CN114242167B - Product and method for absolute quantification of metagenomic blood sample and application of product and method - Google Patents

Product and method for absolute quantification of metagenomic blood sample and application of product and method Download PDF

Info

Publication number
CN114242167B
CN114242167B CN202111520584.1A CN202111520584A CN114242167B CN 114242167 B CN114242167 B CN 114242167B CN 202111520584 A CN202111520584 A CN 202111520584A CN 114242167 B CN114242167 B CN 114242167B
Authority
CN
China
Prior art keywords
sample
tag
seq
absolute quantification
tag sequence
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111520584.1A
Other languages
Chinese (zh)
Other versions
CN114242167A (en
Inventor
曹德盼
纪丹丹
侯新华
李杜衡
贾雪峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin Jinke Medical Technology Co ltd
Original Assignee
Tianjin Jinke Medical Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin Jinke Medical Technology Co ltd filed Critical Tianjin Jinke Medical Technology Co ltd
Priority to CN202111520584.1A priority Critical patent/CN114242167B/en
Publication of CN114242167A publication Critical patent/CN114242167A/en
Application granted granted Critical
Publication of CN114242167B publication Critical patent/CN114242167B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B20/00ICT specially adapted for functional genomics or proteomics, e.g. genotype-phenotype associations
    • G16B20/30Detection of binding sites or motifs
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B30/00ICT specially adapted for sequence analysis involving nucleotides or amino acids
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B40/00ICT specially adapted for biostatistics; ICT specially adapted for bioinformatics-related machine learning or data mining, e.g. knowledge discovery or pattern finding
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B50/00ICT programming tools or database systems specially adapted for bioinformatics
    • G16B50/30Data warehousing; Computing architectures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/10Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation

Abstract

The invention relates to the technical field of metagenome sequencing, and particularly discloses a product, a method and application of absolute quantification of a metagenome blood sample.

Description

Product and method for absolute quantification of metagenomic blood sample and application of product and method
Technical Field
The invention relates to the technical field of gene sequencing, in particular to a product and a method for absolute quantification of metagenomic blood samples and application thereof.
Technical Field
A retrospective study in the J.He.Sonchi.infectious agent showed that 76 cases of hematological diseases, namely 538 cases in 2012-2013, had an infection rate of 14.13%. Because inflammation is not easily limited due to light inflammatory reaction, local infection often spreads to systemic infection, so that severe infection forms such as septicemia or toxic shock in infection are caused, the death rate is high, and the treatment difficulty is high, so that a metagenomic detection technology (mNGS) has been developed. In order to provide reasonable medication guidance for patients more quickly at an earlier stage, the accuracy of the mNGS detection technology is particularly important.
At present, most mNGS detection reports on the market only show the number and relative abundance (belonging to the whole) of detected pathogenic bacteria in blood samples, and the cell number of actual pathogenic bacteria is unknown, so that a clinician has a certain limit on interpretation and analysis of results. The invention has been developed in view of the above in order to better achieve the role of metagenome in diagnosis of the degree of infection in the blood stream of different patients and dynamic monitoring of the course of treatment of the same patient.
Disclosure of Invention
The core technical problem to be solved by the present invention is to find a method that enables absolute quantification of microbial infections in metagenomic samples, in particular blood samples.
In order to solve the technical problems, the invention provides the following technical scheme:
the invention firstly provides a method for absolute quantification of metagene samples, which comprises the following steps:
1) Taking a metagenome sample to be detected, labeling the sequence mixture, and uniformly mixing to obtain a mixed sample;
2) Mixing sample DNA extraction, library establishment and sequencing to obtain machine-on data;
3) Analyzing respective detection proportions of pathogenic bacteria and tag sequences in the off-machine data, wherein the detection proportions are the proportion of the number of pathogenic bacteria or tag detection sequences to the total number of sequences;
4) Establishing a sample fitting linear relation, and fitting a sample linear relation formula by taking the detection proportion of each tag sequence as an abscissa and the known mass of the corresponding tag as an ordinate: y=kx;
5) Quantification of pathogenic bacteria: calculating the mass of the corresponding pathogenic bacteria according to a sample fitting linear relation y=kx and a pathogenic bacteria detection proportion x; defining a quality and copy number conversion formula, and calculating the copy number of pathogenic bacteria;
further, the copy number=6.02×10≡23×10+ (-9) ×mass (ng)/(genome length bp×660 g/mol).
Further, any one or more tags selected from SEQ ID NO.1-10 are included in the tag sequence mixture;
preferably, the number of the tag sequences is 3;
more preferably, the tag sequence is shown in SEQ ID NO.1-3.
Further, the tag concentration ratio of SEQ ID NO.1 to 2:3 in the tag sequence mixture is 50-100:5-10:0.5-1;
preferably, the concentration ratio of the SEQ ID NO.1 to the 2:3 tag is 100:10:1.
Further, the preparation method of the tag sequence mixture comprises the steps of preparing the mixture of tags shown in SEQ ID NO.1, SEQ ID NO. 2 and SEQ ID NO. 3 according to the concentration ratio of 100:10:1, and sub-packaging the mixture into a 30ul system for later use.
Further, the sample is a blood sample.
The invention also provides a tag sequence for absolute quantification of a metagenomic blood sample, the tag sequence comprising any one or more of SEQ ID nos. 1-10;
preferably, the number of the tags is three;
more preferably, the tag is SEQ ID NO.1-3.
Further, the concentration ratio of SEQ ID NO.1 to 2:3 is 50-100:5-10:0.5-1;
preferably, the concentration ratio is 100:10:1.
The invention also provides a product for absolute quantification of a metagenomic blood sample, said product comprising a tag sequence as defined in any one of the above.
The final concentrations of A, B, C (SEQ ID NO.1, 2, 3) in the pudendum, in the products were 0.0011ng/ul, 0.00011ng/ul, 0.000011ng/ul, respectively.
The invention also provides any one of the following applications of the tag sequence or the product described in any one of the above:
1) The application in the detection of blood sample infection;
2) Application in absolute quantification of metagenomic blood samples;
3) The method is applied to monitoring environmental and reagent background bacteria pollution;
4) The application of the method in judging false positive and false negative in auxiliary detection results.
The invention has the beneficial technical effects that:
1) The method can realize absolute quantification of the metagenome blood sample and has the advantages of simplicity, accuracy and the like.
2) The invention designs and screens the label sequence and is obtained by self-grinding and optimizing screening, and experiments prove that the label has good specificity, less background bacteria and high quantitative accuracy, can be prepared in a large amount at one time, has low cost and is convenient for production and use; meanwhile, the optimal quantitative system is obtained through label selection and label input quantity and input proportion optimization.
3) At present, most of blood sample metagenome detection results are presented to clinical sequences and relative abundance indexes which are only detected by pathogenic bacteria, and absolute quantitative indexes of the pathogenic bacteria can be increased by the method, so that the method plays a key role in judging and reading infection conditions of clinical patients.
4) The self-grinding prepared label system can not only realize absolute quantification of pathogenic bacteria and human sources in blood samples, but also monitor the pollution condition of background bacteria such as environment, reagents and the like and assist in judging false positive and false negative in detection results.
Drawings
Fig. 1: in the quantification of D1-1 samples, the tri-tag fits the graph according to the amount incorporated and the detected proportion.
Fig. 2: in the quantification of D1-1 samples, the single tag fits the graph according to the amount incorporated and the detected ratio.
Fig. 3: in the quantification of D1-1 samples, the ditag fits the graph according to the amount incorporated and the detected proportion.
Detailed Description
Embodiments of the present invention will be described in detail below with reference to examples, but it will be understood by those skilled in the art that the following examples are only for illustrating the present invention and should not be construed as limiting the scope of the present invention. The specific conditions are not noted in the examples and are carried out according to conventional conditions or conditions recommended by the manufacturer. The reagents or apparatus used were conventional products commercially available without the manufacturer's attention.
Partial term definition
Unless defined otherwise hereinafter, all technical and scientific terms used in the detailed description of the invention are intended to be identical to what is commonly understood by one of ordinary skill in the art. While the following terms are believed to be well understood by those skilled in the art, the following definitions are set forth to better explain the present invention.
As used in this application, the indefinite or definite article when used in reference to a singular noun e.g. "a" or "an", "the" includes a plural of that noun.
As used herein, the terms "comprising," "including," "having," "containing," or "involving" are inclusive or open-ended and do not exclude additional unrecited elements or method steps. The term "consisting of …" is considered to be a preferred embodiment of the term "comprising". If a certain group is defined below to contain at least a certain number of embodiments, this should also be understood to disclose a group that preferably consists of only these embodiments.
The term "about" in the present invention means a range of accuracy that one skilled in the art can understand while still guaranteeing the technical effect of the features in question. The term generally means a deviation of + -10%, preferably + -5%, from the indicated value.
Furthermore, the terms first, second, third, (a), (b), (c), and the like in the description and in the claims, are used for distinguishing between similar elements and not necessarily for describing a sequential or chronological order. It is to be understood that the terms so used are interchangeable under appropriate circumstances and that the embodiments of the invention described herein are capable of operation in other sequences than described or illustrated herein.
The above terms or definitions are provided solely to aid in the understanding of the present invention. These definitions should not be construed to have a scope less than understood by those skilled in the art.
The absolute quantification method of the metagene sample generally comprises the following steps:
1) Taking a metagenome sample to be detected, labeling the sequence mixture, and uniformly mixing to obtain a mixed sample; 2) Mixing sample DNA extraction, library establishment and sequencing to obtain machine-on data; 3) Analyzing the detection proportion of pathogenic bacteria and tag sequences in the machine-down data; 4) Establishing a sample fitting linear relation, and fitting a sample linear relation formula by taking the detection proportion of each tag sequence as an abscissa and the known mass of the corresponding tag as an ordinate: y=kx; 5) Quantification of pathogenic bacteria: calculating the mass of the corresponding pathogenic bacteria according to a sample fitting linear relation y=kx and a pathogenic bacteria detection proportion x; defining a quality and copy number conversion formula, and calculating the copy number of pathogenic bacteria;
in some embodiments, the copy number=6.02×10≡23×10+ (-9) mass (ng)/(genome length bp×660 g/mol). In some embodiments, any one or more tags selected from the group consisting of SEQ ID nos. 1-10 are included in the tag sequence mixture; in some preferred embodiments, the tag sequence number is 3; in some more preferred embodiments, the tag sequence is the tag sequence shown in SEQ ID NO.1-3. In some further preferred embodiments, the tag sequence mixture has a tag concentration ratio of SEQ ID NO.1:2:3 of 50-100:5-10:0.5-1; in some further preferred embodiments, the SEQ ID NO.1:2:3 tag concentration ratio is 100:10:1.
In some embodiments, the tag sequence may be first prepared into a tag mixture for later use, for example, Q3 according to the present invention is prepared by preparing the tag sequence mixture according to the concentration ratio=100:10:1 of the tags shown in SEQ ID nos. 1, 2, and 3, and packaging the mixture into 30ul tubes for later use.
It will be appreciated that the sample sources described herein may be varied and in some embodiments, such as blood, sputum, alveolar lavage, etc., as referred to in the examples of the specification, are not limiting. In some preferred embodiments, the sample is a blood sample.
The invention is illustrated below in connection with specific embodiments.
Example 1 design, screening, specificity verification of quantitative tags
In the embodiment, 20 clinical samples are selected, including four sample types of plasma, alveolar lavage fluid, sputum and cerebrospinal fluid, 10 tags (corresponding sequences are shown in SEQ ID NO.1-10, the tag sequences are selected from plant-derived Arabidopsis specific sequences, 40 continuous identical bases are not arranged among the tags in the selection process, and 30 continuous similar bases are not arranged between the tags and human-derived and pathogenic microorganism sequences) which are designed and screened by self-research of the company are added into 20 samples. Each tag was added in an amount of 0.03ng (i.e., 1.00E+07 copy), and each tag was repeated twice.
And (5) completing extraction, library establishment and machine starting according to a metagenome detection flow, and calculating a non-specific index.
Non-specific index = number of non-specific/number of specific detection sequences, the lower the non-specific index, the stronger the tag specificity
The results are shown in Table 2 below, where the non-specific index is the lowest for tag A, B, C, and therefore A, B, C is preferred as a candidate tag for absolute quantification.
EXAMPLE 2 detection of background bacteria of quantitative tags
The quantitative thought of the patent is that three tag sequences are doped into a clinical sample, and absolute quantification is finally realized through metagenome detection. During the detection of pathogenic microorganisms, the introduction of environmental background bacteria from an external source can interfere with the interpretation of clinical results, and therefore the degree of cleanliness of the incorporated tag sequences and the pathogen carried must be known.
The reaction mixture was split into 0.2ml eight rows of transparent PCR thin-walled tubes for 10 reactions using gDNA sample from Nanjac, bai Biotechnology Co., ltd. And diluting the three sample tag sequences to 0.003ng (namely 1.00E+06 copy) by using Buffer EB, taking 10ul of the three tag sequences after fully mixing, and split charging the three tag sequences into 5 PCR tubes, namely Test groups, namely Test1, test2, test3, test4 and Test5, and the remaining 5 are control groups, namely CK1, CK2, CK3, CK4 and CK5. In a 10-ten thousand-level clean workshop environment, experiments are completed according to metagenomic library establishment and on-line processes, and data analysis results are as follows:
from the above detection results, it can be found that the detection level of the label test group is consistent with that of the control group, and it can be shown that the label of the invention has no exogenous introduction of excessive pathogenic bacteria.
Example 3 quantitative tag incorporation determination
In order to determine the reasonable doping amount of the three candidate tags, tags A/B/C with different concentration gradients are respectively doped in the simulated plasma sample, and the doping amount of the tags is set between 0.0003ng and 0.3ng, namely the corresponding copy number is 1.00E+05-1.00E+08copy. The extraction, library establishment and machine-on are completed according to the metagenome detection flow, and the label detection results are as follows:
by analyzing the data, the number of the detected sequences of the three sample labels and the gradient doping amount are strongly correlated, R 2 Greater than 0.9, i.e., three tags meet the basic requirements for application in quantification.
And according to the number of detected sequences, three labels are finally selected to be doped in a gradient mode by 10 times, the highest doping amount is 0.03ng (1.00E+07 copy), thousands of sequence levels are detected under the corresponding 20M data amount, so that the remaining two doping amounts are 0.003ng (1.00E+06 copy) and 0.0003ng (1.00E+05opy) respectively, hundreds of sequence levels and dozens of sequence levels are detected under the corresponding 20M data amount, namely 3 doped gradients can meet the detection range of pathogenic bacteria in most clinical samples, and accurate quantification is convenient to realize. Thus, the above three labels were prepared in the following table proportions (a: B: C concentration ratio=100:10:1) and dispensed into 30ul tubes for use, designated Q3.
Example 4 quantitative method of the invention set up
The specific quantification method established according to the present invention, based on the label and the addition established in the above examples 1-3, is as follows:
1) Sample processing: taking a plasma sample with a known volume (according to the extraction kit), adding 30ul of the Q3 mixture, and uniformly mixing;
2) Wet experiment: completing the steps of extraction, library establishment and machine starting in metagenome detection according to the operation instruction;
3) Dry experiment: analyzing the detection proportion of the 3 tag sequences in the potential pathogenic bacteria and the Q3 mixture in the sample by using the off-machine data;
4) Q3 fits a linear relationship: and fitting a linear relation formula of the sample by taking the 3-tag sequence detection proportion as an abscissa and the known mass (ng) in Q3 as an ordinate: y=kx;
5) Quantification of potential pathogenic bacteria: from this sample fit linear relationship y=kx and the known pathogen ratio x, the corresponding mass (ng) can be calculated;
6) Quantification of potential pathogenic bacteria, namely defining a quality (ng) and copy number conversion formula, and calculating corresponding copy number; and the sample extraction volume is known, and the corresponding copy concentration can be calculated;
copy number=6.02×10≡23×10+ (-9) ×mass (ng)/(genome length bp×660 g/mol);
the concentration was calculated from the number of copies finally quantified divided by the volume of sample used for extraction.
Example 5 quantitative detection of blood samples
20 clinical blood samples without staphylococcus aureus detection were selected, 500ul of plasma samples were taken, and staphylococcus aureus free nucleic acid fragments were added to a final concentration of 9.00E+04copy/ml (i.e., 1.47E+09fragment/ml). And finally, adding 30ul of Q3 prepared in advance into each sample to finish blood macro-gene detection (extraction, warehouse building and machine loading).
After 30ul of Q3 was added to the sample extraction library, the tag detection ratio was calculated for each library, as shown in the following Table, taking D1-1 as an example:
D1-1 Total DNA(ng) detected proportion%
A 0.033 6.9191
B 0.0033 0.6925
C 0.00033 0.0519
Illustratively, FIG. 1 is a fitted linear curve of D1-1 according to the above tri-tag data.
According to the 3 label detection proportion and the corresponding quality in each sample, a fitting linear relation can be determined, and the slope K value of 20 sample fitting is calculated, wherein the specific values are as follows:
according to the known linear relationship, quantitative results of 20 samples incorporating pathogenic bacteria were obtained:
* The coefficient of variation cv= (standard deviation/average value) ×100%, and CV may reflect the absolute value of the degree of data dispersion, so the lower the CV value in this experiment, the more stable and accurate the quantitative method.
* The theoretical value of staphylococcus aureus is obtained by detecting the concentration (ng/ul) of the obtained DNA nucleic acid by using a Qubit quantitative instrument and then calculating by using a mass and copy number conversion formula. Because the pipettor and the quantifying instrument have deviation in the quantitative process of the Qubit, the theoretical value is only used as a comparison reference value in the quantitative process of the patent.
The quantitative concentration CV value of staphylococcus aureus of 20 clinical samples is 4.6% and the deviation from the theoretical value is about 1.57 times, thus illustrating the advantage of Q3 quantification in blood samples.
The Staphylococcus aureus copy number calculation procedure is described by taking D1-1 as an example:
species of species Detected proportion% K value Total DNA(ng) Genome Length (bp) Copy
A 6.9191 0.0048 0.033 2809 1.00E+07
B 0.6925 0.0048 0.0033 2800 1.00E+06
C 0.0519 0.0048 0.00033 2848 1.00E+05
Staphylococcus aureus 42.14 0.0048 0.2022 2730000 6.76E+04
* Copy number=6.02×10≡23×10+ (-9)/(genome length bp×660 g/mol) mass-
* The concentration was further calculated from the number of copies finally quantified divided by the volume of sample used for extraction.
Example 5 quantitative result comparison of different tag count systems
This example uses single and double labels for quantification and compares the effect with the method of example 4 of the present invention.
According to the same quantitative concept as that of example 4, using D1-1 as an example, fig. 2 was fitted to each of the single and double tags according to the amount of incorporation and the ratio detected, and fig. 3 was a linear relationship (tag C was used for the single tag (tag C was tested to have a smaller CV than A, B, and therefore, tag C was selected), and tag b+c was used for the double tag).
Further, quantitative calculation is carried out on all samples by using the single label and the double label respectively, and the calculation results are as follows:
/>
as shown in the table, the single-label quantitative concentration CV value of staphylococcus aureus in 20 clinical samples is 9.8%, the double-label CV value is 6.4%, and the effect is weaker than that of the label CV value of example 3 by 4.6%. The result shows that the 3-label system three-point linear fitting accuracy is optimal, and the 3-label quantitative result is closer to a theoretical value and can be used for practical quantification.
Finally, it should be noted that: the above embodiments are only for illustrating the technical solution of the present invention, and not for limiting the same; although the invention has been described in detail with reference to the foregoing embodiments, it will be understood by those of ordinary skill in the art that: the technical scheme described in the foregoing embodiments can be modified or some or all of the technical features thereof can be replaced by equivalents; such modifications and substitutions do not depart from the spirit of the invention.
Sequence listing
<110> Tianjin Key medical science and technology Co., ltd
<120> a metagenomic blood sample absolute quantitative product, method and application thereof
<160> 10
<170> SIPOSequenceListing 1.0
<210> 1
<211> 2809
<212> DNA
<213> Artificial sequence (Artificial Sequence)
<400> 1
aagccgtgta tggtctcatc tgatgtaaga agaaagtgag tttcgtaact cctcttgcta 60
tctatttccc caattttttc aataaaaaaa ttgattgcga tattagtatt aattacttga 120
agtaaatttc aatggttcct tgttaatatg tagtgacgtg atgggttaaa atgtggaaac 180
catagacttc aggtgatatt tatcaactgc ccttttgctt aagggattac aaatcaccgt 240
acgaagacgt gaattttctt gtgatacctt aaatttttct ttccttaaga atgataactt 300
tagctagttg tcattttttt cttcttgtaa taatcgtact acatcatggg aaaagtttat 360
attcttttgt aatggtaatt atagtagcaa aatgcaaaat catgaaagac attttttttg 420
agtagtacag atttatgagt ggtatagact agagtttaga ctatggtccc ttcaaaaaat 480
aatcaatgct aatttttaaa agcaacctat gtggacctgc attgcccaag tatatcatat 540
atataaaaga aaataaatta ataagttaat aattaggaaa ggaaaagggt ttctttgtag 600
atatattttc acgatcatgg catgcatgca cacaaaatta cacctaacaa agtgatttca 660
ttataataat aaattattgt aagcacactt ataattttcc actgtcagat acttatttta 720
actttggctg aagcttgtac tcaaattttg gagtaaaata cttgagtgtt aatcttaata 780
tgcaacgtgt atacacaagt tcactacgat atgtcaagat gtgagtaggt gtactagtac 840
tactgtacta agctattaac attacatact acataatata tttttaatac ccttttagac 900
tttagtttca taatcttttc agacataaga tttatttagt ctctttcttg ccatcgacac 960
ttatttttac caattcgttg aaagaagtgc taaaactata ggacacaacg tcaccagtac 1020
atgagctatt gaaagcattt ccccaccacc actcccgatt gctggggaga caaagatttg 1080
acatatatac tttttggttt aatttgacat ataaagttaa ttaatcatcg gcggtatcag 1140
tagcccccat gttcttcaat tttgttttta tgcaagatcg cgcaattttt attttaataa 1200
atcatctttt tggtactaaa actatcactg atttaatttg attcagctgt ttattgtaag 1260
aaatttacaa cccatggaca aactacagat ataaaatagg gaaaatcctt cccactgatt 1320
tctgtatatt atttttttgt ataaagagta tatcattatt attagttacg gcatatgaaa 1380
tagaattacg cacactacgt actactatcc atttggcagt agatttggaa aattacattc 1440
cggtaatcga aagtctatga tttaaatgta cgttgggggc atttatgtaa attcagataa 1500
taaacagtaa cgcttttggt tagaaaatgg gattggatga gattataaat gtagataaca 1560
gtgtgactta accacataac aaactcttta atgtcaccac agagaatgaa gctatcatca 1620
ccaccagtta ccaacaacga accaaccgcc accgcttctg ccgttaaatc ttgcggcgga 1680
ggaggtaaag aaaccagctc atcgaccacg aggcatccag tgtaccacgg agttcgcaaa 1740
cgccgatggg gaaaatgggt ttctgagatc agagagcccc ggaaaaagtc tcggatttgg 1800
ctcggatctt ttccggtgcc ggagatggct gctaaggcct acgacgtggc agcgttttgt 1860
ctaaaaggta gaaaagctca gctgaatttc cctgaagaaa tcgaggatct acctcgaccg 1920
tccacgtgta ctcccagaga tatccaagtc gcagcggcca aagcagccaa cgccgtgaag 1980
atcatcaaaa tgggagatga tgacgtggca ggaatagacg acggagatga tttctgggaa 2040
ggcattgagc tgcctgagct tatgatgagt ggaggtgggt ggtcgccgga gccttttgtt 2100
gccggagatg atgccacgtg gcttgtcgac ggagacttgt atcagtatca gttcatggcg 2160
tgtctgtgag tgttgctgtc gattgtgtcg tattcgttat acgtgtacgt tgtatcgtta 2220
ttgtgttggc tcacttaatt taatgcatat gcatgtatat tttcatttat ttgtttctag 2280
tttattgttt tacgcgatta ataattagat acctgtttct caagttagtt atcaggtttg 2340
tacgcatcta caaaaatacg tataagtgta tgttcttata tacagttttt gtttgcataa 2400
gtattgctac ttattctaaa cctttttatt tgtgcaactt tactaactaa gtgtcaaaaa 2460
ctctttaagg aatttcttta tttattgaaa acattatgta gctactgagt actgattata 2520
agtacagact ctacagtaat ggtttttaat catttggagc ttttaacttc tgattattat 2580
ttatgtaggg aaagtataat tcgataccta gcataattcc tagtttggtc caatttctat 2640
cgttgttcat gcaatagtaa cttctcggac ccatatccat attcaatatg aaatattact 2700
ttaaaactac tatcgatatt tatcatatta atttgttttg ttttttcata gaaaacaaaa 2760
aaaagaaaga ctccttaaat gagtcatggg gttcgtgata gatgttctc 2809
<210> 2
<211> 2800
<212> DNA
<213> Artificial sequence (Artificial Sequence)
<400> 2
tggtgactcc ttgcaacaca atgcataata ttgaagcatt ttttatcttg agcatggtcg 60
catacctaat gtgcataaca tagctcaaag cctcaaactc acatatttag tgggacgtct 120
cttggttgat atctcgctgg tgcgttttcc actttaacaa aacttcacca aatgacttgc 180
tggacaatcc atcgtcaccc aagactctaa caactccttc tttcaactcc ttcactttat 240
ttcctatggc ttttccctct tcaccttcca tcagtgcctt caccactctc accacttctt 300
ccctccgtac aatcccatct tcacccgcat ggattcttag agccgctcca acatcctcca 360
cgagtagcaa tgtattcatc ttttgctccg cgaataaagg ccacgctatg agtggtacac 420
cgtttacaat gctttctaag gtcgaattcc atccacagtg tgttaaaaac ccgcatgtgg 480
atggatgagc caggatttga acctgtggag cccatgatgg aaccaccaaa cctttctctt 540
tggttcggtc taagaaccca attggtaaaa acgaaaaggg gtctgtctcg ctgtgtggat 600
tgaaatacga cgaactaact atctcgcttg gacttcgtat gacccaaata aaccgttttc 660
cgctctccgc aagaccaata gcaagctcat taaactgctc acatgtaagt gttccgccgc 720
ttccaaatga tatgtataga accgagccga atggttggtt gtctagccaa cttaaacatc 780
cgaacttgtc ttccaagtta acattagatg aacttgtgtt aaccagcggc ccaatcgggt 840
ataccgttgg tttatcagga gccggttctt gtaaggcctt tattgcattc gactctaaat 900
caacgaagga attcactaga atccctttag cttctttgta cctcttggtg ttatggagaa 960
gcaatttgta tgcgtcgtcg tttcggtctt gaaccgtatc aagaaagtcc ttaccggtta 1020
tcgggacaca gccgggaatc ttaagcggtt cggttaagta cctaaactca cacgacaccg 1080
ttttgtctag tttcggcaag tgaagaaaaa acgacaagac gtttgcattg gatgcataga 1140
aaatgtatgg tgacacgtgg aagtcaacgg ccacgtcgaa cgcatccgca ccaaacatat 1200
cgacgacgag aaccgccggg agacttttct tcgttgataa agagccaaaa agctcccgga 1260
gcgccggatt ggaacgagtc atggtgagca tggcccgagt ttcgattcgc gctgtggagg 1320
gaacatcgga agatcggcgg gagggagaaa tacggaggct atggaggaag ggagagagtt 1380
gagaacggat ctttgtgcct tagacggcga agtttcaccg gagatgatca ttgtgacggt 1440
gaaacagtcg tgctgaacga gtcgctttgc taactcgacg aatgggataa ggtgacccat 1500
accgggactc ggcatgattg ctatgtgtgg agtgtttgct tccgccatta agagtagaat 1560
tttctttatt cttatttctt gaaaaatatc tatgctcatt tattttattt atggtacgtt 1620
gtagtagctt tatagatcat gctcgtggtt atagttctgt gggaaatggg aatttccttt 1680
tttttggttc tttttttgtt tggttcgttt tgtgtggact ctatttgggt ggcgacgaat 1740
gggatgaggt gacccatacc gggactaaag ataagtatgt ggtaaaatca attggtttat 1800
tattgtggaa ccgctttggt ccagtaggaa tctttcatct tgctgagtgg caagctgtta 1860
gatttgatct caagagagac ttgtgcaaga gcatgtgata tacttgatgc aaatgtgcct 1920
gattagccgg tgacctgctt aagtgatcac tttcacaaca atattctcat gattctaacc 1980
ctgagcaaat gccttatgag aagaagggct tggttttgac cagagttgtg tccgttgatt 2040
attatgacca tagttctgcg gagaagatct gacttggtga gagtcttctc cacatctggt 2100
agtggaatca acataatgat ttgtggttga ggcccaatag aaaattttca caaagtttcc 2160
ctcaaataga tccatcaatt tttctaacta acacacagca acagtgagtg cacccatacg 2220
acggataatc ttgtgcacgc ttaaaatttt cccaaattgt gatcaacttc gtatagaaag 2280
tattgacaac cctgtttatg ataccataca atctctgctc aatctgatac aactttgaaa 2340
cagtattatt ctctgcttta atcgtttcaa caatctttcc actagctaat ttcacaaaga 2400
gaaacctctt gcctattgtc tctctctccg tagatatttg attgggtgta gtcttatgtt 2460
gcctacgtct gcttttttct caagatattt ttttatagtt gcttgcttag caagaaactt 2520
tattaaaaag gtaataagaa agcagaatgg aaagaatttg aaattgggaa agattggatt 2580
tagatcatta tcgtatactt tgtggatatt ttcatggttt tgctgcttta tatataaact 2640
agctcaaaat tttatggaac cgaatatttt caatgaaaac aatatgaaat aacctaatct 2700
acacacatgg gttttctaac caatacatga ttcatattgt tggtctgcaa ttcattttac 2760
atagcattgc aaatatcacg atgggttaac caacaaatgt 2800
<210> 3
<211> 2848
<212> DNA
<213> Artificial sequence (Artificial Sequence)
<400> 3
gcatacgcag cttcccttca tacttgtcag ttgaacactg ctctgcaagc tctatcactt 60
cactaagcgt cttagccaca gattgcaact gctcgttgca gagcttgttc ttggagaagc 120
aagggtggct tgagaggtca gataaacaag ctggtatctg ttcgatcttc gagatgatcg 180
tcttccatct tcctgtaaac ttcttaaccg tttttgcctt gctgaggacg gatggtatta 240
gcgagttgac gcgcgatagc cattcttcta ctgattgttt atccatgatc atctggttaa 300
cttgctgctc ttctgccatg gctccaaatt ttcccatggt tcccaattct gccattgttc 360
ccattggaca aaaaagaaag aagaaaattc acagcttctt atgctatttg aacattcatc 420
ttctgtgttt ttgaaaacct gaagagaaaa atcaaaactt tacaacctta tatacatgtc 480
tgagccatga ttttccaagt ctatagggaa acaaaagaac tttacctcat ctgaaattga 540
attgtagcca gatttctcta gctcgatcaa tgattggtcg actccaacct gcaatgaaag 600
acgaagagaa gaataaaaac tttttgagct tttacatgtc tagtgagaaa cataaagaaa 660
agccaaaacc ttaccttgtc tccttgttcc ttttaacttc acttggagaa aaaatatcca 720
aaatgttccc cagttcttta tgttcctcac tgacaaattc agatcacaaa tgctgattaa 780
ctgtacttgg agattaataa agatcaaaac tttatggaag acactagtga gtagaagaca 840
aaaaaaaata agtatagatg aaaacaacat ctaactaata atacacacaa gccattgctt 900
aagaaaagaa ggaagtttcc acacgacata tcatttcgag tggtttctag atgcatatcc 960
attaaatgct tctccctaat atatcatatg aataacacat caaactcatt aacagccacg 1020
tattatactc accctccatg aacaatcatt gtcaatgcaa aaaacttttc aaaactcgta 1080
aaggttagtt tcgtgattgg tgaaagtttt cttaaaaagg ggaaacacaa gctgtaattt 1140
tctgatcaga atgattcaat gtgttgatag taacagaaag gaaaaatctg gctgcggata 1200
aaagttaact tgcagacttt tctttgaaga gaagtcaata ggaagtctct gtctctctat 1260
tcattagacc acaaacacaa gttgtaactt gtaagcacca atgtgaggaa gttagatact 1320
gagtgatcta ataaatattg aaattagccc aaaatttagt agtaatcttt agtggatgat 1380
ctaaagatag attttgtgta cagtttatac cttcaatcta gtagttgact tgagtgtgaa 1440
aatggttgca tccagccaaa atttgatctg tgaaattacg agagattcag taagtataca 1500
cacgtagagg ttaagcaaga ttttacagaa ttatgcagta tgatctttag gcgagtcact 1560
gagagaaaca cactcaaaac aaaaataaac ttgtgactat gaatctaatt caaaaacgga 1620
agatcggaaa ggagatatag gggaaagtat tgatcttcat aattaaacaa aagaatcaca 1680
gaagaaaaat cactcaattg tctctgtcga ctaaaaagca attataagtt agagatgaca 1740
actttagctt tatttttcta gtgaatacaa acatcaaccg taaagaacca accttttaag 1800
attcagaatc ttaaaataat tttcatcttt tgtttacgaa aatcaaaaag acaaaaaaaa 1860
aaaaaaaaaa aaaactgagg gatcggaaat ttgaactttt tattctgaat caaaaggaag 1920
tagaaaaatt acagtgatac aagagaagat aatttggatg gaatactcac acttacccag 1980
aaaccaagtt tgttgtgtaa tgagaagaga aactaaagcg gaggagctgt tgacaaagct 2040
gctgagtgct gacttctctc ttcctcaaac tcaaactgtt cctctcagaa taaatatttg 2100
aaaattttca aatatctcaa cacgatttag agagagaaag ggaatgagag agataactag 2160
gacagaggac aaaaactaaa gacaacttcg atcaaatccc gattctttaa tgataatagt 2220
attttttttt aaaatatccg tatttatgta ttagatgatt tactttctcg aaacagttga 2280
caaaattata taaaaaaaga agaagataca acagtgtcac tgagattcga aaaagaagcc 2340
ctacggtacg atctacgagt tttctcttaa aagtgctaac ttcccttggg atccgacggc 2400
tgcgatccat cttactacat tcaattttga ccgttagatc ttgttttgtt tcataacgtt 2460
acactctgtt actgacgtgt cttgttgtac gaccgtcgat ccggttaaac tcacaagatt 2520
tctttttacc ggcccattac gtggccactg tgccacgtgt tgtgtagaat tttgaatctg 2580
aatgaatact ttatgagttt attttacact attgtgcttc tactttagtg atattacaaa 2640
actgccaggc atagagagag cctgtgtgag tcgcgtgagc tatctatgcc tttggcccac 2700
ttctttacgt ccatttgctc tatttaataa attcattaaa ttgtttcttt tttctttctt 2760
tttttctgga ataggaataa actaaaactc ttacctaata ctataacaat ataattattt 2820
gaacatgttg cttcacatga caaatgat 2848
<210> 4
<211> 3157
<212> DNA
<213> Artificial sequence (Artificial Sequence)
<400> 4
tgagggcaag tagggatgga gagatatata gagtgcaaga aagataaaaa tattttaaag 60
attaataata gtaatgactt aacaaaaaaa aaaaaaagat ggaataatat tcgaatttaa 120
tgatgggtgg ttccgagata atactattag ctcaactact tatatgggac cttgatatta 180
aattaagtag tcagattatt tttcatgttt tgttcacacg aaatgcaagt tacaaaagtc 240
taacaaaacc tagctgaatc tcataagtca tatggtagat cataaatttg gtttatcttt 300
tttttcacac atatatttgg gcatcataac attctatttt ggtgtaacct aatttttttt 360
ttttttgaag tttttgataa acaacataac ttgttaatta taccactaca acacaacaaa 420
atatgacatg tttgttatat atttccttat aattaaactt aaacgtttta gacatccatg 480
atgtttttat tagcaagtgt atgtaggtta tccaaaattg agtgagggca agttataaaa 540
ttatatatca attgaatatt ataagcaggt tggctgcacg tagtgcaaat gcactgggtc 600
agcgacgggt aagttaatat aatatgttgt aaatagtaaa tttaaaggga gaacgtgttc 660
gagaaacgta cctctcattc atgagaagcg ttcactgtcc aaattgcaag aacaagggta 720
gacgaaagcg tgtcccaaat attcaaattt gttatttctt tgtataaatg tgtatcccac 780
atgcatacaa actccttaat atgggccatg gtaaattgat gataatgaat tactatgact 840
tcttaatagc agcacatttc gatttgtttc tccattatat accatcccta ttagctgttc 900
cagtattgta gtcattgtca tttataaatt tgctgtcttc gttaagacgt ttgttatata 960
agggaccctt tacataatga atttatttca tattataaat ctgataaaga agtaattagt 1020
tttggagttg catatctagt tagttttcga gtatttttct agttatttca tattgattgt 1080
gccaaggtgt ccaaaataga cctcggacgg gtagttgtag cttgtagctt tgtaggtaaa 1140
taaaatgttc ggatttgagg tcccaaagtg gacttattgt ccctgttttg ttttcattgg 1200
gataaagttg ttggtaaaat gtaatgcttt taatagttaa atcatttcta atatcgtgat 1260
tactgggaaa taatagagaa aaagaaaaca aagacaaaag gcagcgacgt cgtttccata 1320
atatcgtgat tactgcatga aacacatgtt tcaacagtac gcataccaac tctcaaactt 1380
caatattgga aagatccagt tcatcagatg ctaataattc atatatttag gtttatgtac 1440
agcataatga acaatagaga gaattaatca ataaacagat caaagtatta atttgcaaga 1500
taaatgaaat aatgatgata ataaatggta gactagtacc catgtgtaga cataaaccaa 1560
caattaatgt tggtcggctt aataccaact aactagaaac cagtccgtca tcaatgtatg 1620
aatgtacaca ctcacatctt gcaataattt taaaaaggac taacaattta aatggttgct 1680
acataaataa acgatatagc cttacataaa actagcgaaa aaggttgata ttggctgtat 1740
aacatgcaca gtactaccag gctctaacat gcttcaaaat accgaatgat tcattaaatt 1800
gaaacattag agtaaacatt ttgtcgtggt cttgtatttg aatttcagta tataactgta 1860
tataatacaa tattattgat tttaatggtt tttcaaacaa tttttttttt taattactcg 1920
aattttttct taatctcgaa taagaaagat taatgctaat atatggaatt ataaatattt 1980
ggtcacgatt aatccgaatc caactacgaa ttcgatattg aaaatgtcaa tatcatcata 2040
tcaccagata aataaattct gtcaattgtt tctgttgcca aatcgtagtc atttgttttg 2100
aataaatcta tggattaaca aatagcaaca taatagcgac aaatgatcaa gtctttttat 2160
ccgccacaat ttcattgcta gttttgtcgt agacatggac catctatatc catattcttg 2220
gctatatatc cagcattatg tattttgtag taaaatcact acttgattgg caaattatta 2280
accaatccca tttataacaa aacaaaactt tatactcaga atatacttgg ttcgtagatt 2340
tatagctaac ataacttttt tgcttctctc tattattcta tcattgtgtg tttccaaatt 2400
gttgtcgata ttgtgtcact gtaacgcttt gccaaccgta gccataaagt gacaactttg 2460
tattcaacta tactcaaata tcgaacttcc cgagtatttt tgactaattg aattgtttga 2520
actttgactc ataggtctga ctaactcaaa gtaagccaac ccgagttttg aggatgatcg 2580
catatggcta ttggctaaca tatggatcta aatctgtagc aacttctagg tttggctttt 2640
tgtaaagaat agttctattt tgccaactcc agcatttttt gctattcatt atacattcaa 2700
ctttagttaa aaactttgaa ttgaacaact tgctattttt tttttttttt gcttttgttc 2760
ttcaacggct gcatcagtat tccagactac atcctccaat ccagatgttt ttgtagaact 2820
gcaaaagaga tttaactttt aagcatagaa aaccgaatta caacaaataa aattagaggt 2880
aactgaaccg gttggtaaag attaaaccga aaatatacct tgtgaaactc gagggtatca 2940
tcgccggttt tcctaagctc taccacgtgc aacgatggtg ccacttcaaa cacctattat 3000
aaccgataac caaaccaaaa taatcaggta ccggccgtat tcatgaaaat ctaaaaccgt 3060
actaaaccgg aatgttatca ttcctatctg tttttgttca taactctgta gctacagagt 3120
gctgaccttt acgagttacg accacttttg tctgcga 3157
<210> 5
<211> 2802
<212> DNA
<213> Artificial sequence (Artificial Sequence)
<400> 5
ttgggttatc cacgagttcc actacgacct cttaccagaa catcaggttt tcttctattc 60
atatatatat atatatatat atgtggatat atatatatgt ggtttctgct gattcatagt 120
tagaatttga gttatgcaaa ttagaaacta tgtaatgtaa ctctatttag gttcagcagc 180
tattttaggc ttagcttact ctcaccaatg ttttatactg atgaacttat gtgcttacct 240
ccggaaattt tacagaggac atatgtcatc tgcagacttg agtacaaggg tgatgatgcg 300
gacattctat ctgcttatgc aatagatccc actcccgctt ttgtccccaa tatgactagt 360
agtgcaggtt ctgtggtgag tctttctcca tatacactta gctttgagta ggcagatcaa 420
aaaagagctt gtgtctactg atttgatgtt ttcctaaact gttgattcgt ttcaggtcaa 480
ccaatcacgt caacgaaatt caggatctta caacacttac tctgagtatg attcagcaaa 540
tcatggccag cagtttaatg aaaactctaa cattatgcag cagcaaccac ttcaaggatc 600
attcaaccct ctccttgagt atgattttgc aaatcacggc ggtcagtggc tgagtgacta 660
tatcgacctg caacagcaag ttccttactt ggcaccttat gaaaatgagt cggagatgat 720
ttggaagcat gtgattgaag aaaattttga gtttttggta gatgaaagga catctatgca 780
acagcattac agtgatcacc ggcccaaaaa acctgtgtct ggggttttgc ctgatgatag 840
cagtgatact gaaactggat caatggtaag ctttttttac tcatatataa tcacaaccta 900
tatcgcttct atatctcaca cgctgaattt tggcttttaa cagattttcg aagacacttc 960
gagctccact gatagtgttg gtagttcaga tgaaccgggc catactcgta tagatgatat 1020
tccatcattg aacattattg agcctttgca caattataag gcacaagagc aaccaaagca 1080
gcagagcaaa gaaaaggttt aacactctca ctgagaaaca tgactttgat acgaaatctg 1140
aatcaacatt tcatcaaaaa gatttagtca aatgacctct aaattatgag ctatgggtct 1200
gctttcaggt gataagttcg cagaaaagcg aatgcgagtg gaaaatggct gaagactcga 1260
tcaagatacc tccatccacc aacacggtga agcagagctg gattgttttg gagaatgcac 1320
agtggaacta tctcaagaac atgatcattg gtgtcttgtt gttcatctcc gtcattagtt 1380
ggatcattct tgttggttaa gaggtcaaat cggattcttg ctcaaaattt gtatttctta 1440
gaatgtgtgt ttttttttgt ttttttttct ttgctctgtt ttctcgctcc ggaaaagttt 1500
gaagttatat tttattagta tgtaaagaag agaaaaaggg ggaaagaaga gagaagaaaa 1560
atgcagaaaa tcatatatat gaattggaaa aaagtatatg taataataat tagtgcatcg 1620
ttttgtggtg tagtttatat aaataaagtg atatatagtc ttgtataaga aagggatttt 1680
acatgagacc caaatatgag taaagggtgt tggctcaaag attcatttag caaccaaagt 1740
tgcatttgca aggaaatgaa aaggtgttaa caatgtcact gcgtaacatg acttcgatac 1800
aaaatctcaa acaatacatc ttcaactgtg gattatgatg gacttggggt tgcaggtgat 1860
atgtctatag aaaaacgggt gggaatggaa aatggctgaa gaagaaagct ccaactaagc 1920
atcataactg gattgtttta gaggagatga gtcaaaggaa ttcacagtgg aactatctca 1980
agaacatgat cattggcttc ttattgttca tctccatcat tggctggatc attctggttc 2040
aagaggtcaa attatatata cataacggat ctaagaagta tagtgtagtc aattaaaaca 2100
aaacgagact tgaaaataag cataagtatt attaagttaa cccaatattc gtttcaatgc 2160
tttagttatc atcagaattc tcaacatttt cagatattta acttgccttt ggttgctttc 2220
tcgccatggt agtagcattc tccggataag aatcaagggg agcctcaact tcggcttcaa 2280
ccgtctcctc gtctttccta tgacattcac ttggtgttgc aacaatgtgt tgatgcccca 2340
cattcatagg agagtcccac atatctccaa cattcatagg agggttccac atatgcccac 2400
cattccaagg agggtaccac cacatatgcc cagcattcca agaaagatgg agcgacgata 2460
tcgtgaggaa caaggttttt gtagggcaaa taattgtagg tggttgagtt atatccgccc 2520
gcacagagta acagaccaac aattaacttt tgatatttta gtaaggtcta attcaatttt 2580
tggtggcgat aatatttggc ttagtcataa aatacagtat ggtataataa tgtaaaggtt 2640
tctcttatct tcaaaccaaa agactatact ggaagctgat gggatcatac gattctgaaa 2700
aaataagaca tatattgcaa cagagatcca atttgtatca aaaatattgt cggctcaaaa 2760
atctgaccca ccaagaatct aatcaagtgc gcgattaagc at 2802
<210> 6
<211> 2807
<212> DNA
<213> Artificial sequence (Artificial Sequence)
<400> 6
cccttagtcg caatggcaaa agagatgata aatgcagcgt ttgcagataa gacaccaatc 60
agaacctgtt tcaaatgcga aattattacc ctttctaaac aatctcaatg acttaaatca 120
tttaaacctt aaaggaaaaa aaatctaatt aagtccatta aaaagaaacg atctaacctt 180
tatagataga agaacagggc tatcagaaaa gctcgattct tcatcacttt ttctcagtag 240
caagcttcta tctatgatga gttcagggct tttcaaataa gtttgccgat gaatctcacc 300
aactacacat ctgctagcta cactttgata gtaaaagatt ataaaacaaa aggatacaac 360
agtctagaag aagataggcg aagaccaact tccacaacag atgctgcaca cacacacaca 420
aaaaaaaaaa aagaacccaa caattcttat tggatcagag actactcaat atccccaaac 480
ttggaaatta gtttgttgct tgaggtctaa gatacttcta tatatggaaa aagattttca 540
aagccagata tttccacaag tttgtaatat caattcaaga taagagagct agaatcagac 600
aggaactagc aatgcttgaa atcaagaact tgaattgaaa tagtttttta cctgaatatt 660
gacagttgct ggattaattg cattgtagag gacgtgtcta tatacctttg gtctgtgaag 720
gattaaatcg atgaaaataa tctgccaaag aaaacaatta aagaaccaaa aaccaaaatt 780
ggaaagaaat agggaaacac ccaaaaaggg aaagaaagtg attaaaacag accatgcgtt 840
cacactcgat gtactcatct gctacttcct tgcaatttcc ctaaatataa caatatgatc 900
aaagatggaa actttgaaga aatttaatag agaatcttat aaaccctaat tgggtcaaag 960
aagatccatt aatacaaaaa tcttacgcat ttcatgagac gaatgttacc cggagagtat 1020
tgaatgaaca atgactttac cctaaaacca catcccacgc atctgtgttc actcgccgcc 1080
attgctctct ctctctctct ctctctctct ctctcaagag aagaagaata cggagcaatt 1140
agagtccggg tctgggctac tgttttaacc ctaaatgggc ttattcatgg gccaagtttt 1200
tgaagtctta actttaaatt tgttaggccc acttttgctc taagccgggg tatttgtacc 1260
ccaaaattta aaaatcatat acacgttgta atttataaat agttcaattt ggatcaaaat 1320
cttgtccata tgacatagca ttttaaaatg cgtaggttca tgaatgaaac atattatagg 1380
cctcagataa agatatacat attaagtcta aattatttag tcttcagaat ttaccacact 1440
tactgaaaag tctagtggtt cactaatatt attactgtcg tgttactttc tatatatagt 1500
tcatgacttg tgagttgtga tggataagtt tataagaaaa taaattattt attacaattc 1560
aacagtgaag aaatttattt agtttgatta aataagaaag gtaaataaat cttcgtttgc 1620
cacaccaaac aaaaaaaact ccttttgttg catgtaatta gcatatggct acaaaatgaa 1680
agatttgaca atgaggttta gataaaatag tttcctttca atataagtaa actcaacata 1740
aaaatgaaac ggtaagttaa aagtttaata tttgattatt actttattta gaaatgtatt 1800
agaaagggaa agaacccatt aacccccaat acgaagtttc cttatcatca ttaatcatgc 1860
ctatgaaaac cctaaccggc ctacatattt gcagtctctt ttaggtcagg aatctaatga 1920
gaatgaatta ttttatttta tttaacaata attggagcat gtcattaatt ctctttattc 1980
ttcttacaca actaatcatt tagatgtgtt acaatattat ttcctttagt cattttcata 2040
attttaatac ctccgtactt ttcactaata cctccccttt taattttcat tatttcttct 2100
tttctatcag tctatgcatg cattcttttg aatattaaaa tgcattttat attcttttga 2160
caactatgca caagcctttt gagacacatc tacacaatat aatagcacaa gcctttatga 2220
gacatatcta cacaatatca ttgctacttg tagactattt ggaatacgta tttacatatt 2280
ccattgtatc atccctttgc aaatgtttta tacatataac taacatatac attattcgta 2340
actttgttcc cctatatcga aaaatgtggg ctacacatat aactaacata tatatatata 2400
tgtatgttta tatgatatag tctccatgtc tatatatctt atatattaca tgtttcatgt 2460
ttacggtcaa gggagtattt ttatacgcat acacaatcat acacacttaa ccctacttat 2520
aatgatgtag gttcatatat ttatcttatt ttaggatcat tcgatcacaa attatacgga 2580
ccctcatact ctctaaagat atacaaaatc cgctatgtca tatccgatcc gaattagcag 2640
ctaaagaaaa acaaacacat gcatctactg aagatttgag tctcgagtgc ttagttacat 2700
gaactatcac aaaggatatg gataatataa ggtgtactga agtatgtcta tgcaatggga 2760
gggaaataca ttctgttaaa tgacttgtcg atttgatctt tcatgcc 2807
<210> 7
<211> 3093
<212> DNA
<213> Artificial sequence (Artificial Sequence)
<400> 7
aacaaaagcc cgagccgatt ggtttgctag gaaacttgag ttatacaaca tacgcatcat 60
aaaccaacta atagtccttt agccagatca aacaagtaat aataactcat acgacaaaat 120
atagtctcca atatccaact acaaagaaga aagacaagtg actgcgttta gtcaaacaaa 180
ccgaaaccca aatctccgtc actctcttct gctggctcat cctgcaatac caaaatgaga 240
tcaattttat atcacttatt agttagaaga atgatttcgt ctatcgttgc tatttcattt 300
accttcttct tctcctcagc agcaggagca gctgccgcac caccgccagc agctggagca 360
gcagctgcaa ccggagcacc acctccacca ccagcaccaa cgttcatgat gagatcagtc 420
acgttacgtt tctcagccat cttggcgaat agcattggcc agtatgactc aatactaaca 480
ccagcagctt tcaccaaggt cgcgattttg tcagcctatc aacgacataa acaaacacaa 540
gtaaagatct ttacccaatt caaaacacat ttagacagat acataaaata cttgttcaat 600
tcctgaccaa ataatactat accaaatcct tatcactcca taagaatcat tttcactaag 660
tttctaacta tcaagtcaaa agaaacggtt ccaaaaccct actgactaaa gcaaagagac 720
caatcaagat ttagaaatag acaagcagga gtcaaaggaa agataccgtg atagcgatac 780
cctcgtcctc gaggatcata acagcgtagc tgcaagcaag ctctccaact gtcgacattt 840
ttttatcctg aaacgattca aaaacagtaa caatagatta attgcttatt cacaaaaaaa 900
caaactttaa atccgtttta aaccaaaatt agagtaagtc gaacaaccca gacgatgatg 960
aaatgccaat aacaagtata aacggatcaa atggagaatc atagactacc taagagtaag 1020
atcgaaaatg cttttcgcaa ggcggcgaga gagacaaaat ttctagggtt tggatgcgga 1080
gacgggagat gcagagttta taaagctttt atccaattat ttgatgggcc gcataaatat 1140
tcgctaggcc cattttttaa ttttacatat atttgttttc agtattgggc cttcaaacct 1200
aatagccgtg aataaataaa agataagagc ccaaattaag agatttgact ttgaccagaa 1260
attgttggtt ggtttctagg gaacgaccac cgtggtccat catgcatgtg acagcacgag 1320
cttggtcaag caatacttga tggatgtcct tttcgcacta gtaacataat tcttcatttg 1380
acatatttat agtcttcaat aaacatatca tatgcgatcc aatatatttt cattttttct 1440
tgtacattcg tcttggtcca aaaatcacga gtttgattag ttctttaacc ccaaacttca 1500
caaaatcatg tagttgtaga caccaagttt gattatattt gtcaattaat aaaaaaaatg 1560
atttatacaa tttgtttaga atctcgataa atacttgttc atcctactac cattccaacc 1620
aactttatat aatagtagta aaaattacgc atgcgctaag ccaaatattg gcatttagta 1680
gaataacaga aaaaaaataa ataaaaatgt agattatgga gctaaaacaa cgtgcaatct 1740
ctctccttat ctagtctacg tatattgtcc cgcacggtat ataatcaata tggacccaaa 1800
aacgaatata ttcatgttaa tatcgatgcc aacaaaataa attaataata ctatgtattt 1860
ggtgaaaaga taaaatttat taaagagaaa gaaacacagt tattggtgtc gtggttgcag 1920
taaaagaggt ggtcagactc agagcaactt cttacaaagc aaccaaaggt tatctgtact 1980
ttctgtttct ctctcactcc ttatttctga aaaaaaaatc tacagctaaa tacctaaatc 2040
tcaacttcac ggaacaccga tacataaaga caatagagtg gtaataattt gttgagacca 2100
aaagtaatta aacacattac acatggggaa aaagaacggc tcttcttctt ggctcaccgc 2160
tgtaaagcga gctttccgat ctccgacgaa gaaagatcat agtaatgacg tcgaagaaga 2220
tgaagaaaag gtttcttatt cttagatctt attatttgct tactatattc aaagtatgat 2280
tattggtttt catttttctc tgttttttta aaaaaagaag agagagaaga gacggtggtt 2340
tagaaaaccg gcgactcaag aatctccggt gaagtcttcc ggtatctctc caccagcacc 2400
tcaggaagat tcacttaacg taaactcaaa accctctccg gagacagcac cgagttacgc 2460
aactacgacg ccgccatcca acgccggtaa acccccgtcc gccgtagtcc ccatcgccac 2520
gtcagcatct aagacactcg caccgaggcg gatttattac gcaagagaaa attacgctgc 2580
tgttgtcatc cagacttctt tcagaggata tttggtgagc aattattaat gacctatatt 2640
tttactttca tttttttaac caacttgact tctagaccac tttttagtga caatgatgtg 2700
tgtctatgtc tataaaatta acattgctta tacaagatct accatttaaa agattgggat 2760
ttcatttaga taattttttt ttgggtcttg atataagttt tgttctttct aatttggtaa 2820
ggcaagaaga gcattaagag cattaaaagg gttagtgaag ctacaagcat tggtgagggg 2880
acataatgtg agaaagcaag ctaaaatgac attaaggtgt atgcaagctc tggttcgagt 2940
ccagtctcgt gtgcttgacc aacgcaaacg cttgtctcat gacggtagtc gcaaatccgc 3000
gttcagtgac tctcacgctg tttttgaatc tcgctatctt caagatttgt cagatcgaca 3060
atccatggtt agtatagcct cctaggcctt gcc 3093
<210> 8
<211> 3115
<212> DNA
<213> Artificial sequence (Artificial Sequence)
<400> 8
aaccgaactg aaccggagta tttttttctt tcttacctct gtagctacgg agagctgacc 60
tttacgacca cttttgtctc ctttcatttt tatctgcgaa gtttacttaa acaatgttta 120
acgaagctac aaagacatta gttgacacaa acaaaatcaa gaagaagaag aagaagaaga 180
acagaccttg tagttgtctt tacggacatt aaagcctaat ggctttgcgg tttcttccat 240
tttcgacatt atttcactcg cagatcgttg agaagtaaac cgcgtttctt tcttcacaag 300
ttgctgcaaa caacaacaaa tcagatttag ttagataaaa cctatgcatg attttagaaa 360
atcaagacaa actgtaagta gaaaaaagtt cttaccgctt gcttctcgaa caagttttca 420
agactgaact cgcttgagct agagataagt tcgaaagcgt tcatggatac aggtttctcc 480
ttcttctcag ttacaagaca ttcctagagt agcagcacaa aaagagtgat attagttggt 540
aacaatacat tggtttactt aaaccgaact atgatataca caaccagatg gagaatttgg 600
aaatggcggt gtttaccttg gagttactaa aagcagcatc aacatcatct atggttatgt 660
cctcgtcatc ttggtcaaat gatggcggct tgtacccttt cttgaaccat tcatcttcga 720
gcaactctgc aatacttatt ctctgcattt cagaaataag tacatactta agctcttgca 780
caatctatgg ttggcagcat gtcatgttca cattttcaca actattactt catgtaagag 840
gcacttacgg taatagggtt gggttcgaga atacgcttga tgactctctt ggcaccttgc 900
gagaaccatg gtgggcagct aaactcagcc ttgcatatct aaagtatata ttaaacacca 960
aagatgagac tagaaaagta ctgcagaaga tcaagaagca gagggagaga taatttacac 1020
gtacacgttt gtataatgtc atgagattcg gctcatcaaa aggcaagtaa ccagccataa 1080
gcacaaagag aatgacacca caagaccaga catctgctgc tgcaccgtca tagcctttgt 1140
ccgacaaaac ctgccagcaa atccaacaca atgcagtaga caacattaaa ggcatatctc 1200
ttatatacat cataaataaa gaagattctg caaatgaagt ctatatatac gtatagcatt 1260
tgttagattt ccttcctttt taaaaacgta ttagcagttc ttgaattcct taaaatctta 1320
ttttccaaag aggatctaca gaacatttca tattctttgc ctttttaagt gctgaaagtt 1380
agtacataat acctcagggg caacgtagtt tggcgttcca caagctgtat gaagcaaacc 1440
atcttcctgc attcaaaaga acaatgctta gaacacttca ttcaaattga tatcttggtt 1500
atatatatca gaaattaatt gccaagtgaa aaatataatg gcattacccg aacttgtcgt 1560
gagaaggcgc ttaacccaaa atcagagact ttcaaaaccc catttgcgtc aaggatcaga 1620
ttttcaggct gcaacaagga acagatgata acaaaagaaa cttgaataag aactaagaag 1680
aatgaatatc gtaatcacag gaaacaagaa gagtgcacaa aaacaaaaga aagaccttga 1740
gatctctgtg gtagacacct cgactgtggc agtaatccac agcattgatg agctgctgaa 1800
aatatctccg agcttcatcc tccttaagcc tcccttgttg cgcctatgta tatgatttaa 1860
atccaagaat taacataaga gtaagaagag agaaagacag agaacatatg tcaatatttg 1920
tgaagagaaa agagaggaag attctctaag ttaggttact tacgatttta tcaaagagtt 1980
cacctccatt gacaagctca agaacgatat agatcttcgt tttgctcgcc ataacctacc 2040
acagagagat gttttacacg ctaagattca aaacttaatt taaaaaatat ctaaggaatg 2100
ataactaatt agtttcgtac ctcaatgatt tcaaccacat ttggatgttt aatcagtttc 2160
attgtagata tttctctttt aagctgcaca acaacaaaaa aataaaactt tatgatcatt 2220
atatcttcga gatcttgctc ataacttcca atcatacata tatagcatac aaaactaaat 2280
cttcaacaga ttcaaatcga accaaatcaa aaacaaagct actcgaactt caaaaccata 2340
tccatatcat agttaatagt tatcttgatc aatgcgtact aagatcagca tcgtgtagat 2400
atatacagaa acaaaaacat tcatacaaaa ttcgatattt taaaatatta ttgttaacac 2460
tttaatcaaa cattaacctt aataaccgaa caccaaccta ggaggacatg tgggtcccta 2520
atcacgaaat taaactgttc tttatagtac ttaaaaacaa acaaatccat aatcatttta 2580
cgtgatcaaa ccaaacacaa ttaacgaacc tgttcgacca ttttgtgacg gaagaccttt 2640
tctcggtcga ggattttgat agcggcttga tctccggtga cggtgttctt ggcgtatttc 2700
accttagcga agcttccttc tccgagagtt cgtcccatct cgtaattccc tactcgcgtc 2760
ctactcgccg gcgtcgcctt ccttctgctt ccactcattt tctttttccg attaagaaaa 2820
tcaacggctc tagatcggcg gcgaatctat caatgtgatt cttctccctc aatatctctc 2880
cttcttctag tggctgcctg gttttaaggc tgacgagaga aagtggacga gcgagagatt 2940
taataggcgc gactgggagt cacgcgcgta ttgtgggtcc cgtatgccac gtaatgtcaa 3000
aaatcattat tttgctctgt tccgcgtcag tcccgtgtta tttgtacttg tgtacgttcg 3060
taacgttcat tcttcattca tataaaaaaa ttccataatt ttgttcttgt gtggt 3115
<210> 9
<211> 3065
<212> DNA
<213> Artificial sequence (Artificial Sequence)
<400> 9
acgactattc tcctgcttgc ttaccatttg actttttcta ttgttagtca acgacctttc 60
cttttaatca tctacttttt tatatacttt ccaacttaca tatgtatgcg ctttttcatt 120
ccaaacaata taaatagatt aattagaaga aaatttataa catgtaaatt tcgttgtaaa 180
taacagatag ctactaatct gtaactatca aggctaaata taatttttat agctatctcc 240
tgcaaaaatt gtcacctctt tagtaaaata tatagatcgt cgaagtgttt aagacaccag 300
caaaatttat cataacattg tggccctgaa tccaaatttc ttcttatagt atttgtttaa 360
ttcagttaat acatatactt atcttaactc gatcctatcg tttattgaaa atatataaaa 420
gttcaaagga gtaatttaca ttgttcttat ataagaatct ttcttttgct aatatacata 480
aactaattag taactttaca cataatacag aggtatcagc atagaaaact aagtagtcac 540
aaagcacttg gtggccgatt aatcatatgt gcttagatac aatgtaaata ttaatgtgtg 600
atgttttata tatctgatta tataatatac tctccttttt aggtcataag aggaaaagcg 660
agtttgtgat tggagcactt caaatgattc ggttgcatgc aaaaataaat agaatcatat 720
cttccattag atttggatta tattccagat tctaacgtga cactcacaat tgatgtcacg 780
aaatatctac ttaatgaact tattgtggtt ctgatcattt cactatccta atctttgaaa 840
acaaatctcc atcatttcac taccatatag tttagacttt ttttttaaaa aattccttgc 900
tagaaatatt gataaaactc tagtttttac ttaacatttt gattgaatag aagaaactcc 960
ttggaacttg acagaataaa agaattgttt tttctttaca tatacaagaa tgtcaaagag 1020
attacgagtg acacatgaat agctttttga ttttactata agcaccacct ctaattctct 1080
aaacatgaaa aacccaaaca aagatccgag tcatatatgg gcttaaagaa aggcccaata 1140
attggctttt gattttatgg cctatcactc aaaatttcaa cacgagcacg aagcttgttc 1200
cttgatatta ctagtctcaa gatccgaacc agagatgaca tcaattctcg aaccgtcaag 1260
tttcacggtg gctccaccgt cggattccat agcttttctc gaaacaacaa cgcggctgaa 1320
aatctcctcg agtaaacgga aaaaagcttc gtcgacgttt ccgccgctta gagccgagac 1380
ttccgagaaa aaaagccgtt gagtctcggc gaattcgact gcatcctccg taggaacggc 1440
acgtttacca acggagagat cggctttgtt tccgacgagc atgatcacgg cggaatcatc 1500
ggcgtgagca cgtaattcct cgacccaacg tgcaacgtgg tcgaatgaga ggcgtttggt 1560
aatgtcgtaa accaccatcg cacctaacgc acctctgtag taggcgctag tcaccgctct 1620
gtatctgacc gccgaaacag ggtaagcaaa caaatatttt ttaattgaat atattataac 1680
aaaatctgac attgcagacc aaatcaagaa agaccaataa ttattcaaaa tcccataaat 1740
ttaaatatcg tgatcctaga taatataacg aaattctact ctagtttatt ttaacattta 1800
atttgtatac aaatctgaga ttcagctata aagaattatc aatgtaagac tgcaatttct 1860
tcgctcttta attaatgcaa aacaaaaata tacgcaacat ttatacatat tttatcaaga 1920
aaaataatat gaaaaaacga tattaaaaga aacttttgca tcggtaagaa aaatataaag 1980
ttttacttat gcaagtatgc aacaaagtat tcggtgagtt attgcatttg accttttgat 2040
ctataagtgg ttgcaaaaag acaaaaacaa aatatgcaga aaagaaatct gacattgtat 2100
taaccaaatc aagaacacca atggttattc aaatccatac cacaattctt tacccaacaa 2160
aaatattcca tattgtatta gaaatatatt tagttacaaa atcaaatcaa accatatcta 2220
aattaccgtg atccaagtga aatgaagtga tagtctaaac aaatgatttg aatccaaaag 2280
tgagagctta ataaaatata taaagaatta tcaatgtgtt tttggatata gatgatataa 2340
cctctcttga ccggcggtgt cccagatctg agctttgacg agtttgcccc gaagagtgat 2400
ggtccgtgtc tgaaactcga caccaatggt tgattttgaa tcataacaga actcgttgtg 2460
tgtaaaacgt gagaggagct gcgttttccc gacagcagaa tctccaatga ccaccacctt 2520
gaacacgtaa tcgatctttt ccggcatcgt cggtttcttt acgtgtttgt tattctccgg 2580
cgactcaccg ctcatctctt cgttcattat tgcgctgatg aagaaaacaa ctataaagtt 2640
taagtctctt ttgagtaaag tgggagtgag tgaaacagag aaaagagaag aaaggagaag 2700
aaatttggtt ttatatggtt cagtacgaat ataccgaatt aacaaaaatt ctgaaccact 2760
tcagtgagat tggttggatt cactcataac cattcgcaac catatttaat aaaactaaaa 2820
ctgctacaaa ccaaaatttc gtaaatttgg tttggtttaa gtcgttgaaa taacccaaac 2880
taaaattaaa tattgagtat cctaacctaa aagtgttgat atatgaagac agcaacaatg 2940
ctctgtgcat tattttaatt agctcttctt ttatatataa ttttaattag ctttttatat 3000
atgattcaaa atgaatatac aatgtttaaa tatagctgtg gcttgtgggc atggaccgac 3060
ataat 3065
<210> 10
<211> 2981
<212> DNA
<213> Artificial sequence (Artificial Sequence)
<400> 10
tcctgtcaac gaaccaaccg gtcaagtacg gatttcttta attgtaaagt tgggtacgtg 60
tttatgaagc gaacgtgttt gatagaaaaa aaatgaatgc ttgcaactgt gaagactgaa 120
aagtcatgat ttagtgttga gacttattca aattattatg tccacattct ttaaacagtg 180
ggaagagaga gattggtgac agcattaaat tggtggtcac acataccaat atcacaaaat 240
ttagtacttg taccccataa agaagagggt cactatattc aattattcat gttttatgat 300
gtaatatact atagtagatg ttaacatatc gaagcattga atatgaaagt tccaaatctt 360
gatggtcatt atttcgaatt cttgtgggcg aataaatgaa aagagcgttt gatgatatcg 420
acattctaac aagatcgtga gatctaaagg tcgtcgtgat gatttagtaa taagataaaa 480
aagtcgtagc aacgtttttt tggtttaaaa tgtaaaaaga agaccgtgat gcattgtttg 540
taatgtatac atgaataaaa taagtactta tttaacaacg tagtgtatta gattatcttt 600
cgtcatgtat ttgcatgtat attttccccc atgtggaatg tttcagtttg tgttatctca 660
agagcgaaaa tgtgccacca attgtgggga aattattggg catcattaat taactactag 720
tagtatataa aacgagcttt tcacttttca caaaataatt atagttaaaa taagcaaatt 780
atttcatgac gtaaaaaaag aaagaaaaag aagctaccac accacttgca tatttcttaa 840
gtgtctgtta tccaccgaat ctaaaatgtc gcttttgcat tcccacaatc ttattagata 900
tttgtattcc cagagtaaaa gtataattca aacatttatt attattatta taggaattga 960
aagaaaatta aattttcaaa aagaccgctt acttgtttat tatatacaca gagaagagaa 1020
cagtctcact cgccactttc ctcgagaaaa cgaaaaaaaa agatggtagg aagaagaaaa 1080
gctttactct tttctctctg tttcttcttc ctctctcttc cttccttctc ttcccttcca 1140
tccttccaaa ccctattccc caattctcat tcccttcctt gtgcttctcc cgtctcattc 1200
caacccgact ccgactccga gtcactgcta gaatccgaat ttgaatccgg atccgactcc 1260
gagtcttctt cttccattac tctaaacctc gaccacatcg atgctctctc ctccaacaaa 1320
acacccgacg agctattcag ctcccgtctc caacgtgact cccggcgcgt gaaatctatc 1380
gccacactcg ccgctcaaat ccccggaaga aacgtgactc acgcgccacg acccggtgga 1440
ttcagcagct cagtcgtctc tggtctctct caaggaagcg gtgaatactt cacgcgcctc 1500
ggtgtcggca ctccggcgag atatgtttac atggtgctcg acaccggcag cgacatcgtc 1560
tggctacaat gcgctccttg tcggagatgc tactctcaat ccgacccgat attcgacccg 1620
agaaaatcca agacctatgc cacaatcccc tgttcttcac ctcactgccg ccgattagac 1680
tccgccggat gcaacacccg tcgtaagact tgtctctacc aagtctctta cggagatggt 1740
tctttcaccg tcggcgattt ctccaccgaa acgctaactt tccggcgaaa tcgcgttaaa 1800
ggcgttgctc tcggatgtgg ccacgacaac gaaggtctct tcgtcggagc cgccggttta 1860
ttaggactcg gtaaaggtaa attatcgttc cccggtcaaa ccggtcaccg gtttaatcag 1920
aaattctctt actgtttagt cgacagatcc gcttcttcga aaccttcctc ggtcgtcttc 1980
ggaaacgccg ccgtatcacg aatcgcgaga ttcacgccac ttttgtcaaa cccaaaactc 2040
gacactttct actacgtcgg gcttctggga attagcgtcg gagggacacg tgtccccggc 2100
gtaacggctt ctctttttaa acttgaccag atcggtaacg gtggagttat tatcgattcg 2160
ggtacgtctg tgacccggtt gatccgacca gcttatattg ctatgagaga cgcgttccgg 2220
gtcggagcta agacattgaa aagagctccg gatttctcac tcttcgacac gtgtttcgat 2280
ctctccaata tgaacgaggt taaagtaccg acggtggttt tacatttccg tggagctgac 2340
gtatcacttc cggcgacgaa ttacctgatc cctgtggata ccaacggcaa gttctgtttt 2400
gcgtttgccg gtacgatggg cggactatcc ataattggga atatccagca acagggtttc 2460
cgggttgtat acgacttagc gagttcccgg gtcgggtttg ctccaggagg atgcgcttaa 2520
taattagatc tgaccggagc cggtacggat aatgtacttt tgttttctca atttaatgct 2580
tagacttgtt tttttttttt ttataaatcg gacaagtgaa tctttaagcg gtggagttga 2640
atacgtgttg ataaaatctt cacgtgttgt cggctgtatt attagtatcg tctttatttt 2700
acatctcgga ccaaagagag cgtgtatgat tttctaaaaa attggcaatt ttacttttag 2760
ttatccaaca aatgacaact gcggaaatta gttagatcaa agattattca atataatttc 2820
caagtcagac aaatctgatt atctgaggat ggtagagtac gtctataata gtataaatta 2880
agatagattt tggtaaatta ctgtttacgt aatacatagg gcagatgaaa aattgtgttg 2940
gagttgttaa tcagacaaaa acgaagattc agcgcgaaga t 2981

Claims (9)

1. A method for absolute quantification of a metagenomic sample, the method comprising the steps of:
1) Taking a metagenome sample to be detected, labeling the sequence mixture, and uniformly mixing to obtain a mixed sample;
2) Mixing sample DNA extraction, library establishment and sequencing to obtain machine-on data;
3) Analyzing respective detection proportions of pathogenic bacteria and tag sequences in the machine-down data;
4) Establishing a sample fitting linear relation, and fitting a sample linear relation formula by taking the detection proportion of each tag sequence as an abscissa and the known mass of the corresponding tag as an ordinate: y=kx;
5) Quantification of pathogenic bacteria: calculating the mass of the corresponding pathogenic bacteria according to a sample fitting linear relation y=kx and a pathogenic bacteria detection proportion x; defining a quality and copy number conversion formula, and calculating the copy number of pathogenic bacteria;
the copy number=6.02 x 10 x 23 x 10 (-9) x mass (ng)/(genome length bp x 660 g/mol);
the tag sequence mixture comprises 3 tags;
the tag sequence is shown as SEQ ID NO.1-3.
2. The absolute quantification method of claim 1, wherein:
the concentration ratio of SEQ ID NO.1, 2 and 3 tags in the tag sequence mixture is 50-100:5-10:0.5-1.
3. The method of absolute quantification of claim 2, wherein the tag sequence mixture is prepared by a method comprising: preparing a mixture of tag sequences shown in SEQ ID NO.1, SEQ ID NO. 2 and SEQ ID NO. 3 according to a concentration ratio of 100:10:1, and subpackaging the mixture into a 30ul system for later use.
4. A method of absolute quantification according to any of claims 1-3, wherein the sample is a blood sample.
5. A tag sequence for absolute quantification of a metagenomic blood sample, wherein the tag sequence is shown in SEQ ID No.1-3.
6. The tag sequence according to claim 5, wherein the concentration ratio of SEQ ID NOS.1, 2, 3 is 50 to 100:5 to 10:0.5 to 1.
7. A product for absolute quantification of a metagenomic blood sample, characterized in that it comprises a tag sequence according to any one of claims 5-6.
8. The product of claim 7, wherein the final concentration of the tags SEQ ID NO.1, 2, 3 in the product is 0.0011ng/ul, 0.00011ng/ul and 0.000011ng/ul, respectively.
9. Any one of the following uses of the tag sequences of any one of claims 5-6:
1) The application in preparing reagents for detecting blood sample infection;
2) The application in absolute quantification of metagenomic blood samples.
CN202111520584.1A 2021-12-10 2021-12-10 Product and method for absolute quantification of metagenomic blood sample and application of product and method Active CN114242167B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111520584.1A CN114242167B (en) 2021-12-10 2021-12-10 Product and method for absolute quantification of metagenomic blood sample and application of product and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111520584.1A CN114242167B (en) 2021-12-10 2021-12-10 Product and method for absolute quantification of metagenomic blood sample and application of product and method

Publications (2)

Publication Number Publication Date
CN114242167A CN114242167A (en) 2022-03-25
CN114242167B true CN114242167B (en) 2024-03-26

Family

ID=80755294

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111520584.1A Active CN114242167B (en) 2021-12-10 2021-12-10 Product and method for absolute quantification of metagenomic blood sample and application of product and method

Country Status (1)

Country Link
CN (1) CN114242167B (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102925581A (en) * 2012-11-15 2013-02-13 中国石油大学(华东) Method for quantitating anaerobic ammonia oxidizing bacteria in sediment of aquiculture environment
CN104450889A (en) * 2014-11-14 2015-03-25 南开大学 Method for accurately quantifying alkane hydroxylase gene alkB in one step and application of method for accurately quantifying alkane hydroxylase gene alkB in one step
CN110804655A (en) * 2019-11-15 2020-02-18 康美华大基因技术有限公司 Method for absolutely quantifying metagenome
CN111304300A (en) * 2019-12-17 2020-06-19 北京金匙基因科技有限公司 Method for detecting genome DNA copy number of each microorganism species in sample to be detected

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9524369B2 (en) * 2009-06-15 2016-12-20 Complete Genomics, Inc. Processing and analysis of complex nucleic acid sequence data
CN113106098B (en) * 2021-04-21 2022-04-01 贵州医科大学 Recombinant sequence for specifically expressing human beta globin in erythroid cells and application thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102925581A (en) * 2012-11-15 2013-02-13 中国石油大学(华东) Method for quantitating anaerobic ammonia oxidizing bacteria in sediment of aquiculture environment
CN104450889A (en) * 2014-11-14 2015-03-25 南开大学 Method for accurately quantifying alkane hydroxylase gene alkB in one step and application of method for accurately quantifying alkane hydroxylase gene alkB in one step
CN110804655A (en) * 2019-11-15 2020-02-18 康美华大基因技术有限公司 Method for absolutely quantifying metagenome
CN111304300A (en) * 2019-12-17 2020-06-19 北京金匙基因科技有限公司 Method for detecting genome DNA copy number of each microorganism species in sample to be detected

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
荧光定量PCR 法检测 点带石斑鱼神经坏死病毒研究;彭智发;《福建畜牧兽医》;20151231;第37卷(第1期);15-18 *

Also Published As

Publication number Publication date
CN114242167A (en) 2022-03-25

Similar Documents

Publication Publication Date Title
CN111187813B (en) Full-process quality control pathogenic microorganism high-throughput sequencing detection method
AU2002352858A1 (en) Automated sample preparation methods and devices
CN114242167B (en) Product and method for absolute quantification of metagenomic blood sample and application of product and method
Jannes et al. A review of current and future molecular diagnostic tests for use in the microbiology laboratory
US7860694B2 (en) Method of designing probes for detecting target sequence and method of detecting target sequence using the probes
El Kaderi et al. Analysis of interactions between genomic loci through Chromosome Conformation Capture (3C)
CN113265452A (en) Bioinformatics pathogen detection method based on Nanopore metagenome RNA-seq
CN112852938B (en) Primer group for gram-positive bacterium drug-resistant gene high-throughput amplicon sequencing and application
Antypas et al. A universal platform for selection and high-resolution phenotypic screening of bacterial mutants using the nanowell slide
CN116144811B (en) Multiplex primer set, method and kit for detecting cerebrospinal fluid pathogen
CN115058490B (en) Primer combination for constructing microorganism targeted sequencing library and application thereof
JPWO2020073016A5 (en)
Yue et al. Development of next-generation sequencing-based sterility test
CN105063759A (en) Gene chip for detection of cerebrospinal fluid pathogens
CN117126920B (en) Central nervous infection pathogen library building and detecting method based on nanopore sequencing platform
Hardiman et al. Quantification of rRNA in Escherichia coli using capillary gel electrophoresis with laser-induced fluorescence detection
Christie et al. Highly Multiplexed, Semiautomated Nextera Next-Generation Sequencing (NGS) Library Preparation
CN116334189B (en) Internal standard system for monitoring qPCR reaction interference and application thereof
CN107365832B (en) Method and kit for determining content of Escherichia coli DNA in biological product
Koskinen et al. Analytical detection limit of the PathoProof™ mastitis PCR assay determined using two different experimental approaches
CN116179664A (en) High-throughput detection method, system and kit for determining microorganisms based on internal reference
CN113588392B (en) Quantitative sample mixing method for improving sequencing sample mixing uniformity
McClure et al. Strategies for global RNA sequencing of the human pathogen Neisseria gonorrhoeae
Welker MALDI-TOF MS for identification of microorganisms: a new era in clinical microbiological research and diagnosis
CN117248046A (en) Method and kit for detecting KPC drug resistance gene by digital PCR

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant