CN114243306A - 一种闪电型可多项功能切换的太赫兹超表面 - Google Patents

一种闪电型可多项功能切换的太赫兹超表面 Download PDF

Info

Publication number
CN114243306A
CN114243306A CN202111558123.3A CN202111558123A CN114243306A CN 114243306 A CN114243306 A CN 114243306A CN 202111558123 A CN202111558123 A CN 202111558123A CN 114243306 A CN114243306 A CN 114243306A
Authority
CN
China
Prior art keywords
layer
graphene
super
switching
terahertz
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111558123.3A
Other languages
English (en)
Inventor
陈明
徐捷
成煜
苑立波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guilin University of Electronic Technology
Original Assignee
Guilin University of Electronic Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guilin University of Electronic Technology filed Critical Guilin University of Electronic Technology
Priority to CN202111558123.3A priority Critical patent/CN114243306A/zh
Publication of CN114243306A publication Critical patent/CN114243306A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/0006Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices
    • H01Q15/0086Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices said selective devices having materials with a synthesized negative refractive index, e.g. metamaterials or left-handed materials

Landscapes

  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

本发明提供的是一种闪电型可多项功能切换的太赫兹超表面的设计方法,属于多功能太赫兹超材料领域,可以实现太赫兹频段内圆二色性、极化转换、吸波以及非对称性传输的功能。其特征是:本发明所述的多功能超表面单元从下至上依次有一层金膜(1)和二氧化钒(2)组合而成的光栅,一层二氧化硅介质(4),一层图案化石墨烯层(3),一层二氧化硅介质(4),顶层是石墨烯(5)和光敏硅(6)层,各层之间相互贴合。通过时域有限积分方法对单元结构进行计算,实现各项功能之间的来回切换。该超表面具有强圆二色性,高极化转换,高吸收,高非对称性传输的特点。可用于生物医学检测,传感器,光学二极管等方面。

Description

一种闪电型可多项功能切换的太赫兹超表面
技术领域
本发明设计的是一种闪电型可多项功能切换的太赫兹超表面,属于多功能太赫兹超材料领域。该设计可以实现太赫兹频段内圆二色性,极化转换,吸波器以及非对称性传输的功能,各项功能之间可以相互切换,可用于生物医学检测,传感器,光学二极管,人工智能设计等方面。
背景技术
超材料是一种人工复合材料,一般由微纳结构单元阵列组成。根据麦克斯韦方程组,介质的介电常数和磁导率决定了电磁波在介质中的传播效果。理论上,通过合理设计超材料的结构参数和形状,超材料可以具有任意的介电常数和磁导率。因此,超材料在电磁波控制方面具有广泛的研究意义和应用前景。
随着超材料的发展和制造技术的提高,设计能够实现多项功能的超表面变得越来越迫切。2020年,《Thermally switchable bifunctional plasmonic metasurface forperfect absorption and polarization conversion based on VO2》一文提出了一种可以实现吸收和线偏振转换双功能的超表面。2021年,《Actively tunable bi-functionalmetamirror in a terahertz band》一文提出了可以实现圆二色性和偏振转换相互切换的电磁超表面。虽然目前通过在超表面中嵌入各种可调谐介质,如二极管、二氧化钒和石墨烯,已经实现了一些可切换的光电器件。然而,目前已有的大部分器件仅能实现一至两种功能的切换,且各项功能还存在工作频带窄,效率低以及可控性差的问题,距离真正的多功能还有着不小的差距。
本发明提出了一种闪电型可多项功能切换的太赫兹超表面的设计方法,可以利用二氧化钒以及光敏硅的可调性实现介质态和金属态的切换,通过调节石墨烯的费米能级,实现圆二色性,极化转换,吸波器以及非对称传输四项功能的切换。与传统超表面相比,由于多种可调材料的运用,具有灵活性高,多功能以及各项功能工作效率高的优点。
发明内容
针对现有电磁超表面中存在的不足,本发明的目的在于本发明设计的是一种闪电型可多项功能切换的太赫兹超表面的设计方法。
本发明的目的是这样实现的:
一种闪电型可多项功能切换的太赫兹超表面的设计方法,其特征是:它是一种五层结构器件,从下到上依次为底部金膜(1)和二氧化钒(2)组合而成的光栅层,一层二氧化硅(4)介质,一层图案化石墨烯层(3),一层二氧化硅(4)介质,顶部石墨烯(5)以及顶部光敏硅(6)层,各层之间相互贴合。所述周期性多功能超表面单元的横向和纵向的周期均为P=3μm,底层光栅的厚度为0.1μm,金膜和二氧化钒的长度均为3μm,宽度为0.3μm。中间层石墨烯由完整石墨烯切去两个顺时针旋转45°的直角三角形构成闪电状图案,两个直角三角形错开距离为1μm,三角形的短边为0.6μm,长边为2μm,图案位于石墨烯层的中心位置。顶层石墨烯的长为3μm,宽为1μm,石墨烯均设为二维材料。顶层光敏硅的厚度为0.2μm,长为3μm,宽为1μm。选用的介质材料二氧化硅的介电常数为2.25,上层介质材料的厚度为6μm,下层介质材料的厚度为5μm。
本发明采用的技术方案是:
步骤(1):研究石墨烯、二氧化钒以及光敏硅的动态电导率、介电常数等等,探索出电压以及泵浦光对材料的调制效果,选定研究频段为3-9THz,计算模拟相应频段的数据并记录。
步骤(2):输入石墨烯、二氧化钒以及光敏硅的材料数据,建立各个材料的模型。
步骤(3):在CST STUDIO SUITE 2019中建立仿真模型,做好数值计算以及参数优化。
本发明所产生的有益效果:
1、所述多功能超材料设计可以实现圆二色性、极化转化、吸波器以及非对称传输四项功能的自由切换。
2、所述多功能超材料通过外加电压使得二氧化钒处于金属态,顶部光敏硅不进行泵浦光激励,通过调节两层石墨烯费米能级产生的圆二色性功能可以达到85%。
3、所述多功能超材料通过外加电压使得二氧化钒处于金属态,顶部光敏硅不进行泵浦光激励,处于介质态,通过调节两层石墨烯的费米能级可以实现X偏振转Y偏振以及X偏振转圆偏振的功能,且调节顶部石墨烯可以实现左右旋圆偏振光的切换。偏振转换比接近100%。
4、所述多功能超材料底层不施加电压使得二氧化钒处于介质态,顶部光敏硅进行泵浦光激励,处于金属态,通过调节两层石墨烯的费米能级可以实现非对称传输的功能,非对称性传输最高可接近60%。
5、将所述多功能超材料中间闪电状图案的角度变为逆时针旋转25°,通过外加电压使得二氧化钒处于金属态,顶部光敏硅不进行泵浦光激励,处于介质态,以X偏振光入射,单独调节上下两层石墨烯的费米能级,可以实现吸收峰的独立调节,两吸收峰互不影响,吸收峰均高于90%。
附图说明
图1是本发明的单元结构示意图。1:金膜;2:二氧化钒;3:中间层石墨烯;4:二氧化硅;5:顶层石墨烯;6:顶层光敏硅。单元周期P=3μm,h1=0.1μm,h2=5μm,h3=6μm,h4=0.2μm,L1=1μm,L2=0.6μm,L3=2μm。
图2是本发明的底层结构图。周期P=3μm。
图3是本发明的中间层结构图。中间两个直角三角形顺时针旋转45°,组成闪电状图案,单元周期P=3μm,L1=1μm,L2=0.6μm,L3=2μm。
图4是本发明的顶部结构图。周期P=3μm。
图5是本发明对左右旋圆偏振光的吸收频谱以及圆二色性图。中间层石墨烯的费米能级为0.3eV,顶部石墨烯的费米能级为0.7eV;二氧化钒处于金属态,光敏硅处于介质态。
图6是本发明在X偏振光入射下,同极化和交叉极化的反射率以及相应的极化转换比的图。中间层石墨烯的费米能级为1eV,顶部石墨烯的费米能级为0.7eV;二氧化钒处于金属态,光敏硅处于介质态。
图7是本发明在X偏振光入射下,顶部石墨烯费米能级在0eV以及0.7eV时的椭圆率;二氧化钒处于金属态,光敏硅处于介质态。
图8是本发明在X和Y偏振光入射下,非对称传输的系数和偏振转换比的图。中间层石墨烯的费米能级为1eV,顶部石墨烯的费米能级为0.7eV;二氧化钒处于介质态,光敏硅处于金属态。
图9是本发明在x和Y偏振光入射下的透射率。中间层石墨烯的费米能级为1eV,顶部石墨烯的费米能级为0.7eV;二氧化钒处于介质态,光敏硅处于金属态。
图10是本发明在X偏振光入射下,中间层石墨烯闪电状图案逆时针旋转25°时的吸收和反射频谱图。中间层石墨烯的费米能级为0.3eV,顶部石墨烯的费米能级为1.2eV;二氧化钒处于金属态,光敏硅处于介质态。
图11是本发明在X偏振光入射下,中间层石墨烯闪电状图案逆时针旋转25°时,改变中间层石墨烯费米能级的吸收频谱图。顶部石墨烯的费米能级为1.2eV;二氧化钒处于金属态,光敏硅处于介质态。
图12是本发明在X偏振光入射下,中间层石墨烯闪电状图案逆时针旋转25°时,改变顶层石墨烯费米能级的吸收频谱图。中间层石墨烯的费米能级为0.3eV;二氧化钒处于金属态,光敏硅处于介质态。
具体实施方式
以下结合附图对本发明的具体实施方式做进一步的说明。
本发明设计了一种闪电型可多项功能切换的太赫兹超表面,具体实施方式为:
图1为本发明的单元结构示意图。采用的周期为P,厚度为0.1μm的金膜(1)和二氧化钒(2),每块金膜和二氧化钒的宽度为P/10。中间层石墨烯是镂空的闪电状图案,图案由两个直角三角形顺时针旋转45°形成,位于石墨烯层的中心位置,L1=1μm,L2=0.6μm,L3=2μm。两层介质材料均为二氧化硅,介电常数为2.25,下层厚度为5μm,上层厚度为6μm。顶层石墨烯长度为P,宽度为P/3,光敏硅位于中间,长为P,宽为P/3,厚度为0.2μm。
本发明选定的设计范围为3-9THz,选用周期P为3μm,金属态二氧化钒的电导率设定为300000S/m,介质态二氧化钒的介电常数设为9;金属态光敏硅的电导率设定为100000S/m,介质态光敏硅的介电常数设为11.7,电导率设为1S/m。
图2为底部设计结构图。金膜和二氧化钒的长度均为3μm,宽度均为0.3μm。
图3为中间石墨烯设计结构图。周期为3μm,中间挖去两个顺时针旋转45°的直角三角形,两个直角三角形错开距离为L1=1μm,短直角边为L2=0.6μm,长直角边为L3=2μm。
图4为顶层石墨烯和光敏硅的设计结构图。它们的长均为P=3μm,宽均为P/3=1μm,光敏硅的厚度为h4=0.2μm。
图5为本发明对左右旋圆偏振光的吸收频谱以及圆二色性图。中间层石墨烯的费米能级为0.3eV,顶部石墨烯的费米能级为0.7eV;二氧化钒处于金属态,用于抑制入射波的透射,光敏硅处于介质态。所以左旋圆偏振光的吸收率为ALCP=1-RLL-RRL,右旋圆偏振光的吸收率为ARCP=1-RRR-RLR,圆二色性为CD=ALCP-ARCP。在我们的设计中,相邻顶部石墨烯条之间的相互作用导致部分吸收。在4.22THz时,LCP波和RCP波在反射过程中分别出现了近π/2相位的累积,且符号相反,所以具有相反手性的反射波之间的总相位差约为π,导致RCP入射时的相消干涉和LCP入射时的相长干涉同时发生。因此,RCP波几乎被完全吸收,而LCP波被极大地反射,从而产生最大的圆二色性,CD达到0.85。
图6为本发明在X偏振光入射下,同极化和交叉极化的反射率以及相应的极化转换比的图。中间层石墨烯的费米能级为1eV,顶部石墨烯的费米能级为0.7eV;二氧化钒处于金属态,光敏硅处于介质态。石墨烯层的局域表面等离子共振引起了线偏振转换的功能,偏振转换比接近100%。与此同时,在7.11和8.51THz处,偏振转换比为50%,说明Ryx=Rxx,由图7可以看出,在7.11和8.51THz处,椭圆率接近-1,说明实现了X偏振光转为右旋圆偏振光。当顶层石墨烯费米能级变为0eV时,第一个峰值变为1,说明实现了X偏振光转为左旋圆偏振光。
图8为本发明在x和Y偏振光入射下,非对称传输的系数和偏振转换比的图。中间层石墨烯的费米能级为1eV,顶部石墨烯的费米能级为0.7eV;二氧化钒处于介质态,光敏硅处于金属态。在光线正向(+Z)照射下,X偏振光的极化转换比接近100%,非对称性接近60%;Y偏振光的极化转换比接近0%,非对称性接近-60%。且由图9可以看出,交叉偏振率Tyx和Txx之间存在明显的差异,同极化偏振均接近0,因此,我们推断出本发明可以实现非对称传输的功能。
图10为本发明在X偏振光入射下,中间层石墨烯闪电状图案逆时针旋转25°时的吸收和反射频谱图,对图案进行旋转是为了抑制交叉极化转换。中间层石墨烯的费米能级为0.3eV,顶部石墨烯的费米能级为1.2eV;二氧化钒处于金属态,光敏硅处于介质态,因此,入射光不能透射只能反射,所以吸收率的计算公式由A(ω)=1-R(ω)-T(ω)=1-|S11|2-|S21|2变为A(ω)=1-R(ω)=1-|S11|2。从图中可以看出,本发明可以形成两个90%以上的吸收峰。由图11和图12可以看出,单独调节中间层和顶层石墨烯可以对一个吸收峰进行独立调节,而对另一个吸收峰几乎没有影响。这就说明第一吸收峰主要是由中间层石墨烯引起的,第二吸收峰主要是由顶部石墨烯引起的,由此实现了本发明吸收独立可调的功能。

Claims (7)

1.一种闪电型可多项功能切换的太赫兹超表面,其特征是:它是一种五层结构器件,从下到上依次为底部金膜(1)和二氧化钒(2)组合而成的光栅层,一层二氧化硅(4)介质,一层图案化石墨烯层(3),一层二氧化硅(4)介质,顶部石墨烯(5)以及顶部光敏硅(6)层,各层之间相互贴合。所述周期性多功能超表面单元的横向和纵向的周期均为P,中间闪电型石墨烯层由两个直角三角形顺时针旋转45°组成,位于中心位置。
2.根据权利要求1所述的一种闪电型可多项功能切换的太赫兹超表面,其特征在于其单个结构周期为P=3μm。
3.根据权利要求1所述的一种闪电型可多项功能切换的太赫兹超表面,其特征在于底部金膜和二氧化钒的厚度设为0.1μm,长度为3μm,宽度为0.3μm。其功能是通过二氧化钒介质态和金属态的切换实现光栅和完全反射功能的切换,下层二氧化硅介质层的厚度为5μm,上层二氧化硅介质层的厚度为6μm,二氧化硅的介电常数为2.25。
4.根据权利要求1所述的一种闪电型可多项功能切换的太赫兹超表面,其特征在于中间层石墨烯由完整石墨烯切去两个顺时针旋转45°的直角三角形构成闪电状图案,两个直角三角形错开距离为1μm,三角形的短边为0.6μm,长边为2μm。
5.根据权利要求1所述的一种闪电型可多项功能切换的太赫兹超表面,其特征在于顶层石墨烯的长为3μm,宽为1μm。顶层光敏硅的长为3μm,宽为1μm。
6.根据权利要求1所述的一种闪电型可多项功能切换的太赫兹超表面,其特征在于所述石墨烯,二氧化钒,光敏硅具有可调性,从而实现圆二色性,极化转换,吸波器,非对称性传输功能的切换。
7.根据权利要求1所述的一种闪电型可多项功能切换的太赫兹超表面,其特征在于所述发明工作在3-9THz频段内。
CN202111558123.3A 2021-12-18 2021-12-18 一种闪电型可多项功能切换的太赫兹超表面 Pending CN114243306A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111558123.3A CN114243306A (zh) 2021-12-18 2021-12-18 一种闪电型可多项功能切换的太赫兹超表面

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111558123.3A CN114243306A (zh) 2021-12-18 2021-12-18 一种闪电型可多项功能切换的太赫兹超表面

Publications (1)

Publication Number Publication Date
CN114243306A true CN114243306A (zh) 2022-03-25

Family

ID=80758770

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111558123.3A Pending CN114243306A (zh) 2021-12-18 2021-12-18 一种闪电型可多项功能切换的太赫兹超表面

Country Status (1)

Country Link
CN (1) CN114243306A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114709624A (zh) * 2022-04-12 2022-07-05 西安电子科技大学 一种具有圆极化波非对称传输与单向吸波双功能的超表面
CN114755847A (zh) * 2022-05-09 2022-07-15 电子科技大学 一种基于vo2的可切换的太赫兹波束调控器件及其制备方法
CN115877596A (zh) * 2022-12-20 2023-03-31 中国人民解放军军事科学院系统工程研究院 一种基于石墨烯可调控的透射型太赫兹偏振转换器
CN117748149A (zh) * 2023-12-28 2024-03-22 江西师范大学 一种非对称性传输和极化转换功能可切换的超表面

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114709624A (zh) * 2022-04-12 2022-07-05 西安电子科技大学 一种具有圆极化波非对称传输与单向吸波双功能的超表面
CN114709624B (zh) * 2022-04-12 2023-04-21 西安电子科技大学 一种具有圆极化波非对称传输与单向吸波双功能的超表面
CN114755847A (zh) * 2022-05-09 2022-07-15 电子科技大学 一种基于vo2的可切换的太赫兹波束调控器件及其制备方法
CN114755847B (zh) * 2022-05-09 2023-11-14 电子科技大学 一种基于vo2的可切换的太赫兹波束调控器件及其制备方法
CN115877596A (zh) * 2022-12-20 2023-03-31 中国人民解放军军事科学院系统工程研究院 一种基于石墨烯可调控的透射型太赫兹偏振转换器
CN117748149A (zh) * 2023-12-28 2024-03-22 江西师范大学 一种非对称性传输和极化转换功能可切换的超表面
CN117748149B (zh) * 2023-12-28 2024-08-27 江西师范大学 一种非对称性传输和极化转换功能可切换的超表面

Similar Documents

Publication Publication Date Title
CN114243306A (zh) 一种闪电型可多项功能切换的太赫兹超表面
Du et al. An ultra-broadband terahertz metamaterial coherent absorber using multilayer electric ring resonator structures based on anti-reflection coating
Fang et al. Broadband cross-circular polarization carpet cloaking based on a phase change material metasurface in the mid-infrared region
CN111596399B (zh) 蓝光波段非对称超材料偏振调控器及其制造方法
KR102239427B1 (ko) 메타물질로 만든 구성요소를 포함하는 광학 다이오드
Zhou et al. Terahertz metamaterial modulators based on absorption
KR20110022681A (ko) 광학 메타편광자 장치
CN213151025U (zh) 一种超宽带反射型圆极化电磁波相位调控超表面单元结构
CN112162421A (zh) 一种基于多层石墨烯-介质复合超表面的反射式宽带可调偏振转换器
CN111048908B (zh) 一种光学透明型宽带超表面Salisbury屏吸波结构设计方法
CN107121715A (zh) 一种基于耦合米氏共振的大面积宽入射角超表面完全吸收体及其制备方法
CN113013631A (zh) 一种双频功能性超表面及其设计方法
Huang et al. Broadband linear polarizer with high-efficient asymmetric transmission using a chiral metasurface
CN114740562B (zh) 一种能够实现双波段偏振转换的t型光学二极管
Lian et al. Vanadium dioxide based bifunctional metasurface for broadband absorption and cross-polarization conversion in THz range
Li et al. Dual-frequency multi-function switchable metasurface
CN111273462B (zh) 光学腔与石墨烯复合结构吸波器
CN109921194B (zh) 一种基于非对称裂缝的宽带太赫兹四分之一波片
Pramanik et al. Metasurface Based Reflective Polarization Converter with Wideband and High Efficiency Functionalities
Wu et al. Design of an ultra-wide-angle reflective polarization conversion metasurfaces
CN117452546B (zh) 一种基于色散补偿机理的双层光栅宽带太赫兹偏振波片
Xiao et al. Broadband and high-efficiency circular-polarized terahertz frequency scanning metasurface
CN220895858U (zh) 一种基于钙钛矿材料超表面的高手性可调太赫兹吸波器
Zhu et al. Ultrawideband Tunable Polarization Converter Based on Metamaterials
CN117748149B (zh) 一种非对称性传输和极化转换功能可切换的超表面

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination