CN114243129A - 一种基于半导体热电转换的电池热失控抑制系统及方法 - Google Patents

一种基于半导体热电转换的电池热失控抑制系统及方法 Download PDF

Info

Publication number
CN114243129A
CN114243129A CN202111395369.3A CN202111395369A CN114243129A CN 114243129 A CN114243129 A CN 114243129A CN 202111395369 A CN202111395369 A CN 202111395369A CN 114243129 A CN114243129 A CN 114243129A
Authority
CN
China
Prior art keywords
battery
thermoelectric conversion
semiconductor thermoelectric
thermal runaway
evaporator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111395369.3A
Other languages
English (en)
Inventor
李泽宇
陈嘉衍
陈宏铠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China University of Technology SCUT
Original Assignee
South China University of Technology SCUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China University of Technology SCUT filed Critical South China University of Technology SCUT
Priority to CN202111395369.3A priority Critical patent/CN114243129A/zh
Publication of CN114243129A publication Critical patent/CN114243129A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/617Types of temperature control for achieving uniformity or desired distribution of temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6567Liquids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Secondary Cells (AREA)

Abstract

本发明公开了一种基于半导体热电转换的电池热失控抑制系统及方法;蒸发器置于电池内部,半导体热电转换模块紧贴电池侧面,散热器紧贴半导体热电转换模块;半导体热电转换模块由电路连接液泵;液泵与蒸发器、截止阀、冷凝器、储液罐依次相连。本发明借鉴固有安全的理念,通过半导体热电转换模块将热失控被诱发后电池内部化学反应产生的热量转变为动力,驱动液泵在电池与冷凝器之间以环路热管的方式冷却电池,实现不借助于其它额外动力设备而仅由电池自身物理特性抑制热失控的目的。

Description

一种基于半导体热电转换的电池热失控抑制系统及方法
技术领域
本发明涉及电池热失控抑制系统,尤其涉及一种基于半导体热电转换的电池热失控抑制系统及方法。
背景技术
燃油汽车尾气的二氧化碳排放量备受关注。
由于电动汽车不存在尾气排放问题,因此受到广泛关注并发展迅速。
然而,作为电动汽车核心部件的电池极易在各种极端条件下出现热失控并引发各类安全性事故,成为影响电动汽车发展的首要问题。所以,采用有效措施抑制电池热失控对电动汽车发展是至关重要的。
目前电池热失控防控技术大致分为两大类:一类是通过提高电极、电解质与隔膜等电池内部材料的热稳定性以降低热失控发生概率;另一类是采用外部强制冷却方式及时排出电池内部化学反应所产生的热量,从而减缓电池升温速率,使电池温度低于热失控触发温度以避免热失控。
尽管改善电池内部材料的热稳定性有助于提高安全性,一旦热失控被诱发,通过外部强制冷却对电池进行有效散热是热失控的主要防控措施。
然而,由于热失控被诱发后电池电压将迅速衰减至零,并且车内空间紧凑,较难安装备用电源,所以当前外部强制冷却手段无法在热失控条件下运行时,电池温度将迅速升高并最终造成热失控。
发明内容
本发明的目的在于克服上述现有技术的缺点和不足,提供一种基于半导体热电转换的电池热失控抑制系统及方法。本发明借鉴固有安全的理念,通过半导体热电转换模块,将热失控被诱发后电池内部化学反应产生的热量转变为动力,驱动液泵在电池与冷凝器之间以环路热管的方式冷却电池,实现不借助于其它额外动力设备而仅由电池自身物理特性抑制热失控的目的。
本发明通过下述技术方案实现:
一种基于半导体热电转换的电池热失控抑制系统,包括:
电池1、半导体热电转换模块2、液泵3、蒸发器4、截止阀5、冷凝器6、储液罐7和散热器8;
蒸发器4置于电池1内部;
电池1、半导体热电转换模块2和散热器8依次紧密贴合;
半导体热电转换模块2与液泵3电连接;
液泵3的出口,由管路连接蒸发器4的底部入口;蒸发器4的顶部出口,由管路依次连接截止阀5、冷凝器6、储液罐7、液泵3的入口。
该电池热失控抑制系统,还包括温度传感器9和控制器10;
温度传感器9安装在电池1侧面;
控制器10分别信号连接温度传感器9、液泵3和截止阀5。
本发明基于半导体热电转换的电池热失控抑制系统的运行方法,包括如下步骤:
一.半导体热电转换运行步骤
控制器10不断获取温度传感器9的温度数值;
当温度传感器9探测到电池1出现异常高温,约为90~120℃时,控制器10发出信号,使电池1驱动截止阀5开启;
此时电池1的一部分热量传递给半导体热电转换模块2,并对电池1冷却;
半导体热电转换模块2将来自电池1的一部分热量转化为电能,以驱动液泵3,剩余热量则通过散热器8传递至环境;
当电池1电压衰减至零时,截止阀5通过半导体热电转换模块2供电,以维持截止阀5开启;
二.环路热管冷却运行步骤
当液泵3被半导体热电转换模块2启动后,其将储液罐7中液态冷却剂驱动至蒸发器4,液态冷却剂以约3~10℃换热端差在蒸发器4内吸热蒸发并对电池1实现冷却,蒸发器4内的气态冷却剂在压力差驱动下进入冷凝器6并被冷凝为约比蒸发温度低2~10℃的液态冷却剂,从而完成环路热管冷却循环。
因为上述环路热管冷却能力主要与液泵3输出特性正相关,而液泵3输出特性则与电池1温度正相关,所以半导体热电转换运行步骤与环路热管冷却运行步骤共同构成了对热失控过程中的电池温度的负反馈抑制调控。即电池1温度升高,半导体热电运行步骤所输出的电能增加并增强液泵3的输出特性,从而提高环路热管冷却运行步骤的冷却能力,对电池1形成更显著的降温与抑制温度升高作用。
蒸发器4为直接膨胀式蒸发器。
散热器8为风冷式换热器。
冷凝器6为风冷式换热器。
截止阀5为电磁截止阀。
电池1是指由多个电池单体串联和/或并联而成的电池组。
本发明相对于现有技术,具有如下的优点及效果:
本发明蒸发器4置于电池1内部;电池1、半导体热电转换模块2和散热器8依次紧密贴合;半导体热电转换模块2与液泵3电连接;液泵3的出口,由管路连接蒸发器4的底部入口;蒸发器4的顶部出口,由管路依次连接截止阀5、冷凝器6、储液罐7、液泵3的入口。本发明采用上述系统布局,在不依赖于其它额外动力设备条件下,利用热失控过程中电池自身物理特性产生动力,结合外部冷却措施减缓热失控过程中的电池升温速率甚至降低电池温度,有效改善热失控被诱发后电池缺乏冷却所致的温度快速升高并引发起火爆炸等问题,使电池具有类似于固有安全的高可靠性。
本发明提出的基于半导体热电转换的电池热失控抑制系统,在热失控过程中具有显著的冷却能力,主要通过半导体热电转换与环路热管两种方式共同冷却电池。此外,电池温度上升将提高半导体热电转换模块输出特性,从而本发明的电池冷却能力将随其温度增加而增强,形成电池温度的负反馈调控特性,对电池热失控实现有效抑制。
附图说明
图1为本发明基于半导体热电转换的电池热失控抑制系统结构示意图。
具体实施方式
下面结合具体实施例对本发明作进一步具体详细描述。
实施例
如图1所示。本发明公开了一种基于半导体热电转换的电池热失控抑制系统,包括:
电池1、半导体热电转换模块2、液泵3、蒸发器4、截止阀5、冷凝器6、储液罐7和散热器8;
蒸发器4置于电池1内部;
电池1、半导体热电转换模块2和散热器8依次紧密贴合;
半导体热电转换模块2与液泵3电连接;
液泵3的出口,由管路连接蒸发器4的底部入口;蒸发器4的顶部出口,由管路依次连接截止阀5、冷凝器6、储液罐7、液泵3的入口。
该电池热失控抑制系统,还包括温度传感器9和控制器10;
温度传感器9安装在电池1侧面;
控制器10分别信号连接温度传感器9、液泵3和截止阀5。
蒸发器4为直接膨胀式蒸发器。
散热器8为风冷式换热器。
冷凝器6为风冷式换热器。
截止阀5为电磁截止阀。
电池1是指由多个电池单体串联和/或并联而成的电池组。
本发明电池热失控抑制系统的控制过程中,借鉴固有安全的理念,通过半导体热电转换模块,将热失控被诱发后电池内部化学反应产生的热量转变为动力,驱动液泵在电池与冷凝器之间以环路热管的方式冷却电池,实现不借助于其它额外动力设备而仅由电池自身物理特性抑制热失控的目的。
实现过程如下:
一.半导体热电转换运行步骤
控制器10不断获取温度传感器9的温度数值;
当温度传感器9探测到电池1出现异常高温,约为90~120℃时,控制器10发出信号,使电池1驱动截止阀5开启;
此时电池1的一部分热量传递给半导体热电转换模块2,并对电池1冷却;
半导体热电转换模块2将来自电池1的一部分热量转化为电能,以驱动液泵3,剩余热量则通过散热器8传递至环境;
当电池1电压衰减至零时,截止阀5通过半导体热电转换模块2供电,以维持截止阀5开启;
二.环路热管冷却运行步骤
当液泵3被半导体热电转换模块2启动后,其将储液罐7中液态冷却剂驱动至蒸发器4,液态冷却剂以约3~10℃换热端差在蒸发器4内吸热蒸发并对电池1实现冷却,蒸发器4内的气态冷却剂在压力差驱动下进入冷凝器6并被冷凝为约比蒸发温度低2~10℃的液态冷却剂,从而完成环路热管冷却循环。
因为上述环路热管冷却能力,主要与液泵3输出特性正相关,而液泵3输出特性则与电池1温度正相关,所以半导体热电转换运行步骤与环路热管冷却运行步骤,共同构成了对热失控过程中的电池温度的负反馈抑制调控。即电池1温度升高,半导体热电运行步骤所输出的电能增加并增强液泵3的输出特性,从而提高环路热管冷却运行步骤的冷却能力,对电池1形成更显著的降温与抑制温度升高作用。
如上所述,便可较好地实现本发明。
本发明的实施方式并不受上述实施例的限制,其他任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (9)

1.一种基于半导体热电转换的电池热失控抑制系统,其特征在于,包括:
电池(1)、半导体热电转换模块(2)、液泵(3)、蒸发器(4)、截止阀(5)、冷凝器(6)、储液罐(7)和散热器(8);
蒸发器(4)置于电池(1)内部;
电池(1)、半导体热电转换模块(2)和散热器(8)依次紧密贴合;
半导体热电转换模块(2)与液泵(3)电连接;
液泵(3)的出口,由管路连接蒸发器(4)的底部入口;蒸发器(4)的顶部出口,由管路依次连接截止阀(5)、冷凝器(6)、储液罐(7)、液泵(3)的入口。
2.根据权利要求1所述基于半导体热电转换的电池热失控抑制系统,其特征在于:该电池热失控抑制系统,还包括温度传感器(9)和控制器(10);
温度传感器(9)安装在电池(1)侧面;
控制器(10)分别信号连接温度传感器(9)、液泵(3)和截止阀(5)。
3.权利要求1-2中,任一项所述基于半导体热电转换的电池热失控抑制系统的运行方法,其特征在于包括如下步骤:
半导体热电转换运行步骤:
控制器(10)不断获取温度传感器(9)的温度数值;
当温度传感器(9)探测到电池(1)出现高温时,控制器(10)发出信号,使电池(1)驱动截止阀(5)开启;
此时电池(1)的一部分热量传递给半导体热电转换模块(2),并对电池(1)冷却;
半导体热电转换模块(2)将来自电池(1)的一部分热量转化为电能,以驱动液泵(3),剩余热量则通过散热器(8)传递至环境;
当电池(1)电压衰减至零时,截止阀(5)通过半导体热电转换模块(2)供电,以维持截止阀(5)开启;
环路热管冷却运行步骤:
当液泵(3)被半导体热电转换模块(2)启动后,其将储液罐(7)中液态冷却剂驱动至蒸发器(4),液态冷却剂以3~10℃换热端差在蒸发器(4)内吸热蒸发并对电池(1)实现冷却,蒸发器(4)内的气态冷却剂在压力差驱动下进入冷凝器(6)并被冷凝为约比蒸发温度低2~10℃的液态冷却剂,从而完成环路热管冷却循环。
4.根据权利要求3所述基于半导体热电转换的电池热失控抑制系统,其特征在于:高温是指90~120℃。
5.根据权利要求4所述基于半导体热电转换的电池热失控抑制系统,其特征在于:蒸发器(4)为直接膨胀式蒸发器。
6.根据权利要求5所述基于半导体热电转换的电池热失控抑制系统,其特征在于:散热器(8)为风冷式换热器。
7.根据权利要求6所述基于半导体热电转换的电池热失控抑制系统,其特征在于:冷凝器(6)为风冷式换热器。
8.根据权利要求7所述基于半导体热电转换的电池热失控抑制系统,其特征在于:截止阀(5)为电磁截止阀。
9.根据权利要求8所述基于半导体热电转换的电池热失控抑制系统,其特征在于:电池(1)是指电池组。
CN202111395369.3A 2021-11-23 2021-11-23 一种基于半导体热电转换的电池热失控抑制系统及方法 Pending CN114243129A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111395369.3A CN114243129A (zh) 2021-11-23 2021-11-23 一种基于半导体热电转换的电池热失控抑制系统及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111395369.3A CN114243129A (zh) 2021-11-23 2021-11-23 一种基于半导体热电转换的电池热失控抑制系统及方法

Publications (1)

Publication Number Publication Date
CN114243129A true CN114243129A (zh) 2022-03-25

Family

ID=80750637

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111395369.3A Pending CN114243129A (zh) 2021-11-23 2021-11-23 一种基于半导体热电转换的电池热失控抑制系统及方法

Country Status (1)

Country Link
CN (1) CN114243129A (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008108509A (ja) * 2006-10-24 2008-05-08 Chugoku Electric Power Co Inc:The 電池搭載装置、温度調整システム
WO2013015360A1 (ja) * 2011-07-28 2013-01-31 株式会社 豊田自動織機 電池用温調機構
CN104795610A (zh) * 2014-01-20 2015-07-22 广州贝特缪斯能源科技有限公司 一种基于热电冷却的动力电池热管理系统
KR20160088684A (ko) * 2015-01-16 2016-07-26 주식회사 엘지화학 열전소자를 이용한 배터리팩 자가 냉각 방법 및 시스템
CN110854465A (zh) * 2019-10-22 2020-02-28 江苏大学 一种考虑热量回收的电池箱热管理系统及其控制方法
US20200136202A1 (en) * 2018-10-24 2020-04-30 Rolls-Royce North American Technologies Inc. Recuperative battery cooling system as emergency power source

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008108509A (ja) * 2006-10-24 2008-05-08 Chugoku Electric Power Co Inc:The 電池搭載装置、温度調整システム
WO2013015360A1 (ja) * 2011-07-28 2013-01-31 株式会社 豊田自動織機 電池用温調機構
CN104795610A (zh) * 2014-01-20 2015-07-22 广州贝特缪斯能源科技有限公司 一种基于热电冷却的动力电池热管理系统
KR20160088684A (ko) * 2015-01-16 2016-07-26 주식회사 엘지화학 열전소자를 이용한 배터리팩 자가 냉각 방법 및 시스템
US20200136202A1 (en) * 2018-10-24 2020-04-30 Rolls-Royce North American Technologies Inc. Recuperative battery cooling system as emergency power source
CN110854465A (zh) * 2019-10-22 2020-02-28 江苏大学 一种考虑热量回收的电池箱热管理系统及其控制方法

Similar Documents

Publication Publication Date Title
WO2017215159A1 (zh) 功率电池的工质接触式冷却系统及其工作方法
JP2009009853A (ja) 車両用の電源装置
CN113540502B (zh) 一种基于氢气蒸发气的燃料电池余热发电系统
CN102544625A (zh) 一种半导体水冷电池冷却装置
WO2023274312A1 (zh) 一种工程车辆电池热量管理系统及方法
CN112786997A (zh) 一种基于浸没式沸腾传热的动力电池组热管理系统
CN108511849A (zh) 一种电动汽车动力电池的液冷与压缩co2复合冷却系统
CN114156566A (zh) 一种电池系统
CN113871750A (zh) 车载能源系统热管理方法及热管理系统
CN210092296U (zh) 一种新能源汽车电池热管理系统
CN201285784Y (zh) 一种基于半导体热电效应的蓄电池热管理装置
CN114243129A (zh) 一种基于半导体热电转换的电池热失控抑制系统及方法
CN110137625A (zh) 一种新能源动力汽车电池组冷却装置
WO2023246848A1 (zh) 双蒸发冷凝循环的氢能飞机高温超导电机冷却装置及方法
KR101515114B1 (ko) 냉매로서 퍼플루오르화 물질을 사용하는 전지팩
WO2023155467A1 (zh) 一种用于减少碳排放的冷藏车辆的冷能收集装置
CN219123332U (zh) 一种电动农机用电池热管理机组的管路系统
CN113380434B (zh) 一种耦合热管技术的非能动余热排出系统
CN115882104A (zh) 一种新能源汽车的电池管理系统
CN213421508U (zh) 一种利用磁制冷散热的两相浸没式电池液冷系统
JP5516433B2 (ja) ランキンサイクルシステム装置
CN111452674B (zh) 一种全功率氢燃料电池车辅组能源系统冷却系统
CN210956910U (zh) 电池热管理系统及车辆
CN214227009U (zh) 一种基于浸没式沸腾传热的动力电池组热管理系统
CN220604779U (zh) 一种高效散热的电池

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination