
Kumar et al. A fluorescent chemodosimeter for hg 2+ based on a spirolactam ring-opening strategy and its application towards mercury determination in aqueous and cellular media
Liu et al. AIE based colorimetric and fluorescent sensor for the selective detection of CN− in aqueous media

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant