CN114239752B - Method, device, equipment and medium for constructing residual life prediction model of relay - Google Patents
Method, device, equipment and medium for constructing residual life prediction model of relay Download PDFInfo
- Publication number
- CN114239752B CN114239752B CN202210079835.5A CN202210079835A CN114239752B CN 114239752 B CN114239752 B CN 114239752B CN 202210079835 A CN202210079835 A CN 202210079835A CN 114239752 B CN114239752 B CN 114239752B
- Authority
- CN
- China
- Prior art keywords
- data
- relay
- time window
- time
- prediction model
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 47
- 238000006731 degradation reaction Methods 0.000 claims abstract description 37
- 230000015556 catabolic process Effects 0.000 claims abstract description 33
- 238000010276 construction Methods 0.000 claims abstract description 20
- 238000013441 quality evaluation Methods 0.000 claims abstract description 11
- 238000000605 extraction Methods 0.000 claims abstract description 7
- 230000009471 action Effects 0.000 claims description 34
- 230000006870 function Effects 0.000 claims description 19
- 238000004590 computer program Methods 0.000 claims description 11
- 238000004364 calculation method Methods 0.000 claims description 9
- 238000012545 processing Methods 0.000 claims description 6
- 230000002441 reversible effect Effects 0.000 claims description 6
- 238000011156 evaluation Methods 0.000 claims description 5
- 239000011159 matrix material Substances 0.000 claims description 5
- 238000012163 sequencing technique Methods 0.000 claims 1
- 230000008569 process Effects 0.000 abstract description 18
- 230000008859 change Effects 0.000 description 8
- 238000010586 diagram Methods 0.000 description 8
- 238000009792 diffusion process Methods 0.000 description 6
- 230000009467 reduction Effects 0.000 description 5
- 230000005653 Brownian motion process Effects 0.000 description 4
- 238000000354 decomposition reaction Methods 0.000 description 4
- 238000009826 distribution Methods 0.000 description 4
- 238000011160 research Methods 0.000 description 4
- 238000004140 cleaning Methods 0.000 description 3
- 238000012549 training Methods 0.000 description 3
- 238000007476 Maximum Likelihood Methods 0.000 description 2
- 230000001186 cumulative effect Effects 0.000 description 2
- 238000003062 neural network model Methods 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 230000000717 retained effect Effects 0.000 description 2
- 230000032683 aging Effects 0.000 description 1
- 238000005537 brownian motion Methods 0.000 description 1
- 230000002860 competitive effect Effects 0.000 description 1
- 238000009795 derivation Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/21—Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
- G06F18/214—Generating training patterns; Bootstrap methods, e.g. bagging or boosting
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- Data Mining & Analysis (AREA)
- Life Sciences & Earth Sciences (AREA)
- Artificial Intelligence (AREA)
- General Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- Evolutionary Computation (AREA)
- Bioinformatics & Computational Biology (AREA)
- Computational Linguistics (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Biophysics (AREA)
- Evolutionary Biology (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Computing Systems (AREA)
- Mathematical Physics (AREA)
- Software Systems (AREA)
- Testing Electric Properties And Detecting Electric Faults (AREA)
Abstract
本发明实施例公开了一种继电器剩余寿命预测模型的构建方法、装置、设备及介质,方法包括:获取继电器在一段时间内的运行参数,即历史运行数据;从历史运行数据中选取不同时间窗口系数对应比例的数据以作为不同时间窗口系数对应的时间窗口数据;针对每个时间窗口数据,利用预设的质量评价规则来计算数据质量;将数据质量最好的时间窗口数据作为最优数据集,根据最优数据集构建继电器对应的性能退化模型以得到继电器剩余寿命预测模型。由此,本发明实施例基于质量最好的时间窗口数据的抽取,避免了构建继电器剩余寿命预测模型的过程需采用所有历史运行数据的情况,提高了继电器剩余寿命预测模型的构建速度,并保证了剩余寿命预测的精度。
The embodiment of the present invention discloses a method, device, equipment and medium for constructing a relay remaining life prediction model. The method includes: obtaining the operating parameters of the relay within a period of time, that is, historical operating data; selecting different time windows from the historical operating data The data corresponding to the coefficient is used as the time window data corresponding to the coefficient of different time windows; for each time window data, the preset quality evaluation rules are used to calculate the data quality; the time window data with the best data quality is used as the optimal data set According to the optimal data set, the performance degradation model corresponding to the relay is constructed to obtain the remaining life prediction model of the relay. Therefore, the embodiment of the present invention is based on the extraction of the best-quality time window data, which avoids the need to use all historical operating data in the process of constructing the relay remaining life prediction model, improves the construction speed of the relay remaining life prediction model, and ensures the accuracy of remaining life prediction.
Description
技术领域technical field
本发明涉及寿命估计领域,尤其涉及一种继电器剩余寿命预测模型的构建方法、装置、设备及介质。The invention relates to the field of life estimation, in particular to a method, device, equipment and medium for constructing a relay remaining life prediction model.
背景技术Background technique
作为地铁自动控制系统中不可或缺的部件,继电器的可靠性直接影响地铁运行的安全性,使得继电器的可靠性研究逐步成为学术界关注的重点,而可靠性的重要研究内容之一为继电器的寿命预测。As an indispensable component in the automatic control system of the subway, the reliability of the relay directly affects the safety of the subway operation, making the research on the reliability of the relay gradually become the focus of the academic circles, and one of the important research contents of the reliability is the reliability of the relay. life expectancy.
在现有的继电器剩余寿命预测研究中,大多学者采用继电器的全部历史数据来构建继电器的寿命预测模型。而在继电器的历史数据的数据质量较差的情况下,将导致继电器的寿命预测模型存在预测精度低、运算速度慢的问题。In the existing research on the remaining life prediction of relays, most scholars use all the historical data of relays to construct the life prediction model of relays. However, when the data quality of the historical data of the relay is poor, it will lead to the problems of low prediction accuracy and slow operation speed in the life prediction model of the relay.
发明内容Contents of the invention
有鉴于此,本发明提供一种继电器剩余寿命预测模型的构建方法、装置、设备及介质,以改善继电器的寿命预测模型的预测精度低、运算速度慢的现状。In view of this, the present invention provides a method, device, equipment and medium for constructing a relay remaining life prediction model, so as to improve the current situation of low prediction accuracy and slow operation speed of the relay life prediction model.
第一方面,本发明实施例提供一种继电器剩余寿命预测模型的构建方法,包括:In the first aspect, an embodiment of the present invention provides a method for constructing a relay remaining life prediction model, including:
获取继电器的历史运行数据;Obtain the historical operation data of the relay;
基于预设数量的时间窗口系数,根据所述历史运行数据得到每个所述时间窗口系数对应的时间窗口数据,其中,所述时间窗口系数表示对应的时间窗口数据占所述历史运行数据的比例;Based on a preset number of time window coefficients, the time window data corresponding to each of the time window coefficients is obtained according to the historical operation data, wherein the time window coefficient represents the proportion of the corresponding time window data to the historical operation data ;
利用预设的质量评价规则,得到每个所述时间窗口数据的数据质量;Obtaining the data quality of each time window data by using preset quality evaluation rules;
将所述数据质量最好的时间窗口数据作为最优数据集;Taking the time window data with the best data quality as the optimal data set;
根据所述最优数据集构建所述继电器对应的性能退化模型,得到继电器剩余寿命预测模型。A performance degradation model corresponding to the relay is constructed according to the optimal data set, and a remaining life prediction model of the relay is obtained.
可选的,在本发明实施例提供的一种实施方式中,所述历史运行数据包括所述继电器在每次动作时的预设数量个运行参数;Optionally, in an implementation manner provided by an embodiment of the present invention, the historical operating data includes a preset number of operating parameters of the relay at each action;
所述利用预设的质量评价规则,得到每个所述时间窗口数据的数据质量,包括:The use of preset quality evaluation rules to obtain the data quality of each of the time window data includes:
针对每个所述时间窗口数据中的运行参数,基于预设第一预设公式计算每个所述运行参数与动作次数的时序相关性指数,及基于第二预设公式计算每个所述运行参数在所述动作次数下的单调性指数;For each operation parameter in the time window data, calculate the time series correlation index between each operation parameter and the number of actions based on a preset first preset formula, and calculate each operation based on a second preset formula The monotonicity index of the parameter under the number of actions;
根据每个所述运行参数的时序相关性指数和单调性指数,计算每个所述运行参数对应的数据质量值;calculating a data quality value corresponding to each of the operating parameters according to the time series correlation index and the monotonicity index of each of the operating parameters;
所述将所述数据质量最好的时间窗口数据作为最优数据集,包括:The time window data with the best data quality as the optimal data set includes:
将包含数据质量值最大的运行参数的时间窗口数据作为最优数据集。The time window data containing the operating parameters with the largest data quality value is taken as the optimal data set.
进一步的,在本发明实施例提供的一种实施方式中,所述第一预设公式包括:Further, in an implementation manner provided by an embodiment of the present invention, the first preset formula includes:
式中,Corr()表示时序相关性指数,Xj表示第j个运行参数的参数值,k表示所述继电器的动作次数,T表示由tk组成的时间矩阵,tk表示所述继电器第k次动作的时刻,XjT(tk)表示第j个运行参数在时刻tk下的趋势项;In the formula, Corr() represents the timing correlation index, X j represents the parameter value of the jth operating parameter, k represents the number of actions of the relay, T represents the time matrix composed of t k , and t k represents the relay’s first At the time of k actions, X jT (t k ) represents the trend item of the jth operating parameter at time t k ;
所述第二预设公式包括:The second preset formula includes:
式中,Mon()表示单调性指数,δ表示单位阶跃函数。In the formula, Mon() represents the monotonicity index, and δ represents the unit step function.
可选的,在本发明实施例提供的一种实施方式中,所述获取继电器的历史运行数据,包括:Optionally, in an implementation manner provided by an embodiment of the present invention, the acquiring the historical operation data of the relay includes:
获取继电器的原始历史运行数据;Obtain the original historical operation data of the relay;
对所述原始历史运行数据进行预设的小波降噪处理,得到历史运行数据。Preset wavelet noise reduction processing is performed on the original historical operating data to obtain historical operating data.
可选的,在本发明实施例提供的一种实施方式中,所述历史运行数据中的数据按照时间先后顺序排序;Optionally, in an implementation manner provided by an embodiment of the present invention, the data in the historical operation data are sorted in chronological order;
所述基于预设数量的时间窗口系数,根据所述历史运行数据得到每个所述时间窗口系数对应的时间窗口数据,包括:The time window data corresponding to each of the time window coefficients is obtained according to the historical operation data based on the preset number of time window coefficients, including:
基于预设数量的时间窗口系数,以倒序抽取的方式从历史运行数据中抽取每个所述时间窗口系数对应的数据;Based on the preset number of time window coefficients, the data corresponding to each of the time window coefficients is extracted from the historical operation data in a reverse order;
将每个所述时间窗口系数对应的数据按照时间先后顺序排序,得到每个所述时间窗口系数对应的时间窗口数据。The data corresponding to each of the time window coefficients is sorted in chronological order to obtain the time window data corresponding to each of the time window coefficients.
可选的,在本发明实施例提供的一种实施方式中,所述历史运行数据包括每个触点单元对应的预设数量个运行参数;Optionally, in an implementation manner provided by an embodiment of the present invention, the historical operating data includes a preset number of operating parameters corresponding to each contact unit;
所述根据所述最优数据集构建所述继电器对应的性能退化模型,得到继电器剩余寿命预测模型,包括:The step of constructing a performance degradation model corresponding to the relay according to the optimal data set to obtain a remaining life prediction model of the relay includes:
根据所述最优数据集每个触点单元对应的预设数量个运行参数,构建所述继电器对应的维纳退化模型,得到继电器剩余寿命预测模型。According to the preset number of operating parameters corresponding to each contact unit in the optimal data set, a Wiener degradation model corresponding to the relay is constructed to obtain a remaining life prediction model of the relay.
进一步的,在本发明实施例提供的一种实施方式中,所述触点单元包括至少一个常闭触点和至少一个常开触点,所述预设数量个运行参数包括常开触点电阻、常闭触点电阻、吸合时间以及释放时间。Further, in an implementation manner provided by an embodiment of the present invention, the contact unit includes at least one normally closed contact and at least one normally open contact, and the preset number of operating parameters includes normally open contact resistance , normally closed contact resistance, pull-in time and release time.
第二方面,本发明实施例提供一种继电器剩余寿命预测模型的构建装置,包括:In the second aspect, an embodiment of the present invention provides a device for constructing a relay remaining life prediction model, including:
获取模块,用于获取继电器的历史运行数据;The obtaining module is used to obtain the historical operation data of the relay;
窗口数据获取模块,用于基于预设数量的时间窗口系数,根据所述历史运行数据得到每个所述时间窗口系数对应的时间窗口数据,其中,所述时间窗口系数表示对应的时间窗口数据占所述历史运行数据的比例;The window data acquisition module is used to obtain the time window data corresponding to each of the time window coefficients according to the historical operation data based on the preset number of time window coefficients, wherein the time window coefficients indicate that the corresponding time window data occupies The proportion of the historical operating data;
评价模块,用于利用预设的质量评价规则,得到每个所述时间窗口数据的数据质量;An evaluation module, configured to use preset quality evaluation rules to obtain the data quality of each of the time window data;
选取模块,用于将所述数据质量最好的时间窗口数据作为最优数据集;Selecting a module for using the time window data with the best data quality as the optimal data set;
建模模块,用于根据所述最优数据集构建所述继电器对应的性能退化模型,得到继电器剩余寿命预测模型。A modeling module, configured to construct a performance degradation model corresponding to the relay according to the optimal data set, and obtain a prediction model of the remaining life of the relay.
第三方面,本发明实施例提供一种计算机设备,包括存储器以及处理器,存储器存储有计算机程序,计算机程序在处理器上运行时执行如第一方面中任一种公开的继电器剩余寿命预测模型的构建方法。In a third aspect, an embodiment of the present invention provides a computer device, including a memory and a processor, the memory stores a computer program, and when the computer program runs on the processor, it executes the relay remaining life prediction model disclosed in any one of the first aspect The construction method.
第四方面,本发明实施例提供一种计算机可读存储介质,计算机可读存储介质上存储有计算机程序,计算机程序在处理器上运行时执行如第一方面中任一种公开的继电器剩余寿命预测模型的构建方法。In a fourth aspect, an embodiment of the present invention provides a computer-readable storage medium, on which a computer program is stored, and when the computer program runs on a processor, it executes the remaining life of the relay as disclosed in any one of the first aspect. How to build predictive models.
本发明实施例提供的继电器剩余寿命预测模型的构建方法中,首先获取继电器在一段时间内的运行参数,即历史运行数据;接着从历史运行数据中,选取不同比例的数据以作为不同时间窗口系数对应的时间窗口数据;然后,针对每个时间窗口数据,利用预设的质量评价规则来计算数据质量;进而将数据质量最好的时间窗口数据作为最优数据集,并根据最优数据集构建继电器对应的性能退化模型以得到继电器剩余寿命预测模型,避免了继电器剩余寿命预测模型的构建过程需采用所有的历史运行数据的情况。In the construction method of the relay remaining life prediction model provided by the embodiment of the present invention, the operating parameters of the relay within a certain period of time, that is, the historical operating data, are first obtained; then from the historical operating data, data of different proportions are selected as different time window coefficients The corresponding time window data; then, for each time window data, use the preset quality evaluation rules to calculate the data quality; then use the time window data with the best data quality as the optimal data set, and construct The performance degradation model corresponding to the relay is used to obtain the remaining life prediction model of the relay, which avoids the need to use all historical operating data in the construction process of the remaining life prediction model of the relay.
由此,本发明实施例基于质量最好的时间窗口数据的抽取,避免了构建继电器剩余寿命预测模型的过程中需使用所有的历史数据的情况,提高了继电器剩余寿命预测模型的构建速度。不仅如此,由于构建继电器剩余寿命预测模型的数据是所有时间窗口数据中数据质量最好的时间窗口数据,使继电器剩余寿命预测模型能得到有效的数据支撑,进而保证了继电器的剩余寿命预测的准确性。Therefore, the embodiment of the present invention is based on the extraction of the best quality time window data, which avoids the need to use all historical data in the process of constructing the remaining life prediction model of the relay, and improves the construction speed of the remaining life prediction model of the relay. Not only that, since the data for constructing the relay remaining life prediction model is the time window data with the best data quality among all time window data, the relay remaining life prediction model can be supported by effective data, thereby ensuring the accuracy of the relay remaining life prediction sex.
附图说明Description of drawings
为了更清楚地说明本发明的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本发明的某些实施例,因此不应被看作是对本发明保护范围的限定。在各个附图中,类似的构成部分采用类似的编号。In order to illustrate the technical solution of the present invention more clearly, the following drawings will be briefly introduced in the embodiments. It should be understood that the following drawings only show some embodiments of the present invention, and therefore should not be regarded as It is regarded as limiting the protection scope of the present invention. In the respective drawings, similar components are given similar reference numerals.
图1示出了本发明实施例提供的第一种继电器剩余寿命预测模型的构建方法的流程示意图;FIG. 1 shows a schematic flowchart of a method for constructing a first relay remaining life prediction model provided by an embodiment of the present invention;
图2示出了本发明实施例提供的第二种继电器剩余寿命预测模型的构建方法的流程示意图;FIG. 2 shows a schematic flowchart of a second method for constructing a relay remaining life prediction model provided by an embodiment of the present invention;
图3示出了本发明实施例提供的第三种继电器剩余寿命预测模型的构建方法的流程示意图;FIG. 3 shows a schematic flowchart of a method for constructing a third relay remaining life prediction model provided by an embodiment of the present invention;
图4示出了本发明实施例提供的继电器剩余寿命预测模型的构建装置的结构示意图。FIG. 4 shows a schematic structural diagram of a device for constructing a relay remaining life prediction model provided by an embodiment of the present invention.
具体实施方式Detailed ways
下面将结合本发明实施例中附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。The following will clearly and completely describe the technical solutions in the embodiments of the present invention with reference to the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments are only some, not all, embodiments of the present invention.
通常在此处附图中描述和示出的本发明实施例的组件可以以各种不同的配置来布置和设计。因此,以下对在附图中提供的本发明的实施例的详细描述并非旨在限制要求保护的本发明的范围,而是仅仅表示本发明的选定实施例。基于本发明的实施例,本领域技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。The components of the embodiments of the invention generally described and illustrated in the figures herein may be arranged and designed in a variety of different configurations. Accordingly, the following detailed description of the embodiments of the invention provided in the accompanying drawings is not intended to limit the scope of the claimed invention, but merely represents selected embodiments of the invention. Based on the embodiments of the present invention, all other embodiments obtained by those skilled in the art without making creative efforts belong to the protection scope of the present invention.
在下文中,可在本发明的各种实施例中使用的术语“包括”、“具有”及其同源词仅意在表示特定特征、数字、步骤、操作、元件、组件或前述项的组合,并且不应被理解为首先排除一个或更多个其它特征、数字、步骤、操作、元件、组件或前述项的组合的存在或增加一个或更多个特征、数字、步骤、操作、元件、组件或前述项的组合的可能性。Hereinafter, the terms "comprising", "having" and their cognates that may be used in various embodiments of the present invention are only intended to represent specific features, numbers, steps, operations, elements, components or combinations of the foregoing, And it should not be understood as first excluding the existence of one or more other features, numbers, steps, operations, elements, components or combinations of the foregoing or adding one or more features, numbers, steps, operations, elements, components or a combination of the foregoing possibilities.
此外,术语“第一”、“第二”、“第三”等仅用于区分描述,而不能理解为指示或暗示相对重要性。In addition, the terms "first", "second", "third", etc. are only used for distinguishing descriptions, and should not be construed as indicating or implying relative importance.
除非另有限定,否则在这里使用的所有术语(包括技术术语和科学术语)具有与本发明的各种实施例所属领域普通技术人员通常理解的含义相同的含义。所述术语(诸如在一般使用的词典中限定的术语)将被解释为具有与在相关技术领域中的语境含义相同的含义并且将不被解释为具有理想化的含义或过于正式的含义,除非在本发明的各种实施例中被清楚地限定。Unless otherwise defined, all terms (including technical terms and scientific terms) used herein have the same meaning as commonly understood by one of ordinary skill in the art to which various embodiments of the present invention belong. The terms (such as those defined in commonly used dictionaries) will be interpreted as having the same meaning as the contextual meaning in the relevant technical field and will not be interpreted as having an idealized meaning or an overly formal meaning, Unless clearly defined in various embodiments of the present invention.
参照图1,图1示出了本发明实施例提供的第一种继电器剩余寿命预测模型的构建的流程示意图,即本发明实施例提供的继电器剩余寿命预测模型的构建包括:Referring to FIG. 1, FIG. 1 shows a schematic flowchart of the construction of the first relay remaining life prediction model provided by the embodiment of the present invention, that is, the construction of the relay remaining life prediction model provided by the embodiment of the present invention includes:
S110,获取继电器的历史运行数据。S110, acquiring historical operation data of the relay.
可以理解的是,历史运行数据代表继电器在一段时间内的工作状况,能表明继电器的状态变化量,因而可根据历史运行数据来构建继电器剩余寿命预测模型。It can be understood that the historical operation data represents the working status of the relay over a period of time, and can indicate the state change of the relay, so the remaining life prediction model of the relay can be constructed based on the historical operation data.
还可以理解的是,历史运行数据的数据组成成分可根据实际情况设置,如在一种可行方式中,历史运行数据包括触点对应的线圈电压和线圈阻值。It can also be understood that the data components of the historical operation data can be set according to actual conditions. For example, in a feasible manner, the historical operation data includes the coil voltage and coil resistance corresponding to the contacts.
而在另一种可行方式中,历史运行数据包括继电器在每次动作时的常开触点电阻、常闭触点电阻、吸合时间以及释放时间。In another feasible manner, the historical operation data includes normally open contact resistance, normally closed contact resistance, pull-in time and release time of the relay at each action.
需说明的是,本发明实施例不限定继电器的历史运行数据的具体获取方式,继电器的具体获取方式可根据实际情况选择。如在一种可行方式中,历史运行数据可通过在继电器中安装检测设备,以实时监控和收集继电器的数据来得到。It should be noted that the embodiment of the present invention does not limit the specific acquisition method of the historical operation data of the relay, and the specific acquisition method of the relay can be selected according to the actual situation. For example, in a feasible way, the historical operation data can be obtained by installing detection equipment in the relay to monitor and collect the data of the relay in real time.
此外,不难理解的是,在获取到的历史运行数据中可能包括噪声。因此,为提高历史运行数据的质量,在本发明实施例提供的一种实施方式中,具体可参考图2,图2示出了本发明实施例提供的第二种继电器剩余寿命预测模型的构建方法的流程示意图,即此种实施方式下的S110包括:In addition, it is not difficult to understand that the acquired historical operation data may include noise. Therefore, in order to improve the quality of historical operating data, in an implementation mode provided by an embodiment of the present invention, specific reference may be made to FIG. 2 , which shows the construction of a second relay remaining life prediction model provided by an embodiment of the present invention. The schematic flow chart of the method, that is, S110 in this implementation mode includes:
S111,获取继电器的原始历史运行数据;S111, obtaining the original historical operation data of the relay;
S112,对所述原始历史运行数据进行预设的小波降噪处理,得到历史运行数据。S112. Perform preset wavelet noise reduction processing on the original historical operating data to obtain historical operating data.
也即,在获取到原始的历史运行数据后,对历史运行数据进行降噪处理,以去除数据中包含的噪声数据,进而得到数量变化趋势较为明显的数据集。That is, after the original historical operation data is obtained, noise reduction processing is performed on the historical operation data to remove the noise data contained in the data, so as to obtain a data set with a relatively obvious trend of quantity change.
本发明实施例提到的小波降噪处理的过程可包括:根据噪声和信号在不同频带上的小波分解系数对应的强度分布情况不同的特点,去除掉各个频带上噪声对应的小波分解系数,以保留原始信号的小波分解系数,再对保留的原始信号的小波分解系数进行小波重构操作,得到纯净的信号,从而得到历史运行数据。The process of wavelet denoising processing mentioned in the embodiment of the present invention may include: according to the characteristics of different intensity distributions corresponding to wavelet decomposition coefficients of noise and signals in different frequency bands, removing the wavelet decomposition coefficients corresponding to noise in each frequency band, to The wavelet decomposition coefficient of the original signal is retained, and then the wavelet reconstruction operation is performed on the wavelet decomposition coefficient of the retained original signal to obtain a pure signal, thereby obtaining historical operating data.
S120,基于预设数量的时间窗口系数,根据所述历史运行数据得到每个所述时间窗口系数对应的时间窗口数据,其中,所述时间窗口系数表示对应的时间窗口数据占所述历史运行数据的比例。S120, based on a preset number of time window coefficients, according to the historical operating data, obtain the time window data corresponding to each of the time window coefficients, wherein the time window coefficient indicates that the corresponding time window data accounts for the historical operating data proportion.
也即,本发明实施例根据每个时间窗口系数的大小,从历史运行数据中抽取相应比例的数据。That is, according to the size of each time window coefficient in the embodiment of the present invention, a corresponding proportion of data is extracted from historical operating data.
可以理解的是,时间窗口系数可根据实际情况设置,如在一种可行方式中,预设数量的时间窗口系数包括大小为0.1的第一时间窗口系数、大小为0.5为第二时间窗口系数以及大小为1的第三时间窗口系数,进而根据第一时间窗口系数、第二时间窗口系数以及第三时间窗口系数分别获取对应的时间窗口数据的过程为:将历史运行数据中0.1,即10%的数据作为第一时间窗口系数对应的时间窗口数据,将历史运行数据中50%的数据作为第二时间窗口系数对应的时间窗口数据,将历史运行数据中100%,即所有的数据作为第三时间窗口系数对应的时间窗口数据。It can be understood that the time window coefficient can be set according to the actual situation. For example, in a feasible manner, the preset number of time window coefficients includes the first time window coefficient with a size of 0.1, the second time window coefficient with a size of 0.5, and The third time window coefficient with a size of 1, and then the process of obtaining the corresponding time window data according to the first time window coefficient, the second time window coefficient and the third time window coefficient is: 0.1 in the historical operating data, that is, 10% The data of the first time window coefficient is used as the time window data corresponding to the first time window coefficient, 50% of the data in the historical operation data is used as the time window data corresponding to the second time window coefficient, and 100% of the historical operation data, that is, all data is used as the third time window data. The time window data corresponding to the time window coefficient.
而在另一种可行方式中,预设数量的时间窗口系数为集合元素为[0.1,0.2,0.3,……,1]的集合,相邻的两个时间窗口系数的大小的差为0.1。In another feasible manner, the preset number of time window coefficients is a set whose set elements are [0.1, 0.2, 0.3, . . . , 1], and the difference between the sizes of two adjacent time window coefficients is 0.1.
可选的,为更好地体现时间窗口数据中的数据变化趋势,并提高继电器剩余寿命预测模型的预测准确率,在一种可行的实施方式中,所述历史运行数据中的数据按照时间先后顺序排序;Optionally, in order to better reflect the data change trend in the time window data and improve the prediction accuracy of the remaining life prediction model of the relay, in a feasible implementation manner, the data in the historical operation data are chronologically order sorting;
所述S120包括:The S120 includes:
基于预设数量的时间窗口系数,以倒序抽取的方式从历史运行数据中抽取每个所述时间窗口系数对应的数据;Based on the preset number of time window coefficients, the data corresponding to each of the time window coefficients is extracted from the historical operation data in a reverse order;
将每个所述时间窗口系数对应的数据按照时间先后顺序排序,得到每个所述时间窗口系数对应的时间窗口数据。The data corresponding to each of the time window coefficients is sorted in chronological order to obtain the time window data corresponding to each of the time window coefficients.
也即,此种实施方式下将以倒序抽取的方式从历史运行数据中抽取每个时间窗口系数对应的数据,并将每个时间窗口系数对应的数据正序排序以得到时间窗口数据。That is, in this embodiment, the data corresponding to each time window coefficient will be extracted from the historical operation data in a reverse order, and the data corresponding to each time window coefficient will be sorted in forward order to obtain the time window data.
示范性的,当一个时间窗口系数的大小为0.5,历史运行数据的数据量为1000时,则抽取时间窗口数据时,将从历史运行数据的最后一个数据,即第1000个数据开始,从后往前抽取500个数据,再将抽取到的500个数据按照时间先后顺序排序,从而得到大小为0.5的时间窗口系数对应的时间窗口数据,即将历史运行数据中第501-1000个数据作为时间窗口数据。Exemplarily, when the size of a time window coefficient is 0.5 and the amount of historical operating data is 1000, when extracting the time window data, it will start from the last data of the historical operating data, that is, the 1000th data, and start from the Extract 500 data forward, and then sort the extracted 500 data in chronological order, so as to obtain the time window data corresponding to the time window coefficient of 0.5, that is, the 501-1000th data in the historical operation data as the time window data.
需理解的是,以此种实施方式下提供的抽取方式来得到时间窗口数据能相对有效地体现出数据的将来变化情况。It should be understood that obtaining the time window data through the extraction method provided in this implementation manner can relatively effectively reflect future changes in the data.
举例而言,将历史运行数据中第1-500个数据作为时间窗口数据,并基于时间窗口数据得到继电器剩余寿命预测模型后,即使继电器剩余寿命预测模型较为准确地预测出第501-1000个后续数据,也无法保证继电器剩余寿命预测模型能准确预测出数据的将来变化情况。且若预测出的第501-1000个后续数据和实际的第501-1000个数据存在误差,则继电器剩余寿命预测模型所预测出的数据将来变化情况的误差将会更大。For example, if the 1-500th data in the historical operation data is used as the time window data, and the remaining life prediction model of the relay is obtained based on the time window data, even if the relay remaining life prediction model can accurately predict the 501-1000th follow-up There is no guarantee that the remaining life prediction model of the relay can accurately predict the future changes of the data. And if there is an error between the predicted 501-1000th follow-up data and the actual 501-1000th data, the error of the future change of the data predicted by the remaining life prediction model of the relay will be even greater.
并且,若继电器剩余寿命预测模型无法准确地预测出第501-1000个后续数据,则表明继电器前500个数据和后500个数据的变化趋势不一致,进而无法预测出数据的将来变化趋势。Moreover, if the remaining life prediction model of the relay cannot accurately predict the 501-1000th follow-up data, it indicates that the change trend of the first 500 data and the last 500 data of the relay is inconsistent, and the future change trend of the data cannot be predicted.
因此,本发明实施例基于此实施方式来完成时间窗口数据的抽取,使得继电器剩余寿命预测模型能预测出数据的将来变化情况,并减少了构建继电器剩余寿命预测模型所需的数据量,提高了模型训练效率。Therefore, the embodiment of the present invention completes the extraction of time window data based on this implementation, so that the relay remaining life prediction model can predict the future changes of the data, and reduces the amount of data required to build the relay remaining life prediction model, improving the Model training efficiency.
S130,利用预设的质量评价规则,得到每个所述时间窗口数据的数据质量。S130. Obtain the data quality of each time window data by using a preset quality evaluation rule.
也即,本发明实施例将计算每个时间窗口数据的数据质量,以确定取不同时间窗口系数下的历史运行数据的优劣。That is, the embodiment of the present invention will calculate the data quality of each time window data to determine the pros and cons of historical operating data under different time window coefficients.
可以理解的是,每个时间窗口数据的数据质量的具体计算过程可根据实际情况设置,如在一种可行方式中,每个时间窗口数据的数据质量的计算过程包括:对每个时间窗口数据进行预设的数据清洗操作,根据清洗后的时间窗口数据的数据量与清洗前的时间窗口数据的数据量计算数据留存率,即得到每个时间窗口数据的数据质量。It can be understood that the specific calculation process of the data quality of each time window data can be set according to the actual situation, for example, in a feasible manner, the calculation process of the data quality of each time window data includes: for each time window data Carry out the preset data cleaning operation, and calculate the data retention rate according to the data volume of the time window data after cleaning and the data volume of the time window data before cleaning, that is, to obtain the data quality of each time window data.
S140,将所述数据质量最好的时间窗口数据作为最优数据集。S140, taking the time window data with the best data quality as an optimal data set.
也即,在得到每个时间窗口数据的质量后,利用质量最好的时间窗口数据,即最优数据集来得到继电器剩余寿命预测模型。That is, after obtaining the quality of each time window data, use the time window data with the best quality, that is, the optimal data set to obtain the remaining life prediction model of the relay.
若时间窗口数据对应的时间窗口系数的大小不大于1,则将减少获取继电器剩余寿命预测模型所需的数据量,进而提高模型的生成效率。If the size of the time window coefficient corresponding to the time window data is not greater than 1, the amount of data required to obtain the remaining life prediction model of the relay will be reduced, thereby improving the generation efficiency of the model.
并且,由于最优数据集中的数据质量最好,进而能为继电器剩余寿命预测模型的构建过程提供有效的数据支撑,保证继电器剩余寿命预测模型有效训练。Moreover, because the data quality in the optimal data set is the best, it can provide effective data support for the construction process of the relay remaining life prediction model and ensure the effective training of the relay remaining life prediction model.
S150,根据所述最优数据集构建所述继电器对应的性能退化模型,得到继电器剩余寿命预测模型。S150. Construct a performance degradation model corresponding to the relay according to the optimal data set, and obtain a remaining life prediction model of the relay.
也即,根据最优数据集中的数据构建继电器的性能退化模型,即继电器的性能随时间或动作次数逐渐退化的模型表达,以实现继电器的剩余寿命预测,得到继电器剩余寿命预测模型。That is, the performance degradation model of the relay is constructed according to the data in the optimal data set, that is, the model expression that the performance of the relay gradually degrades with time or the number of actions, so as to realize the prediction of the remaining life of the relay and obtain the prediction model of the remaining life of the relay.
可以理解的是,继电器对应的性能退化模型的构建方法过程已较为完善,即继电器对应的性能退化模型的构建过程可根据需要设置。如在一种可行方式中,性能退化模型的构建过程包括:将最优数据集输入至预设的神经网络模型中,并对神经网络模型进行训练以得到训练好的性能退化模型,即继电器剩余寿命预测模型。It can be understood that the construction process of the performance degradation model corresponding to the relay is relatively complete, that is, the construction process of the performance degradation model corresponding to the relay can be set as required. For example, in a feasible way, the construction process of the performance degradation model includes: inputting the optimal data set into the preset neural network model, and training the neural network model to obtain the trained performance degradation model, that is, the relay residual Life Prediction Model.
而在一种可行的实施方式中,所述历史运行数据包括每个触点单元对应的预设数量个运行参数;In a feasible implementation manner, the historical operating data includes a preset number of operating parameters corresponding to each contact unit;
进而,所述S150包括:Further, the S150 includes:
根据所述最优数据集每个触点单元对应的预设数量个运行参数,构建所述继电器对应的维纳退化模型,得到继电器剩余寿命预测模型。According to the preset number of operating parameters corresponding to each contact unit in the optimal data set, a Wiener degradation model corresponding to the relay is constructed to obtain a remaining life prediction model of the relay.
也即,此种实施方式下继电器的历史运行状态由每个触点单元对应的预设数量个运行参数来描述。进而本发明实施例基于每个触点单元对应的预设数量个运行参数来构建相应的维纳退化模型,以得到继电器剩余寿命预测模型。That is to say, the historical operating state of the relay in this embodiment is described by a preset number of operating parameters corresponding to each contact unit. Further, in the embodiment of the present invention, a corresponding Wiener degradation model is constructed based on a preset number of operating parameters corresponding to each contact unit, so as to obtain a relay remaining life prediction model.
需理解的是,维纳退化模型常用于剩余寿命预测研究中,能有效刻画设备或器件的状态变化。It should be understood that the Wiener degradation model is often used in the remaining life prediction research, which can effectively describe the state changes of equipment or devices.
还需理解的是,继电器的工作状态情况实际上与任意一个触点的工作状况相关,任意一个触点失效均将导致继电器无法正常工作,进而继电器的剩余寿命即可理解为继电器的所有触点单元对应的触点单元寿命中,最小的触点单元寿命。It also needs to be understood that the working status of the relay is actually related to the working status of any contact. Failure of any contact will cause the relay to fail to work normally, and then the remaining life of the relay can be understood as all contacts of the relay. Among the contact unit life corresponding to the unit, the minimum contact unit life.
可理解的是,历史运行数据中数据的数据组成成分可根据实际情况设置,如在前述的可行方式中,历史运行数据包括触点对应的线圈电压和线圈阻值。It can be understood that the data components of the data in the historical operation data can be set according to the actual situation. For example, in the aforementioned feasible manner, the historical operation data includes the coil voltage and coil resistance corresponding to the contact.
而在另一种可行方式中,所述触点单元包括至少一个常闭触点和至少一个常开触点,所述预设数量个运行参数包括常开触点电阻、常闭触点电阻、吸合时间以及释放时间。In another feasible manner, the contact unit includes at least one normally closed contact and at least one normally open contact, and the preset number of operating parameters includes normally open contact resistance, normally closed contact resistance, Pick-up time and release time.
其中,继电器的吸合时间是指从继电器的线圈通电开始,到继电器的全部触点均达到工作状态所需的时间。继电器的释放时间是指从线圈断电开始,到所有触点均转变到释放状态所需的时间。继电器的吸合时间和释放时间能有效表达继电器工作状态的转换速度,进而能有效表征继电器的老化状况。Among them, the pull-in time of the relay refers to the time required from the time when the coil of the relay is energized until all the contacts of the relay reach the working state. The release time of a relay is defined as the time required for all contacts to transition to the released state from the moment the coil is de-energized. The pull-in time and release time of the relay can effectively express the switching speed of the working state of the relay, and then can effectively characterize the aging condition of the relay.
常开触点电阻和常闭触点电阻均因触点表面的氧化程度和粗糙程度而变化,而氧化程度和粗糙程度均与继电器的使用时间和动作次数有关,进而常开触点电阻和常闭触点电阻均可表达继电器的工作状况,从而能根据常开触点电阻和常闭触点电阻计算继电器的剩余寿命。Both the normally open contact resistance and the normally closed contact resistance change due to the degree of oxidation and roughness of the contact surface, and the degree of oxidation and roughness are related to the service time and number of actions of the relay, and then the resistance of the normally open contact and the normal The closed contact resistance can express the working condition of the relay, so the remaining life of the relay can be calculated according to the normally open contact resistance and the normally closed contact resistance.
因此,本发明实施例基于吸合时间、释放时间、常开触点电阻及常闭触点电阻来完成继电器剩余寿命预测模型的构建,以使继电器剩余寿命预测模型能准确预测继电器的剩余寿命。Therefore, the embodiment of the present invention completes the construction of the remaining life prediction model of the relay based on the pull-in time, the release time, the normally open contact resistance and the normally closed contact resistance, so that the remaining life prediction model of the relay can accurately predict the remaining life of the relay.
本发明实施例提供的继电器剩余寿命预测模型的构建方法中,首先获取继电器在一段时间内的运行参数,即历史运行数据;接着从历史运行数据中,选取不同比例的数据以作为不同时间窗口系数对应的时间窗口数据;然后,针对每个时间窗口数据,利用预设的质量评价规则来计算数据质量;进而将数据质量最好的时间窗口数据作为最优数据集,并根据最优数据集构建继电器对应的性能退化模型以得到继电器剩余寿命预测模型,避免了继电器剩余寿命预测模型的构建过程需采用所有的历史运行数据的情况。In the construction method of the relay remaining life prediction model provided by the embodiment of the present invention, the operating parameters of the relay within a certain period of time, that is, the historical operating data, are first obtained; then from the historical operating data, data of different proportions are selected as different time window coefficients The corresponding time window data; then, for each time window data, use the preset quality evaluation rules to calculate the data quality; then use the time window data with the best data quality as the optimal data set, and construct The performance degradation model corresponding to the relay is used to obtain the remaining life prediction model of the relay, which avoids the need to use all historical operating data in the construction process of the remaining life prediction model of the relay.
由此,本发明实施例基于质量最好的时间窗口数据的抽取,避免了构建继电器剩余寿命预测模型的过程中需使用所有的历史数据的情况,提高了继电器剩余寿命预测模型的构建速度。不仅如此,由于构建继电器剩余寿命预测模型的数据是所有时间窗口数据中数据质量最好的时间窗口数据,使继电器剩余寿命预测模型能得到有效的数据支撑,进而保证了继电器的剩余寿命预测的准确性。Therefore, the embodiment of the present invention is based on the extraction of the best quality time window data, which avoids the need to use all historical data in the process of constructing the remaining life prediction model of the relay, and improves the construction speed of the remaining life prediction model of the relay. Not only that, since the data for constructing the relay remaining life prediction model is the time window data with the best data quality among all time window data, the relay remaining life prediction model can be supported by effective data, thereby ensuring the accuracy of the relay remaining life prediction sex.
可选的,在本发明实施例提供的一种实施方式中,具体可参考图3,图3示出了本发明实施例提供的第三种继电器剩余寿命预测模型的构建方法的流程示意图,即此种实施方式下的所述历史运行数据包括所述继电器在每次动作时的预设数量个运行参数;Optionally, in an implementation manner provided by an embodiment of the present invention, please refer to FIG. 3 for details. FIG. 3 shows a schematic flowchart of a method for constructing a third relay remaining life prediction model provided by an embodiment of the present invention, that is The historical operating data in this embodiment includes a preset number of operating parameters of the relay at each action;
进而,所述S130包括:Further, the S130 includes:
S131,针对每个所述时间窗口数据中的运行参数,基于预设第一预设公式计算每个所述运行参数与动作次数的时序相关性指数,及基于第二预设公式计算每个所述运行参数在所述动作次数下的单调性指数;S131, for each operating parameter in the time window data, calculate the time series correlation index between each operating parameter and the number of actions based on a preset first preset formula, and calculate each of the operating parameters based on a second preset formula The monotonicity index of above-mentioned operation parameter under described action number of times;
S132,根据每个所述运行参数的时序相关性指数和单调性指数,计算每个所述运行参数对应的数据质量值;S132. Calculate a data quality value corresponding to each of the operating parameters according to the time series correlation index and the monotonicity index of each of the operating parameters;
进而,所述S140包括:Further, the S140 includes:
S141,将包含数据质量值最大的运行参数的时间窗口数据作为最优数据集。S141, taking the time window data including the operating parameter with the largest data quality value as an optimal data set.
可以理解的是,此种实施方式下的历史运行数据和根据历史运行数据得到时间窗口数据均由预设数量个运行参数组成。It can be understood that both the historical operating data and the time window data obtained according to the historical operating data in this embodiment are composed of a preset number of operating parameters.
还可以理解的是,预设数量个运行参数可根据实际情况设置,如在一种可行方式中,预设数量个运行参数包括每个触点对应的线圈电流。而在另一种可行方式中,预设数量个运行参数包括常开触点电阻、常闭触点电阻、吸合时间以及释放时间。It can also be understood that the preset number of operating parameters can be set according to actual conditions. For example, in a feasible manner, the preset number of operating parameters includes the coil current corresponding to each contact. In another feasible manner, the preset number of operating parameters include normally open contact resistance, normally closed contact resistance, pull-in time and release time.
不难理解的是,数据质量的评估包括除对数据的完整性、规范性及一致性的评估外,还包括各个数据的关联性的评估。因此,本发明实施例基于每个运行参数与动作次数的时序相关性指数,和每个运行参数在动作次数下的单调性指数来评估数据的关联性,进而评价数据的质量。It is not difficult to understand that the assessment of data quality includes not only the assessment of data integrity, standardization and consistency, but also the assessment of the relevance of each data. Therefore, the embodiment of the present invention evaluates the relevance of data based on the time-series correlation index between each operating parameter and the number of actions, and the monotonicity index of each operating parameter under the number of actions, and then evaluates the quality of the data.
可选的,时序相关性指数和单调性指数的计算方式,即第一预设公式和第二预设公式均可根据实际情况设置/选择,如在本发明实施例提供的一种实施方式中,所述第一预设公式包括:Optionally, the calculation methods of the time series correlation index and the monotonicity index, that is, the first preset formula and the second preset formula can be set/selected according to the actual situation, as in an implementation mode provided by an embodiment of the present invention , the first preset formula includes:
式中,Corr()表示时序相关性指数,Xj表示第j个运行参数的参数值,k表示所述继电器的动作次数,T表示由tk组成的时间矩阵,tk表示所述继电器第k次动作的时刻,XjT(tk)表示第j个运行参数在时刻tk下的趋势项;In the formula, Corr() represents the timing correlation index, X j represents the parameter value of the jth operating parameter, k represents the number of actions of the relay, T represents the time matrix composed of t k , and t k represents the relay’s first At the time of k actions, X jT (t k ) represents the trend item of the jth operating parameter at time t k ;
所述第二预设公式包括:The second preset formula includes:
式中,Mon()表示单调性指数,δ表示单位阶跃函数。In the formula, Mon() represents the monotonicity index, and δ represents the unit step function.
可选的,根据时序相关性指数和单调性指数计算数据质量的过程可根据实际需要设置,如在一种可行方式中,在得到每个运行参数的时序相关性指数和单调性指数后,每个运行参数的数据质量为对应的时序相关性指数和对应的单调性指数的和。Optionally, the process of calculating data quality according to the time series correlation index and monotonicity index can be set according to actual needs, for example, in a feasible manner, after obtaining the time series correlation index and monotonicity index of each operating parameter, each The data quality of each operating parameter is the sum of the corresponding time series correlation index and the corresponding monotonicity index.
而在另一种可行方式中,根据时序相关性指数和单调性指数计算数据质量的过程包括:将每个运行参数的时序相关性指数乘以预设的第一权重以得到第一数据;将每个运行参数的单调性指数乘以预设的第二权重以得到第二数据;将第一数据和第二数据相加,得到运行参数的数据质量。In another feasible manner, the process of calculating the data quality according to the time series correlation index and the monotonicity index includes: multiplying the time series correlation index of each operating parameter by a preset first weight to obtain the first data; The monotonicity index of each operating parameter is multiplied by a preset second weight to obtain the second data; the first data and the second data are added together to obtain the data quality of the operating parameter.
由此,本发明实施例基于每个运行参数的时序相关性指数和单调性指数,确定了每个时间窗口数据中每个运行参数与动作次数的相关性。不难理解的是,继电器的剩余寿命可理解为指继电器在预设条件下,能够正常动作的最小次数,进而可知,若数据能有效体现出继电器与动作次数的关联,则继电器剩余寿命预测模型的预测准确率越高。Therefore, the embodiment of the present invention determines the correlation between each operating parameter and the number of actions in each time window data based on the time series correlation index and monotonicity index of each operating parameter. It is not difficult to understand that the remaining life of the relay can be understood as the minimum number of times that the relay can operate normally under preset conditions, and then it can be known that if the data can effectively reflect the relationship between the relay and the number of operations, the remaining life prediction model of the relay The higher the prediction accuracy is.
因此,本发明实施例基于每个运行参数的时序相关性指数和单调性指数,选取出与继电器的动作次数的关联性最强,即数据质量最好的时间窗口数据来构建继电器剩余寿命预测模型,从而保证了继电器剩余寿命预测模型的预测准确率。Therefore, in the embodiment of the present invention, based on the timing correlation index and monotonicity index of each operating parameter, the time window data with the strongest correlation with the number of actions of the relay, that is, the best data quality is selected to construct the remaining life prediction model of the relay , so as to ensure the prediction accuracy of the relay remaining life prediction model.
此外,为更好地说明继电器剩余寿命预测模型的得到过程,本发明实施例还提供了继电器剩余寿命预测模型的推导过程,具体如下:In addition, in order to better illustrate the process of obtaining the relay remaining life prediction model, the embodiment of the present invention also provides the derivation process of the relay remaining life prediction model, as follows:
设历史运行数据包括每个触点单元对应的预设数量个运行参数,预设数量个运行参数包括常开触点电阻、常闭触点电阻、吸合时间以及释放时间,并假设Zj(t)为继电器在t时刻的退化量,则继电器的退化过程可以表示为:Assuming that the historical operating data includes a preset number of operating parameters corresponding to each contact unit, the preset number of operating parameters include normally open contact resistance, normally closed contact resistance, pull-in time and release time, and assume that Z j ( t) is the degradation amount of the relay at time t, then the degradation process of the relay can be expressed as:
Zj(t)=Zj(0)+μjt+σjBj(t) (1)Z j (t)=Z j (0)+μ j t+σ j B j (t) (1)
其中,Zj(0)表示第j个运行参数的初始退化量;μj表示第个j运行参数的扩散率,即漂移参数;σj表示第个j运行参数的扩散参数,且为常数;Bj(t)表示第j个运行参数遵循标准布朗运动,表征第j个运行参数的退化过程的动态特性,且Bj(t)服从均值为0,方差为t的正态分布,即Bj(t)~N(0,t)。Among them, Z j (0) represents the initial degradation of the j-th operating parameter; μ j represents the diffusion rate of the j-th operating parameter, that is, the drift parameter; σ j represents the diffusion parameter of the j-th operating parameter, and is a constant; B j (t) means that the jth operating parameter follows the standard Brownian motion, which characterizes the dynamic characteristics of the degradation process of the jth operating parameter, and B j (t) obeys a normal distribution with a mean value of 0 and a variance of t, that is, B j (t)~N(0,t).
而对于公式(1)所描述的退化过程,设第j个运行参数对应的预设失效阈值为继电器的失效阈值为Dj,第j个运行参数对应的寿命值为Tj,即退化量Zj(t)首次达到失效阈值Dj的时间,进而第j个运行参数对应的寿命Tj的定义公式为:For the degradation process described by formula (1), let the preset failure threshold corresponding to the jth operating parameter be the failure threshold of the relay as D j , and the life value corresponding to the jth operating parameter is T j , that is, the degradation amount Z The time when j (t) reaches the failure threshold D j for the first time, and the definition formula of the life T j corresponding to the jth operating parameter is:
Tj=inf{t|Zj(t)=Dj,t≥0} (2)T j =inf{t|Z j (t)=D j ,t≥0} (2)
再根据公式(2)可知,继电器的寿命服从逆高斯分布,进而第j个运行参数对应的累积失效概率函数Fj(t)为:According to the formula (2), it can be seen that the life of the relay obeys the inverse Gaussian distribution, and then the cumulative failure probability function F j (t) corresponding to the jth operating parameter is:
因而,第j个运行参数对应的可靠度Rj(t)的公式为:Therefore, the formula of the reliability R j (t) corresponding to the jth operating parameter is:
Rj(t)=1-Fj(t) (4)R j (t) = 1-F j (t) (4)
可理解的是,继电器失效为竞争失效,即继电器中任意一个触点单元失效等同于继电器失效,则继电器第i个单元的可靠度R′i(t)为所有运行参数对应的可靠度的乘积,即:It is understandable that the failure of the relay is a competitive failure, that is, the failure of any contact unit in the relay is equivalent to the failure of the relay, then the reliability R′ i (t) of the i-th unit of the relay is the product of the reliability corresponding to all operating parameters ,Right now:
式中,Rij(t)表示第i个单元对应的第j个运行参数在t时刻的可靠度。In the formula, R ij (t) represents the reliability of the j-th operating parameter corresponding to the i-th unit at time t.
也即,将4个运行参数,即常开触点电阻、常闭触点电阻、吸合时间以及释放时间分别对应的可靠度Rj(t)相乘,得到第i个单元的可靠度R′i(t)。That is to say, the reliability R j (t) corresponding to the four operating parameters, namely normally open contact resistance, normally closed contact resistance, pull-in time and release time are multiplied to obtain the reliability R of the i-th unit ' i (t).
进一步的,继电器由多个单元组成,而单元之间多为串联关系,则继电器的整体可靠度R(t)为所有单元可靠度的乘积,其表达式为:Furthermore, the relay is composed of multiple units, and the units are mostly connected in series, so the overall reliability R(t) of the relay is the product of the reliability of all units, and its expression is:
其中,n代表继电器包括的触点单元的数量。Wherein, n represents the number of contact units included in the relay.
因此,则继电器的失效累积失效概率函数的表达式为:Therefore, the expression of the failure cumulative failure probability function of the relay is:
F(t)=1-R(t) (7)F(t)=1-R(t) (7)
设tk为当前时刻,即继电器执行动作的次数累积到k时的时刻,tj为第j个运行参数对应的寿命值,则第j个运行参数在当前时刻tk的剩余寿命值ljk的计算公式为:Let t k be the current moment, that is, the moment when the number of times the relay performs actions has accumulated to k, and t j is the life value corresponding to the jth operating parameter, then the remaining life value l jk of the jth operating parameter at the current time t k The calculation formula is:
ljk=tj-tjk (8)l jk =t j -t jk (8)
其中,tjk表示第j个运行参数在继电器动作次数达到k时对应的时刻;Among them, t jk represents the moment corresponding to the jth operating parameter when the number of relay actions reaches k;
根据维纳退化过程的性质,并结合公式(1)可知:According to the nature of the Wiener degradation process, combined with formula (1), it can be known that:
Yj(lk)=Yj(0)+μjljk+σjBj(ljk) (9)Y j (l k )=Y j (0)+μ j l jk +σ j B j (l jk ) (9)
其中,Yj(lk)=Zj(lk+tk)-Zj(tk);Tj(lk)表示在动作次数达到k时,剩余寿命值lk所对应的退化量;Yj(0)表示第j个单元在剩余寿命值lk为0时对应的退化增量,且Yj(0)=0。Among them, Y j (l k )=Z j (l k +t k )-Z j (t k ); T j (l k ) represents the degradation amount corresponding to the remaining life value l k when the number of actions reaches k ; Y j (0) represents the degradation increment corresponding to the jth unit when the remaining life value l k is 0, and Y j (0)=0.
由此,第j个运行参数在当前时刻tk对应的剩余寿命的概率密度函数f(ljk)为:Therefore, the probability density function f(l jk ) of the remaining life corresponding to the jth operating parameter at the current moment t k is:
其中,zjk表示第j个运行参数在当前时刻tk对应的退化量。Among them, z jk represents the degradation amount corresponding to the jth operating parameter at the current moment t k .
此外,可以理解的是,为精确估计退化模型中的相关未知参数与维纳过程中的模型参数,需对每个漂移参数和扩散参数进行估计。即对公式(2)中的扩散参数σj和漂移参数μj进行估计。Furthermore, it can be appreciated that each drift parameter and diffusion parameter needs to be estimated in order to accurately estimate the relevant unknown parameters in the degradation model and the model parameters in the Wiener process. That is to estimate the diffusion parameter σ j and the drift parameter μ j in formula (2).
可理解的是,对任意给定的时刻t+△t>t>0,t+△t和t之间的退化增量服从正态分布,进而:It is understandable that for any given moment t+△t>t>0, the degradation increment between t+△t and t obeys a normal distribution, and then:
其中,△Zj(t)表示第j个运行参数在时刻t对应的退化增量。Among them, ΔZ j (t) represents the degradation increment corresponding to the jth operating parameter at time t.
由维纳过程的性质可知,每个运行参数均具有独立的退化量,△Zj(t)的概率密度函数f(△Zj)可表示为:According to the nature of the Wiener process, each operating parameter has an independent amount of degradation, and the probability density function f(△Z j ) of △Z j (t) can be expressed as:
而维纳过程中,漂移参数μj和扩散参数σj的似然函数L(μj,σj)为:In the Wiener process, the likelihood function L(μ j , σ j ) of the drift parameter μ j and the diffusion parameter σ j is:
L(μj,σj)=f(△Z1j,△Z2j,…△Znj)=f(△Z1j)f(△Z2j)…f(△Znj) (13)L(μ j ,σ j )=f(△Z 1j ,△Z 2j ,…△Z nj )=f(△Z 1j )f(△Z 2j )…f(△Z nj ) (13)
对似然函数取对数,并对取对数后的似然函数求导,得到漂移参数μj对应的极大似然估计量和扩散参数σj对应的极大似然估计量分别为:Take the logarithm of the likelihood function, and derive the likelihood function after taking the logarithm, and obtain the maximum likelihood estimator corresponding to the drift parameter μ j The maximum likelihood estimator corresponding to the diffusion parameter σ j They are:
其中,r表示构建继电器剩余寿命预测模型的数据集的数据量,即最优数据集的数据量;△Zpj表示第j个运行参数的退化增量;△tpj表示第j个运行参数的时间变化量。Among them, r represents the data volume of the data set for constructing the remaining life prediction model of the relay, that is, the data volume of the optimal data set; △Z pj represents the degradation increment of the jth operating parameter; △t pj represents the value of the jth operating parameter amount of time change.
综上,再对第j个运行参数在当前时刻tk对应的剩余寿命的概率密度函数f(ljk)求期望,得到第j个运行参数在当前时刻tk的剩余寿命值E(ljk)为:To sum up, the probability density function f(l jk ) of the remaining life corresponding to the jth operating parameter at the current moment t k is expected, and the remaining life value E(l jk of the jth operating parameter at the current moment t k is obtained )for:
其中,E(·)表示参数的期望值。Among them, E(·) represents the expected value of the parameter.
可以理解的是,继电器包括多个触点单元,而每个触点单元对应4个运行参数,即常开触点电阻、常闭触点电阻、吸合时间以及释放时间。因此,一个继电器与4个运行参数的剩余寿命值对应。再由于继电器存在竞争失效的情况,即当继电器的任意一个触点单元的任意一个参数超出阈值时,即认为继电器失效。因此,取每个运行参数对应的最小剩余寿命值作为继电器的剩余寿命值T1,计算公式为:It can be understood that the relay includes multiple contact units, and each contact unit corresponds to four operating parameters, namely normally open contact resistance, normally closed contact resistance, pull-in time and release time. Thus, one relay corresponds to the remaining life values of the 4 operating parameters. Furthermore, due to the existence of competition failures in the relay, that is, when any parameter of any contact unit of the relay exceeds the threshold value, the relay is considered to be invalid. Therefore, take the minimum remaining life value corresponding to each operating parameter as the remaining life value T 1 of the relay, and the calculation formula is:
T1=min{E1,E2,E3,…,EM} (17)T 1 =min{E 1 , E 2 , E 3 ,...,E M } (17)
其中,min{·}表示最小值函数,即取所有运行参数的剩余寿命值的最小值,EM表示第M个运行参数的剩余寿命值,M表示继电器对应的运行参数的参数数量。Among them, min{ } represents the minimum value function, that is, the minimum value of the remaining life value of all operating parameters is taken, E M represents the remaining life value of the Mth operating parameter, and M represents the number of parameters corresponding to the operating parameter of the relay.
继电器由多个触点单元组成,每个单元对应4个运行参数,则一个继电器对应的所有运行参数的数量为:The relay is composed of multiple contact units, each unit corresponds to 4 operating parameters, then the number of all operating parameters corresponding to a relay is:
M=4×m (18)M=4×m (18)
其中,m表示继电器包含的触点单元数量。Among them, m represents the number of contact units contained in the relay.
与本发明实施例提供的继电器剩余寿命预测模型的构建方法相对应的,本发明实施例还提供一种继电器剩余寿命预测模型的构建装置,参照图4,图4示出了本发明实施例提供的继电器剩余寿命预测模型的构建装置的结构示意图,本发明实施例提供的继电器剩余寿命预测模型的构建装置200,包括:Corresponding to the method for constructing the relay remaining life prediction model provided by the embodiment of the present invention, the embodiment of the present invention also provides a device for constructing the relay remaining life prediction model. Referring to FIG. 4, FIG. 4 shows that the embodiment of the present invention provides Schematic diagram of the structure of the device for constructing the remaining life prediction model of the relay. The
获取模块210,用于获取继电器的历史运行数据;An
窗口数据获取模块220,用于基于预设数量的时间窗口系数,根据所述历史运行数据得到每个所述时间窗口系数对应的时间窗口数据,其中,所述时间窗口系数表示对应的时间窗口数据占所述历史运行数据的比例;The window
评价模块230,用于利用预设的质量评价规则,得到每个所述时间窗口数据的数据质量;An
选取模块240,用于将所述数据质量最好的时间窗口数据作为最优数据集;The
建模模块250,用于根据所述最优数据集构建所述继电器对应的性能退化模型,得到继电器剩余寿命预测模型。The
可选的,在本发明实施例提供的一种实施方式中,所述历史运行数据包括所述继电器在每次动作时的预设数量个运行参数;Optionally, in an implementation manner provided by an embodiment of the present invention, the historical operating data includes a preset number of operating parameters of the relay at each action;
进而,所述评价模块包括:Furthermore, the evaluation module includes:
指数计算子模块,用于针对每个所述时间窗口数据中的运行参数,基于预设第一预设公式计算每个所述运行参数与动作次数的时序相关性指数,及基于第二预设公式计算每个所述运行参数在所述动作次数下的单调性指数;The index calculation sub-module is used to calculate the time series correlation index between each of the operating parameters and the number of actions based on the preset first preset formula for each of the operating parameters in the time window data, and based on the second preset The formula calculates the monotonicity index of each of the operating parameters under the number of actions;
质量计算子模块,用于根据每个所述运行参数的时序相关性指数和单调性指数,计算每个所述运行参数对应的数据质量值;The quality calculation submodule is used to calculate the data quality value corresponding to each of the operating parameters according to the time series correlation index and the monotonicity index of each of the operating parameters;
进而所述选取模块还用于将包含数据质量值最大的运行参数的时间窗口数据作为最优数据集。Furthermore, the selection module is further configured to use the time window data containing the operating parameters with the largest data quality value as the optimal data set.
进一步的,在本发明实施例提供的一种实施方式中,所述第一预设公式包括:Further, in an implementation manner provided by an embodiment of the present invention, the first preset formula includes:
式中,Corr()表示时序相关性指数,Xj表示第j个运行参数的参数值,k表示所述继电器的动作次数,T表示由tk组成的时间矩阵,tk表示所述继电器第k次动作的时刻,XjT(tk)表示第j个运行参数在时刻tk下的趋势项;In the formula, Corr() represents the timing correlation index, X j represents the parameter value of the jth operating parameter, k represents the number of actions of the relay, T represents the time matrix composed of t k , and t k represents the relay’s first At the time of k actions, X jT (t k ) represents the trend item of the jth operating parameter at time t k ;
所述第二预设公式包括:The second preset formula includes:
式中,Mon()表示单调性指数,δ表示单位阶跃函数。In the formula, Mon() represents the monotonicity index, and δ represents the unit step function.
可选的,在本发明实施例提供的一种实施方式中,所述获取模块包括:Optionally, in an implementation manner provided by an embodiment of the present invention, the acquisition module includes:
原始数据获取子模块,用于获取继电器的原始历史运行数据;The raw data acquisition sub-module is used to obtain the original historical operation data of the relay;
降噪子模块,用于对所述原始历史运行数据进行预设的小波降噪处理,得到历史运行数据。The noise reduction sub-module is used to perform preset wavelet noise reduction processing on the original historical operation data to obtain the historical operation data.
可选的,在本发明实施例提供的一种实施方式中,所述历史运行数据中的数据按照时间先后顺序排序;Optionally, in an implementation manner provided by an embodiment of the present invention, the data in the historical operation data are sorted in chronological order;
进而,所述窗口数据获取模块包括:Furthermore, the window data acquisition module includes:
抽取子模块,用于基于预设数量的时间窗口系数,以倒序抽取的方式从历史运行数据中抽取每个所述时间窗口系数对应的数据;The extraction sub-module is used to extract the data corresponding to each of the time window coefficients from the historical operation data in a reverse order based on the preset number of time window coefficients;
排序子模块,用于将每个所述时间窗口系数对应的数据按照时间先后顺序排序,得到每个所述时间窗口系数对应的时间窗口数据。The sorting sub-module is configured to sort the data corresponding to each of the time window coefficients in chronological order to obtain the time window data corresponding to each of the time window coefficients.
可选的,在本发明实施例提供的一种实施方式中,所述历史运行数据包括每个触点单元对应的预设数量个运行参数;Optionally, in an implementation manner provided by an embodiment of the present invention, the historical operating data includes a preset number of operating parameters corresponding to each contact unit;
进而,所述建模模块还用于根据所述最优数据集每个触点单元对应的预设数量个运行参数,构建所述继电器对应的维纳退化模型,得到继电器剩余寿命预测模型。Furthermore, the modeling module is further configured to construct a Wiener degradation model corresponding to the relay according to a preset number of operating parameters corresponding to each contact unit in the optimal data set, so as to obtain a remaining life prediction model of the relay.
进一步的,在本发明实施例提供的一种实施方式中,所述触点单元包括至少一个常闭触点和至少一个常开触点,所述预设数量个运行参数包括常开触点电阻、常闭触点电阻、吸合时间以及释放时间。Further, in an implementation manner provided by an embodiment of the present invention, the contact unit includes at least one normally closed contact and at least one normally open contact, and the preset number of operating parameters includes normally open contact resistance , normally closed contact resistance, pull-in time and release time.
本申请实施例提供的继电器剩余寿命预测模型的构建装置能够实现图1公开的方法实施例中继电器剩余寿命预测模型的构建方法的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。The device for constructing the remaining life prediction model of the relay provided in the embodiment of the present application can realize the various processes of the construction method of the remaining life prediction model of the relay in the method embodiment disclosed in FIG. 1, and can achieve the same technical effect. To avoid repetition, it is not described here Let me repeat.
本发明实施例还提供一种计算机设备,包括存储器以及处理器,存储器存储有计算机程序,计算机程序在处理器上运行时执行如图1对应的方法实施例中公开的继电器剩余寿命预测模型的构建方法。The embodiment of the present invention also provides a computer device, including a memory and a processor, the memory stores a computer program, and when the computer program runs on the processor, it executes the construction of the remaining life prediction model of the relay disclosed in the method embodiment corresponding to Figure 1 method.
本发明实施例还提供一种计算机可读存储介质,计算机可读存储介质上存储有计算机程序,计算机程序在处理器上运行时执行如图1对应的方法实施例中公开的继电器剩余寿命预测模型的构建方法。The embodiment of the present invention also provides a computer-readable storage medium, on which a computer program is stored, and when the computer program runs on the processor, it executes the remaining life prediction model of the relay disclosed in the method embodiment corresponding to Figure 1 The construction method.
在本申请所提供的几个实施例中,应该理解到,所揭露的装置和方法,也可以通过其它的方式实现。以上所描述的装置实施例仅仅是示意性的,例如,附图中的流程图和结构图显示了根据本发明的多个实施例的装置、方法和计算机程序产品的可能实现的体系架构、功能和操作。在这点上,流程图或框图中的每个方框可以代表一个模块、程序段或代码的一部分,所述模块、程序段或代码的一部分包含一个或多个用于实现规定的逻辑功能的可执行指令。也应当注意,在作为替换的实现方式中,方框中所标注的功能也可以以不同于附图中所标注的顺序发生。例如,两个连续的方框实际上可以基本并行地执行,它们有时也可以按相反的顺序执行,这依所涉及的功能而定。也要注意的是,结构图和/或流程图中的每个方框、以及结构图和/或流程图中的方框的组合,可以用执行规定的功能或动作的专用的基于硬件的系统来实现,或者可以用专用硬件与计算机指令的组合来实现。In the several embodiments provided in this application, it should be understood that the disclosed devices and methods may also be implemented in other ways. The device embodiments described above are only illustrative. For example, the flowcharts and structural diagrams in the accompanying drawings show the possible implementation architecture and functions of devices, methods and computer program products according to multiple embodiments of the present invention. and operation. In this regard, each block in a flowchart or block diagram may represent a module, program segment, or part of code that includes one or more Executable instructions. It should also be noted that, in alternative implementations, the functions noted in the block may occur out of the order noted in the figures. For example, two blocks in succession may, in fact, be executed substantially concurrently, or they may sometimes be executed in the reverse order, depending upon the functionality involved. It is also to be noted that each block of the block diagrams and/or flow diagrams, and combinations of blocks in the block diagrams and/or flow diagrams, can be implemented by a dedicated hardware-based system that performs the specified function or action may be implemented, or may be implemented by a combination of special purpose hardware and computer instructions.
另外,在本发明各个实施例中的各功能模块或单元可以集成在一起形成一个独立的部分,也可以是各个模块单独存在,也可以两个或更多个模块集成形成一个独立的部分。In addition, each functional module or unit in each embodiment of the present invention can be integrated together to form an independent part, or each module can exist independently, or two or more modules can be integrated to form an independent part.
所述功能如果以软件功能模块的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是智能手机、个人计算机、服务器、或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。If the functions are implemented in the form of software function modules and sold or used as independent products, they can be stored in a computer-readable storage medium. Based on this understanding, the essence of the technical solution of the present invention or the part that contributes to the prior art or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a smart phone, a personal computer, a server, or a network device, etc.) execute all or part of the steps of the method described in each embodiment of the present invention. The aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), magnetic disk or optical disk and other media that can store program codes. .
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。The above is only a specific embodiment of the present invention, but the scope of protection of the present invention is not limited thereto. Anyone skilled in the art can easily think of changes or substitutions within the technical scope disclosed in the present invention. Should be covered within the protection scope of the present invention.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210079835.5A CN114239752B (en) | 2022-01-24 | 2022-01-24 | Method, device, equipment and medium for constructing residual life prediction model of relay |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210079835.5A CN114239752B (en) | 2022-01-24 | 2022-01-24 | Method, device, equipment and medium for constructing residual life prediction model of relay |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114239752A CN114239752A (en) | 2022-03-25 |
CN114239752B true CN114239752B (en) | 2023-01-31 |
Family
ID=80746992
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210079835.5A Active CN114239752B (en) | 2022-01-24 | 2022-01-24 | Method, device, equipment and medium for constructing residual life prediction model of relay |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114239752B (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106503794A (en) * | 2016-11-08 | 2017-03-15 | 上海电机学院 | A kind of gear case of blower method for predicting residual useful life |
WO2020137260A1 (en) * | 2018-12-28 | 2020-07-02 | オムロン株式会社 | Relay state prediction device, relay state prediction system, relay state prediction method, and program |
CN111507046A (en) * | 2020-04-16 | 2020-08-07 | 哈尔滨工程大学 | A method and system for predicting the remaining service life of an electric gate valve |
CN112734002A (en) * | 2020-12-28 | 2021-04-30 | 北京航空航天大学 | Service life prediction method based on data layer and model layer joint transfer learning |
CN113297787A (en) * | 2021-05-12 | 2021-08-24 | 北京航空航天大学 | Method for predicting remaining life of aircraft engine based on transfer learning |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10699040B2 (en) * | 2017-08-07 | 2020-06-30 | The Boeing Company | System and method for remaining useful life determination |
WO2021050460A1 (en) * | 2019-09-11 | 2021-03-18 | Arc Suppression Technologies | Power contact end-of-life predictor apparatus |
CN112629841A (en) * | 2020-11-23 | 2021-04-09 | 江苏科技大学 | Method for predicting service life of relay |
-
2022
- 2022-01-24 CN CN202210079835.5A patent/CN114239752B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106503794A (en) * | 2016-11-08 | 2017-03-15 | 上海电机学院 | A kind of gear case of blower method for predicting residual useful life |
WO2020137260A1 (en) * | 2018-12-28 | 2020-07-02 | オムロン株式会社 | Relay state prediction device, relay state prediction system, relay state prediction method, and program |
CN111507046A (en) * | 2020-04-16 | 2020-08-07 | 哈尔滨工程大学 | A method and system for predicting the remaining service life of an electric gate valve |
CN112734002A (en) * | 2020-12-28 | 2021-04-30 | 北京航空航天大学 | Service life prediction method based on data layer and model layer joint transfer learning |
CN113297787A (en) * | 2021-05-12 | 2021-08-24 | 北京航空航天大学 | Method for predicting remaining life of aircraft engine based on transfer learning |
Non-Patent Citations (3)
Title |
---|
Life Prediction of Electromagnetic Relay Based on Bayesian Method;Jiang Wenman;《2018 IEEE International Conference of Safety Produce Information(IICSPI)》;20190414;340-345 * |
Life Prediction of Residual Current Device Based on Wiener Process with GM(1,1) Model;Guojin Liu;《IEEJ Transactions on Electrical and Electronic Enginnering》;20210930;1165-1173 * |
基于Wiener过程的步退加速退化试验方法研究;李文华;《铁道科学与工程学报》;20180731;第15卷(第7期);1886-1892 * |
Also Published As
Publication number | Publication date |
---|---|
CN114239752A (en) | 2022-03-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111124840B (en) | Method and device for predicting alarm in business operation and maintenance and electronic equipment | |
CN111738351B (en) | Model training method and device, storage medium and electronic equipment | |
US20160239592A1 (en) | Data-driven battery aging model using statistical analysis and artificial intelligence | |
CN111783242B (en) | RVM-KF-based rolling bearing residual life prediction method and device | |
CN112508126A (en) | Deep learning model training method and device, electronic equipment and readable storage medium | |
CN108446714B (en) | A Remaining Life Prediction Method for Non-Markov Degraded Systems under Multiple Operating Conditions | |
CN110647456A (en) | Fault prediction method, system and related device of storage equipment | |
CN112364012A (en) | Data feature determination method and device and electronic equipment | |
CN114168419A (en) | Load prediction method, system, device and computer readable storage medium | |
CN115618714B (en) | Solar radiation probability forecasting method and related equipment | |
CN114239752B (en) | Method, device, equipment and medium for constructing residual life prediction model of relay | |
CN114595781A (en) | Octane value loss prediction method, device, equipment and storage medium | |
CN104035866B (en) | The software action appraisal procedure and device of analysis are called based on system | |
CN119296287A (en) | Fault prediction method, device, electronic equipment and storage medium for electrolytic hydrogen production system | |
CN111814331B (en) | Multi-point equipment residual service life prediction method under complex condition | |
CN115408373A (en) | Data processing method and device, and computer readable storage medium | |
CN110704614B (en) | Information processing method and device for predicting user group type in application | |
CN117649115A (en) | Risk assessment method and device, electronic equipment and storage medium | |
CN113469204A (en) | Data processing method, device, equipment and computer storage medium | |
Raghavan et al. | Remaining useful life estimation for systems subject to multiple degradation mechanisms | |
CN116468076A (en) | Driving behavior analysis method and device, electronic equipment and storage medium | |
CN113821419B (en) | A cloud server aging prediction method based on SVR and Gaussian function | |
Zhou et al. | Remaining Useful Life Prediction of Rolling Bearings Based on Adaptive Continuous Deep Belief Networks and Improved Kernel Extreme Learning Machine | |
JP2016520220A (en) | Hidden attribute model estimation device, method and program | |
CN116363444A (en) | Fuzzy classification model training method, fuzzy image recognition method and device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |