CN114244210B - 基于晶闸管中压直流接入的双馈风力发电系统及控制方法 - Google Patents

基于晶闸管中压直流接入的双馈风力发电系统及控制方法 Download PDF

Info

Publication number
CN114244210B
CN114244210B CN202111609700.7A CN202111609700A CN114244210B CN 114244210 B CN114244210 B CN 114244210B CN 202111609700 A CN202111609700 A CN 202111609700A CN 114244210 B CN114244210 B CN 114244210B
Authority
CN
China
Prior art keywords
stator
reference value
rotor
voltage
doubly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111609700.7A
Other languages
English (en)
Other versions
CN114244210A (zh
Inventor
崔学深
罗慧达
刘其辉
赵成勇
崔存岗
郭小江
汤海雁
申旭辉
李铮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huaneng Clean Energy Research Institute
North China Electric Power University
Huaneng Group Technology Innovation Center Co Ltd
Original Assignee
Huaneng Clean Energy Research Institute
North China Electric Power University
Huaneng Group Technology Innovation Center Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huaneng Clean Energy Research Institute, North China Electric Power University, Huaneng Group Technology Innovation Center Co Ltd filed Critical Huaneng Clean Energy Research Institute
Priority to CN202111609700.7A priority Critical patent/CN114244210B/zh
Publication of CN114244210A publication Critical patent/CN114244210A/zh
Application granted granted Critical
Publication of CN114244210B publication Critical patent/CN114244210B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • H02P9/007Control circuits for doubly fed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • H02P9/14Arrangements for controlling electric generators for the purpose of obtaining a desired output by variation of field
    • H02P9/26Arrangements for controlling electric generators for the purpose of obtaining a desired output by variation of field using discharge tubes or semiconductor devices
    • H02P9/30Arrangements for controlling electric generators for the purpose of obtaining a desired output by variation of field using discharge tubes or semiconductor devices using semiconductor devices
    • H02P9/305Arrangements for controlling electric generators for the purpose of obtaining a desired output by variation of field using discharge tubes or semiconductor devices using semiconductor devices controlling voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2101/00Special adaptation of control arrangements for generators
    • H02P2101/15Special adaptation of control arrangements for generators for wind-driven turbines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/76Power conversion electric or electronic aspects

Abstract

本发明涉及一种基于晶闸管中压直流接入的双馈风力发电系统及控制方法,双馈风力发电机(DFIG)的定子侧经转子侧换流器(RSC)、定子侧网端换流器(GSC)接双馈风力发电机(DFIG)的定子侧,双馈风力发电机(DFIG)的定子侧接变压器低压侧,晶闸管整流器接变压器高压侧;所述转子侧换流器(RSC)用于对双馈风力发电机(DFIG)的定子磁链进行调节,所述晶闸管整流器用于对双馈风力发电机(DFIG)的定子电压进行调节。本发明能够对定子电压和定子磁链进行有效调节,降低转子绕组及滑环电刷的容量要求,减少转子换流器成本。

Description

基于晶闸管中压直流接入的双馈风力发电系统及控制方法
技术领域
本发明涉及一种基于晶闸管中压直流接入的双馈风力发电系统及控制方法。
背景技术
发展新能源是解决能源危机,实现我国碳中和目标的重要举措。海上风电风能资源充足且利用率高,风电机组正不断向大容量化发展,目前已有许多风机厂商开发出5-8MW风电机组,并且还在向更大容量的机组发展。
对于应用于海上直流风电场中的风电机组,永磁直驱风电系统因其控制相对简单且容易维护,成为大容量海上风电机组的首选机型,但成本很高。
对于在风力发电中占有较大比重的双馈风电机组,大功率齿轮箱制造难度的增加是大容量化的一个制约因素,但更为关键的是,机组容量大型化后通常使转子侧的设计容量也随之增大(兆瓦级),转子侧电刷在高转差超同步运行时将难以承受如此大的功率和电流,转子绕组和滑环电刷的设计难度非常高甚至难以实现,这成为限制双馈机型在海上大容量风电机组中的应用的主要因素。
因此有必要研发出一种新型中压直流接入的海上双馈风力发电系统及宽压频范围控制方法,在全风速范围减小转差率和转差功率,降低转子绕组及滑环电刷的容量要求,并减少转子换流器成本,从而在一定程度上解决双馈电机大型化的瓶颈问题。同时,宽压频范围调节控制方法还能在全风速范围内减小系统损耗和提高运行效率。
发明内容
本发明的发明目的在于提供一种基于晶闸管中压直流接入的双馈风力发电系统及控制方法,能够对定子电压和定子磁链进行有效调节,降低转子绕组及滑环电刷的容量要求,减少转子换流器成本。
基于同一发明构思,本发明具有两个独立的技术方案:
1、一种基于晶闸管中压直流接入的双馈风力发电系统,包括双馈风力发电机(DFIG),
双馈风力发电机(DFIG)的转子侧经转子侧换流器(RSC)、定子侧网端换流器(GSC)接双馈风力发电机(DFIG)的定子侧,双馈风力发电机(DFIG)的定子侧接变压器低压侧,晶闸管整流器接变压器高压侧;
所述转子侧换流器(RSC)用于对双馈风力发电机(DFIG)的定子磁链进行调节,所述晶闸管整流器用于对双馈风力发电机(DFIG)的定子电压进行调节。
进一步地,包括第一PI调节单元,所述第一PI调节单元基于定子磁链参考值和定子有功功率参考值进行PI调节,获得转子电压参考值,基于所述转子电压参考值,通过脉冲宽度调制输出PMW信号,对转子侧换流器(RSC)进行控制。
进一步地,包括第二PI调节单元,所述第二PI调节单元基于定子电压参考值进行PI调节,获得晶闸管整流器的触发角参考值,基于所述触发角参考值,对晶闸管整流器进行控制。
进一步地,根据当前风力参数、当前转子转速,确定当前定子磁链参考值、定子电压参考值和定子有功功率参考值。
进一步地,根据当前风速确定当前定子电压参考值
进一步地,切入风速时设置定子电压参考值为晶闸管最小触发角所对应的电压,额定风速时设置定子电压参考值为额定定子电压。
进一步地,第一PI调节单元依次对定子磁链、转子电流d轴分量进行PI调节,获得转子电压d轴分量参考值;依次对定子有功功率、转子电流q轴分量进行PI调节,获得转子电压q轴分量参考值。
2、一种利用上述基于晶闸管中压直流接入的双馈风力发电系统的控制方法,包括如下步骤:
步骤1:通过电流传感器、电压传感器获得双馈风力发电机定、转子电流和定子电压;通过转速传感器获得双馈风力发电机转子转速;
步骤2:根据当前风力参数、当前转子转速,获得当前定子磁链参考值、定子电压参考值和定子有功功率参考值;
步骤3:根据定子磁链参考值,经PI调节获得转子电压参考值;根据当前定子电压参考值,经PI调节获得晶闸管整流器(直流电网侧换流器)的触发角参考值;
步骤4:基于转子电压参考值,通过脉冲宽度调制输出PMW信号,对转子侧换流器(RSC)进行控制,实现定子磁链调节;基于晶闸管整流器的触发角参考值,对晶闸管整流器进行控制,实现定子电压调节。
进一步地,步骤3中,第一PI调节单元基于定子磁链参考值和定子有功功率参考值进行PI调节,获得转子电压参考值;第二PI调节单元基于定子电压参考值进行PI调节,获得晶闸管整流器的触发角参考值。
进一步地,步骤3中,第一PI调节单元依次对定子磁链、转子电流d轴分量进行PI调节,获得转子电压d轴分量参考值;依次对定子有功功率、转子电流q轴分量进行PI调节,获得转子电压q轴分量参考值。
本发明具有的有益效果:
本发明双馈风力发电机(DFIG)的定子侧经转子侧换流器(RSC)、定子侧网端换流器(GSC)接双馈风力发电机(DFIG)的定子侧,双馈风力发电机(DFIG)的定子侧接变压器低压侧,晶闸管整流器接变压器高压侧;所述转子侧换流器(RSC)用于对双馈风力发电机(DFIG)的定子磁链进行调节,所述晶闸管整流器用于对双馈风力发电机(DFIG)的定子电压进行调节。本发明通过转子侧换流器(RSC)对定子磁链进行调节,通过晶闸管整流器(直流电网侧换流器)对定子电压进行调节,从而间接控制定子频率随风速转速变化而变化,在低风速下降低了频率,避免了DFIG内部的功率环流,能够有效降低损耗从而提高效率。本发明可以大大提高系统运行效率,还能够使得转子功率限制在一个较小的范围内,从而降低转子换流器、转子绕组电刷滑环等部件的容量要求,既减少了系统成本,又避免了电刷电流过大。本发明通过直流并网侧晶闸管整流器和DFIG转子侧RSC的协调控制为风电直流并网系统带来很大的灵活性,有望实现低功率时弱磁降耗、效率最优以及增强动态稳定性等一些常规运行难以实现的控制目标。
本发明包括第一PI调节单元,所述第一PI调节单元基于定子磁链参考值和定子有功功率参考值进行PI调节,获得转子电压参考值,基于所述转子电压参考值,通过脉冲宽度调制输出PMW信号,对转子侧换流器(RSC)进行控制。第一PI调节单元依次对定子磁链、转子电流d轴分量进行PI调节,获得转子电压d轴分量参考值;依次对定子有功功率、转子电流q轴分量进行PI调节,获得转子电压q轴分量参考值。本发明通过第一PI调节单元的具体设置,进一步保证了对定子磁链的有效调节,同时通过对定子有功功率进行调节,实现最大风能追踪,进一步提高系统运行效率。
本发明包括第二PI调节单元,所述第二PI调节单元基于定子电压参考值进行PI调节,获得晶闸管整流器的触发角参考值,基于所述触发角参考值,对晶闸管整流器进行控制。本发明通过第二PI调节单元的具体设置,进一步保证了对定子电压的有效调节。
本发明根据当前风力参数、当前转子转速,确定当前定子磁链参考值和定子有功功率参考值。根据当前风力参数、当前转子转速,确定当前定子电压参考值。切入风速时设置定子电压参考值为晶闸管最小触发角所对应的电压,额定风速时设置定子电压参考值为额定定子电压,由此建立风速、转子转速与定子电压参考值之间的线性关系;基于所述线性关系,根据当前转子转速,确定当前定子电压参考值。本发明根据当前风力参数、当前转子转速确定参考值,进一步保证对定子电压、定子磁链的协调控制,进而间接控制定子频率随风速转速变化而变化,提高系统运行效率,使得转子功率限制在一个较小的范围内,从而降低转子换流器、转子绕组电刷滑环等部件的容量要求。
附图说明
图1是本发明基于晶闸管中压直流接入的双馈风力发电系统原理图;
图2是本发明晶闸管整流器控制原理图;
图3是本发明转子侧换流器RSC控制原理图。
具体实施方式
下面结合附图所示的各实施方式对本发明进行详细说明,但应当说明的是,这些实施方式并非对本发明的限制,本领域普通技术人员根据这些实施方式所作的功能、方法、或者结构上的等效变换或替代,均属于本发明的保护范围之内。
实施例一:
基于晶闸管中压直流接入的双馈风力发电系统
如图1所示,双馈风力发电机DFIG的转子侧经转子侧换流器RSC、定子侧网端换流器GSC接双馈风力发电机DFIG的定子侧,双馈风力发电机DFIG的定子侧接变压器低压侧,晶闸管整流器接变压器高压侧;
所述转子侧换流器RSC用于对双馈风力发电机DFIG的定子磁链进行调节,所述晶闸管整流器用于对双馈风力发电机DFIG的定子电压进行调节。
图1中,各符号代表的含义为,usabc,isabc:定子三相电压电流;uvabc,ivabc:晶闸管交流侧三相电压电流;irabc:转子三相电流;ωr:转子角频率;U* s,Us:定子相电压幅值参考值和实际值;i* rd,i* rq:转子电流d轴q轴分量参考值;ψ*s,ψs:定子磁链参考值和实际值;α:晶闸管触发角;fs:定子频率。
如图1、图2所示,包括第一PI调节单元,所述第一PI调节单元基于定子磁链参考值和定子有功功率参考值进行PI调节,获得转子电压参考值,基于所述转子电压参考值,通过脉冲宽度调制输出PMW信号,对转子侧换流器RSC进行控制。第一PI调节单元依次对定子磁链、转子电流d轴分量进行PI调节,获得转子电压d轴分量参考值;依次对定子有功功率、转子电流q轴分量进行PI调节,获得转子电压q轴分量参考值。根据当前风力参数、当前转子转速,确定当前定子磁链参考值、定子电压频率参考值和定子有功功率参考值。实施时,在同步旋转的dq坐标系下,RSC的矢量控制中将定子磁链和定子有功功率作为外环,转子电流ird和irq作为内环,控制有功功率是为了实现最大风能追踪,而控制磁链是为了实现与晶闸管协调控制,使得定子频率间接得得到控制。根据实测的定子磁链和定子磁链参考值相比较,其误差通过PI调节输出得到转子电流d轴分量参考值ird*。MPPT控制的实现则是由转子电流q轴分量控制,定子功率参考值和实际值经PI调节输出得到转子电流q轴分量参考值irq*。将转子电流d、q轴分量的误差分别通过电流内环PI调节器,产生转子电压的参考信号,经过坐标变换和PWM调制产生控制RSC的开关信号。
图2中,各符号代表的含义为,usabc:定子三相电压;usαβ,isαβ:定子电压电流αβ分量;ωr:转子角频率;U* s,Us:定子相电压幅值参考值和实际值;α:晶闸管触发角。
如图1、图3所示,包括第二PI调节单元,所述第二PI调节单元基于定子电压参考值进行PI调节,获得晶闸管整流器的触发角α参考值,基于所述触发角参考值,对晶闸管整流器进行控制。根据当前风力参数、当前转子转速,确定定子电压参考值。切入风速时设置定子电压参考值为晶闸管最小触发角α=5°所对应的电压,额定风速时设置定子电压参考值为额定定子电压,由此建立风速、转子转速与定子电压参考值之间的线性关系;基于所述线性关系,根据当前转子转速,确定定子电压参考值。实施时,根据光码盘测出的DFIG实时转速ωr,得出该风速转速下的电压参考值,再将实测的定子电压与电压参考值相比较,其误差通过PI调节输出得到触发角α。通过对晶闸管触发角对定子电压控制,使得变压器低压侧的DFIG定子电压在合理范围内宽范围地调节,而RSC控制定子磁链保持不变,二者协调控制使得定子频率也同比例变化。
图3中,各符号代表的含义,usabc,isabc:定子三相电压电流;usαβ,isαβ:定子电压电流αβ分量;irabc:转子三相电流;ωr:转子角频率;θr:转子位置角;θs:定子磁链角;θs1:滑差角;ψ* ss:定子磁链参考值和实际值;P* s,Ps:定子有功功率参考值和实际值;i* rd,i* rq,ird,irq:转子电流d轴q轴分量参考值和实际值;u* rd,u* rq:转子电压d轴q轴分量参考值;u* rabc:转子电压三相电压参考值。
实施例二:
利用上述基于晶闸管中压直流接入的双馈风力发电系统的控制方法
步骤1:通过电流传感器、电压传感器获得双馈风力发电机定、转子电流和定子电压;通过转速传感器获得双馈风力发电机转子转速;
步骤2:根据当前风力参数、当前转子转速,获得当前定子磁链参考值、定子电压参考值和定子有功功率参考值;
步骤3:根据定子磁链参考值,经PI调节获得转子电压参考值;根据当前定子电压参考值,经PI调节获得晶闸管整流器(直流电网侧换流器)的触发角参考值;
步骤4:基于转子电压参考值,通过脉冲宽度调制输出PMW信号,对转子侧换流器(RSC)进行控制,实现定子磁链调节;基于晶闸管整流器的触发角参考值,对晶闸管整流器进行控制,实现定子电压调节。
步骤3中,第一PI调节单元基于定子磁链参考值和定子有功功率参考值进行PI调节,获得转子电压参考值;第二PI调节单元基于定子电压参考值进行PI调节,获得晶闸管整流器的触发角参考值。
步骤3中,第一PI调节单元依次对定子磁链、转子电流d轴分量进行PI调节,获得转子电压d轴分量参考值;依次对定子有功功率、转子电流q轴分量进行PI调节,获得转子电压q轴分量参考值。
上文所列出的一系列的详细说明仅仅是针对本发明的可行性实施方式的具体说明,它们并非用以限制本发明的保护范围,凡未脱离本发明技艺精神所作的等效实施方式或变更均应包含在本发明的保护范围之内。
对于本领域技术人员而言,显然本发明不限于上述示范性实施例的细节,而且在不背离本发明的精神或基本特征的情况下,能够以其他的具体形式实现本发明。因此,无论从哪一点来看,均应将实施例看作是示范性的,而且是非限制性的,本发明的范围由所附权利要求而不是上述说明限定,因此旨在将落在权利要求的等同要件的含义和范围内的所有变化囊括在本发明内。

Claims (8)

1.一种基于晶闸管中压直流接入的双馈风力发电系统,包括双馈风力发电机(DFIG),其特征在于:
双馈风力发电机(DFIG)的转子侧经转子侧换流器(RSC)、定子侧网端换流器(GSC)接双馈风力发电机(DFIG)的定子侧,双馈风力发电机(DFIG)的定子侧接变压器低压侧,晶闸管整流器接变压器高压侧;
所述转子侧换流器(RSC)用于对双馈风力发电机(DFIG)的定子磁链进行调节,所述晶闸管整流器用于对双馈风力发电机(DFIG)的定子电压进行调节;
包括第一PI调节单元,所述第一PI调节单元基于定子磁链参考值和定子有功功率参考值进行PI调节,获得转子电压参考值,基于所述转子电压参考值,通过脉冲宽度调制输出PMW信号,对转子侧换流器(RSC)进行控制;
包括第二PI调节单元,所述第二PI调节单元基于定子电压参考值进行PI调节,获得晶闸管整流器的触发角参考值,基于所述触发角参考值,对晶闸管整流器进行控制;
通过调节晶闸管触发角对定子电压控制,使得双馈风力发电机(DFIG)定子电压在合理范围内宽范围地调节,转子侧换流器(RSC)控制定子磁链保持不变,二者协调控制使得定子频率同比例变化。
2.根据权利要求1所述的基于晶闸管中压直流接入的双馈风力发电系统,其特征在于:根据当前风力参数、当前转子转速,确定当前定子磁链参考值、定子电压参考值和定子有功功率参考值。
3.根据权利要求1所述的基于晶闸管中压直流接入的双馈风力发电系统,其特征在于:根据当前风速确定当前定子电压参考值。
4.根据权利要求3所述的基于晶闸管中压直流接入的双馈风力发电系统,其特征在于:切入风速时设置定子电压参考值为晶闸管最小触发角所对应的电压,额定风速时设置定子电压参考值为额定定子电压。
5.根据权利要求1所述的基于晶闸管中压直流接入的双馈风力发电系统,其特征在于:第一PI调节单元依次对定子磁链、转子电流d轴分量进行PI调节,获得转子电压d轴分量参考值;依次对定子有功功率、转子电流q轴分量进行PI调节,获得转子电压q轴分量参考值。
6.一种利用权利要求1所述基于晶闸管中压直流接入的双馈风力发电系统的控制方法,其特征在于,包括如下步骤:
步骤1:通过电流传感器、电压传感器获得双馈风力发电机定、转子电流和定子电压;通过转速传感器获得双馈风力发电机转子转速;
步骤2:根据当前风力参数、当前转子转速,获得当前定子磁链参考值、定子电压参考值和定子有功功率参考值;
步骤3:根据定子磁链参考值,经PI调节获得转子电压参考值;根据当前定子电压参考值,经PI调节获得晶闸管整流器的触发角参考值;
步骤4:基于转子电压参考值,通过脉冲宽度调制输出PMW信号,对转子侧换流器(RSC)进行控制,实现定子磁链调节;基于晶闸管整流器的触发角参考值,对晶闸管整流器进行控制,实现定子电压调节。
7.根据权利要求6所述的方法,其特征在于:步骤3中,第一PI调节单元基于定子磁链参考值和定子有功功率参考值进行PI调节,获得转子电压参考值;第二PI调节单元基于定子电压参考值进行PI调节,获得晶闸管整流器的触发角参考值。
8.根据权利要求7所述的方法,其特征在于:步骤3中,第一PI调节单元依次对定子磁链、转子电流d轴分量进行PI调节,获得转子电压d轴分量参考值;依次对定子有功功率、转子电流q轴分量进行PI调节,获得转子电压q轴分量参考值。
CN202111609700.7A 2021-12-27 2021-12-27 基于晶闸管中压直流接入的双馈风力发电系统及控制方法 Active CN114244210B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111609700.7A CN114244210B (zh) 2021-12-27 2021-12-27 基于晶闸管中压直流接入的双馈风力发电系统及控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111609700.7A CN114244210B (zh) 2021-12-27 2021-12-27 基于晶闸管中压直流接入的双馈风力发电系统及控制方法

Publications (2)

Publication Number Publication Date
CN114244210A CN114244210A (zh) 2022-03-25
CN114244210B true CN114244210B (zh) 2024-04-16

Family

ID=80763227

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111609700.7A Active CN114244210B (zh) 2021-12-27 2021-12-27 基于晶闸管中压直流接入的双馈风力发电系统及控制方法

Country Status (1)

Country Link
CN (1) CN114244210B (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102957375A (zh) * 2011-08-26 2013-03-06 刘群 三相整流桥组成的低-中-高压“移相旋转”变频器及其调速系统
CN104979848A (zh) * 2015-06-11 2015-10-14 深圳市长昊机电有限公司 一种变流器系统及双馈式风力发电机组停机方法
CN105684297A (zh) * 2013-10-18 2016-06-15 Abb研究有限公司 具有dc输出的涡轮发电机系统
CN106099903A (zh) * 2016-07-25 2016-11-09 国网河北省电力公司电力科学研究院 一种双馈风力发电机并入直流输配电网的并网系统及其控制方法
EP3748797A1 (en) * 2019-06-07 2020-12-09 GE Energy Power Conversion Technology Ltd. Methods of operating doubly-fed induction generator systems
CN112234652A (zh) * 2020-11-09 2021-01-15 华能山东发电有限公司牟平风电分公司 一种双馈风电机组高电压穿越控制系统及其工作方法
CN113517696A (zh) * 2021-06-23 2021-10-19 天津滨电电力工程有限公司 孤岛模式开绕组双馈风力发电微电网系统的谐波消除设备
CN113517683A (zh) * 2021-08-09 2021-10-19 华北电力大学 转子侧储能的直流并网型双馈风力发电系统及其控制方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100668118B1 (ko) * 2005-12-30 2007-01-16 한국전기연구원 권선형 유도 발전기 제어용 전력변환장치 및 전력변환방법
WO2011037537A2 (en) * 2009-09-24 2011-03-31 Vestas Wind Systems A/S Method for controlling a power converter in a wind turbine generator

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102957375A (zh) * 2011-08-26 2013-03-06 刘群 三相整流桥组成的低-中-高压“移相旋转”变频器及其调速系统
CN105684297A (zh) * 2013-10-18 2016-06-15 Abb研究有限公司 具有dc输出的涡轮发电机系统
CN104979848A (zh) * 2015-06-11 2015-10-14 深圳市长昊机电有限公司 一种变流器系统及双馈式风力发电机组停机方法
CN106099903A (zh) * 2016-07-25 2016-11-09 国网河北省电力公司电力科学研究院 一种双馈风力发电机并入直流输配电网的并网系统及其控制方法
EP3748797A1 (en) * 2019-06-07 2020-12-09 GE Energy Power Conversion Technology Ltd. Methods of operating doubly-fed induction generator systems
CN112234652A (zh) * 2020-11-09 2021-01-15 华能山东发电有限公司牟平风电分公司 一种双馈风电机组高电压穿越控制系统及其工作方法
CN113517696A (zh) * 2021-06-23 2021-10-19 天津滨电电力工程有限公司 孤岛模式开绕组双馈风力发电微电网系统的谐波消除设备
CN113517683A (zh) * 2021-08-09 2021-10-19 华北电力大学 转子侧储能的直流并网型双馈风力发电系统及其控制方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
wide frequency operation control method of DFIG connected to DC grid with constant slip;Xueshen Cui;《2019 IEEE International Conference on Industrial Technology (ICIT)》;568-573 *

Also Published As

Publication number Publication date
CN114244210A (zh) 2022-03-25

Similar Documents

Publication Publication Date Title
Errami et al. Nonlinear control of MPPT and grid connected for wind power generation systems based on the PMSG
Singh et al. Performance of wind energy conversion system using a doubly fed induction generator for maximum power point tracking
CN110380449B (zh) 单极闭锁故障下风电直流送出系统协调控制方法
Youssef et al. MPPT control technique for direct-drive five-phase PMSG wind turbines with wind speed estimation
Oğuz et al. Power quality control and design of power converter for variable-speed wind energy conversion system with permanent-magnet synchronous generator
WO2021145877A1 (en) System and method for providing grid-forming control for a double-fed wind turbine generator
US20230318298A1 (en) Photovoltaic grid-connected system and control method therefor
CN114244210B (zh) 基于晶闸管中压直流接入的双馈风力发电系统及控制方法
AARIB et al. Control and investigation of operational characteristics of variable speed wind turbines with doubly fed induction generators
CN114244211B (zh) 海上双馈风力发电系统宽压频范围控制系统及方法
Bayhan et al. Active and reactive power control of grid connected permanent magnet synchronous generator in wind power conversion system
Liu et al. Research on the Modeling and Control Strategy of Offshore Wind Power Flexible DC Transmission System
Wang et al. Research on Reactive Power Control of the Grid-Side Converter of DFIG Based Wind Farm
Ma et al. Synchronverter-based control strategy for back-to-back converters in wind power applications
EP4117171A1 (en) Method and apparatus for computer-implemented controlling of a doubly-fed electric machine
US11967824B2 (en) Adaptive gain control for a reactive power regulator of an inverter-based resource
Adhav et al. Comparison and implementation of different PWM Schemes of inverter in wind turbine
Zhang et al. Power Analysis of 2 MW Brushless Doubly-Fed Induction Generator-Based Wind Energy Generation System
Sharma et al. Performance analysis of PMSG for wind turbine using optimum torque control and D-axis current control
Thakare et al. A review: Control strategy of Doubly Fed Induction Generator
KR102417708B1 (ko) 초전도케이블을 고려한 풍력발전단지의 lvrt 제어 시스템
Omerdic et al. A New Control Algorithm for Directly Interconnected Offshore Wind Turbine Generators
Zhang et al. Study of application of dynamic voltage restorer on low voltage ride-through capability of doubly fed induction generator
Ganti et al. Quantitative Analysis and Rating Considerations of a Doubly Fed Induction Generator for Wind Energy Conversion Systems
Garkki et al. Dynamic Analysis of Current Loops in a Wind Turbine based on Doubly fed Induction Generator

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant