CN114239435B - Numerical calculation method for three-dimensional flat plate water heat pipe - Google Patents
Numerical calculation method for three-dimensional flat plate water heat pipe Download PDFInfo
- Publication number
- CN114239435B CN114239435B CN202111564511.2A CN202111564511A CN114239435B CN 114239435 B CN114239435 B CN 114239435B CN 202111564511 A CN202111564511 A CN 202111564511A CN 114239435 B CN114239435 B CN 114239435B
- Authority
- CN
- China
- Prior art keywords
- interface
- wick
- liquid
- temperature
- pressure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000004364 calculation method Methods 0.000 title claims abstract description 40
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims abstract description 20
- 239000007788 liquid Substances 0.000 claims abstract description 49
- 238000012546 transfer Methods 0.000 claims abstract description 19
- 238000009833 condensation Methods 0.000 claims abstract description 18
- 230000005494 condensation Effects 0.000 claims abstract description 18
- 238000001704 evaporation Methods 0.000 claims abstract description 18
- 230000008020 evaporation Effects 0.000 claims abstract description 18
- 239000012530 fluid Substances 0.000 claims abstract description 13
- 238000000034 method Methods 0.000 claims abstract description 12
- 238000013461 design Methods 0.000 claims abstract description 8
- 230000001052 transient effect Effects 0.000 claims abstract description 8
- 230000004907 flux Effects 0.000 claims abstract description 6
- 238000004134 energy conservation Methods 0.000 claims description 12
- 239000012071 phase Substances 0.000 claims description 9
- 230000008859 change Effects 0.000 claims description 6
- 230000008569 process Effects 0.000 claims description 5
- 238000009834 vaporization Methods 0.000 claims description 5
- 230000008016 vaporization Effects 0.000 claims description 5
- 238000010438 heat treatment Methods 0.000 claims description 4
- 230000002745 absorbent Effects 0.000 claims description 3
- 239000002250 absorbent Substances 0.000 claims description 3
- 239000002826 coolant Substances 0.000 claims description 3
- 238000012937 correction Methods 0.000 claims description 3
- 230000008676 import Effects 0.000 claims description 3
- 239000007791 liquid phase Substances 0.000 claims description 3
- 229920006395 saturated elastomer Polymers 0.000 claims description 3
- 238000004088 simulation Methods 0.000 claims description 3
- 238000010521 absorption reaction Methods 0.000 claims description 2
- 238000010586 diagram Methods 0.000 description 5
- 238000001816 cooling Methods 0.000 description 3
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 2
- 101000827703 Homo sapiens Polyphosphoinositide phosphatase Proteins 0.000 description 2
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 2
- 102100023591 Polyphosphoinositide phosphatase Human genes 0.000 description 2
- 101100233916 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) KAR5 gene Proteins 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 101100012902 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FIG2 gene Proteins 0.000 description 1
- 238000007792 addition Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/20—Design optimisation, verification or simulation
- G06F30/28—Design optimisation, verification or simulation using fluid dynamics, e.g. using Navier-Stokes equations or computational fluid dynamics [CFD]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/10—Geometric CAD
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2113/00—Details relating to the application field
- G06F2113/08—Fluids
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2119/00—Details relating to the type or aim of the analysis or the optimisation
- G06F2119/08—Thermal analysis or thermal optimisation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2119/00—Details relating to the type or aim of the analysis or the optimisation
- G06F2119/14—Force analysis or force optimisation, e.g. static or dynamic forces
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Geometry (AREA)
- Computer Hardware Design (AREA)
- Pure & Applied Mathematics (AREA)
- Mathematical Optimization (AREA)
- Mathematical Analysis (AREA)
- Evolutionary Computation (AREA)
- General Engineering & Computer Science (AREA)
- Computational Mathematics (AREA)
- Algebra (AREA)
- Computing Systems (AREA)
- Fluid Mechanics (AREA)
- Mathematical Physics (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
Abstract
Description
技术领域Technical Field
本发明属于热工水力数值计算技术领域,具体涉及一种三维平板水热管数值计算方法。The invention belongs to the technical field of thermal hydraulic numerical calculation, and in particular relates to a numerical calculation method for a three-dimensional flat water heat pipe.
背景技术Background Art
热管是一种被动传热装置,因其能以最小的损失提供有效的热传递而在热系统中得到了广泛的应用。随着芯片级热流通量达到200-300W/cm2,热管开发的驱动力之一是需要可靠地管理电子系统的散热,同时保持设备温度达到规格要求。其操作的被动性以及在表面温度只发生微小变化的情况下在合理距离内传递热量的能力,使其在电子冷却和封装设计中特别具有吸引力。热管也被广泛用作散热器。它利用潜热交换来实现高传热率。不断增加的电子芯片的功率密度要求这些器件的性能得到优化,以便能够有效地从电子芯片中去除热量,同时限制芯片和环境之间的温差。该装置所采用的毛细管多孔介质(吸液芯)是影响热管和蒸气腔传热效率的主要因素。吸液芯也决定了最大热传输能力。对吸液芯中相变传热传质特性的研究,有助于优化吸液芯设计,提高相变冷却装置的性能。Heat pipes are passive heat transfer devices that have found widespread use in thermal systems due to their ability to provide efficient heat transfer with minimal losses. With chip-level heat fluxes reaching 200-300W/ cm2 , one of the driving forces behind heat pipe development has been the need to reliably manage heat dissipation in electronic systems while maintaining device temperatures within specification. The passive nature of their operation and their ability to transfer heat over reasonable distances with only minor changes in surface temperature make them particularly attractive in electronic cooling and packaging design. Heat pipes are also widely used as heat sinks. They utilize latent heat exchange to achieve high heat transfer rates. The ever-increasing power density of electronic chips requires that the performance of these devices be optimized to be able to effectively remove heat from the electronic chip while limiting the temperature difference between the chip and the environment. The capillary porous media (wick) used in the device is the primary factor affecting the heat transfer efficiency of the heat pipe and vapor chamber. The wick also determines the maximum heat transfer capacity. The study of the phase change heat and mass transfer characteristics in the wick can help optimize the wick design and improve the performance of phase change cooling devices.
在瞬态运行中,热管中的系统压力随着吸液芯中的液/汽界面发生汽化和冷凝而发生变化。由于液汽密度比较大,相变率的微小变化会引起系统压力的较大变化。通过克劳修斯-克拉珀龙方程,系统压力反过来改变界面压力,从而改变饱和温度。蒸发和冷凝速率取决于界面蒸发阻力,而界面蒸发阻力既取决于界面压力,也取决于体积压力。此外,系统压力也通过理想气体定律直接改变蒸气密度。这些非线性关系会在数值格式的收敛方面造成困难,特别是在高热量添加时。In transient operation, the system pressure in the heat pipe changes as vaporization and condensation occur at the liquid/vapor interface in the wick. Due to the large density of liquid and vapor, small changes in the phase change rate can cause large changes in the system pressure. The system pressure in turn changes the interface pressure and thus the saturation temperature via the Clausius-Clapeyron equation. The evaporation and condensation rates depend on the interface evaporation resistance, which depends on both the interface pressure and the volume pressure. In addition, the system pressure also directly changes the vapor density via the ideal gas law. These nonlinear relationships can cause difficulties in the convergence of numerical schemes, especially at high heat additions.
发明内容Summary of the invention
本发明的目的在于提供一种平板水热管的数值计算方法,该方法能够运用计算流体力学手段对非定常高热流密度热管的运行进行计算,计算具有较好的稳定性以及收敛性,并为新出现的热管设计提供参考。The purpose of the present invention is to provide a numerical calculation method for a flat water heat pipe, which can use computational fluid dynamics to calculate the operation of an unsteady high heat flux heat pipe, has good stability and convergence, and provides a reference for the design of newly emerging heat pipes.
为了达到上述目的,本发明采用如下技术方案:In order to achieve the above object, the present invention adopts the following technical solution:
一种三维平板水热管数值计算方法,其特征在于:包括如下步骤:A three-dimensional flat plate water heat pipe numerical calculation method, characterized in that it includes the following steps:
步骤1:通过几何模型建立软件solidworks依据真实的设计创建平板水热管三维几何模型,该三维几何模型包括管壁、吸液芯、蒸气腔以及蒸发段和冷凝段;Step 1: Use the geometric model building software SolidWorks to create a three-dimensional geometric model of the flat water heat pipe based on the actual design. The three-dimensional geometric model includes the pipe wall, the liquid absorption core, the vapor cavity, the evaporation section and the condensation section;
步骤2:运用网格划分软件对步骤1中得到平板水热管几何模型进行网格划分;Step 2: Use meshing software to mesh the flat plate water heat pipe geometric model obtained in step 1;
步骤3:将步骤2划分的网格导入到计算流体力学软件中,分别将热管的蒸发段和冷凝段设置为热流边界条件和对流边界条件,其他壁面设置为绝热壁面,并依据真实情况设置蒸发段加热的热流密度以及冷凝段的换热系数和冷却剂温度,设置吸液芯的孔隙率;Step 3: Import the mesh divided in step 2 into the computational fluid dynamics software, set the evaporation section and condensation section of the heat pipe as heat flow boundary conditions and convection boundary conditions respectively, set other walls as adiabatic walls, and set the heat flux density of the evaporation section heating, the heat transfer coefficient and coolant temperature of the condensation section according to the actual situation, and set the porosity of the wick;
步骤4:设置瞬态计算所需要的初始条件:设置初始蒸汽质量为0,初始化温度场,并令初始蒸气区域工作压强为当前温度下的饱和压力;Step 4: Set the initial conditions required for transient calculation: set the initial steam mass to 0, initialize the temperature field, and set the initial steam region working pressure to the saturated pressure at the current temperature;
步骤5:采用用户定义程序UDF来计算气液交界面质量流率、吸液芯-蒸气交界面处的温度和压力,以及每时间步的液体和蒸气密度:Step 5: Use the user defined procedure UDF to calculate the gas-liquid interface mass flow rate, the temperature and pressure at the wick-vapor interface, and the liquid and vapor densities at each time step:
步骤5-1:假设液体工质和蒸气工质的相变发生在吸液芯和蒸气腔界面,根据交界面处的能量守恒方程,计算交界面处的温度Ti:Step 5-1: Assuming that the phase change between the liquid working medium and the vapor working medium occurs at the interface between the wick and the vapor chamber, calculate the temperature Ti at the interface according to the energy conservation equation at the interface:
交界面处的能量守恒方程表示为:The energy conservation equation at the interface is expressed as:
其中:in:
λwick与λv分别代表吸液芯以及蒸气腔的热导率,W·m-1·K-1;λ wick and λ v represent the thermal conductivity of the wick and vapor chamber, respectively, in W·m -1 ·K -1 ;
Ai——交界面面积,m2;A i —interface area, m 2 ;
T——温度,其中Ti为交界面温度,K;T——temperature, where Ti is the interface temperature, K;
y——与交界面垂直方向距离,m;y——distance perpendicular to the interface, m;
mi——交界面质量传递,mi<0为蒸发,mi>0为冷凝,kg; mi ——interface mass transfer, mi < 0 means evaporation, mi > 0 means condensation, kg;
hfg——汽化潜热,J/kg;h fg ——latent heat of vaporization, J/kg;
Cl——液相定压比热,J/(kg·K);C l ——liquid phase specific heat at constant pressure, J/(kg·K);
Cv——气相定压比热,J/(kg·K);C v ——gas phase constant pressure specific heat, J/(kg·K);
假设气液交界面两侧的两个控制体分别为PW及PV,其中PW代表吸液芯一侧,PV代表蒸气腔一侧,将能量守恒方程进行离散,得到交界面处的温度Ti:Assuming that the two control bodies on both sides of the gas-liquid interface are PW and PV, where PW represents the side of the wick and PV represents the side of the vapor chamber, the energy conservation equation is discretized to obtain the temperature Ti at the interface:
其中:in:
TPW——交界面附近吸液芯第一层网格温度,K; TPW — the first layer grid temperature of the wick near the interface, K;
TPV——交界面附近蒸汽腔第一层网格温度,K;T PV ——the first grid temperature of the steam chamber near the interface, K;
Δx——交界面面积,m2;Δx——interface area, m 2 ;
根据公式(2)计算出交界面的温度Ti:The interface temperature Ti is calculated according to formula (2):
步骤5-2:根据步骤5-1得到的交界面的温度,使用Clausius-Clapeyron方程计算交界面压力Pi:Step 5-2: Based on the interface temperature obtained in step 5-1, use the Clausius-Clapeyron equation to calculate the interface pressure P i :
其中:in:
Po——参考压力,Pa;P o ——reference pressure, Pa;
Pi——交界面压力,Pa;P i ——interface pressure, Pa;
To——参考温度,K;T o ——reference temperature, K;
R——气体常数,J/kg;R——gas constant, J/kg;
步骤5-3:对气液交界面质量流率进行计算:Step 5-3: Mass flow rate at the gas-liquid interface Perform the calculation:
其中:in:
——交界面质量流率,kg/s; ——interface mass flow rate, kg/s;
σ——调节系数;表面张力,N/m;σ——adjustment coefficient; surface tension, N/m;
Pv——蒸气腔压力,Pa;P v ——vapor chamber pressure, Pa;
Tv——蒸气腔温度,K;T v ——vapor chamber temperature, K;
步骤5-4:根据理想气体公式和蒸气区域的整体质量平衡计算蒸气区域工作压强,并计算蒸气密度:Step 5-4: Calculate the vapor zone working pressure based on the ideal gas equation and the overall mass balance of the vapor zone, and calculate the vapor density:
其中:in:
Pop——蒸汽区域工作压强,Pa; Pop - working pressure of steam area, Pa;
——上一时间步长计算得到的蒸气腔内蒸气质量,kg; ——The steam mass in the steam chamber calculated at the previous time step, kg;
——交界面质量流率,kg/s; ——interface mass flow rate, kg/s;
Δt——时间步长,s;Δt——time step, s;
R——气体常数;R——gas constant;
Vcell——蒸气腔压力,Pa;V cell ——vapor chamber pressure, Pa;
根据流体的不可压缩假设,控制体内的蒸气密度由系统压强计算:Based on the incompressible assumption of the fluid, the vapor density in the control volume is calculated from the system pressure:
步骤5-5:计算液体的平均密度ρl:Step 5-5: Calculate the average density ρ l of the liquid:
在瞬态过程中吸液芯是不饱和的,不考虑不饱和的问题,而采用平均液体密度进行计算来维持液体质量平衡;In the transient process, the wick is unsaturated, and the unsaturated problem is not considered. Instead, the average liquid density is used for calculation to maintain the liquid mass balance;
计算当前时刻吸液芯内液体质量:Calculate the mass of liquid in the wick at the current moment:
其中:in:
Ml——吸液芯内液体质量,kg;M l ——mass of liquid in the absorbent core, kg;
——上一时间步长计算得到的吸液芯内液体质量,kg; ——The mass of liquid in the wick calculated at the previous time step, kg;
——交界面质量流率,kg/s; ——interface mass flow rate, kg/s;
Δt——时间步长,s;Δt——time step, s;
根据吸液芯内的液体质量,计算液体的平均密度:Based on the mass of liquid in the wick, calculate the average density of the liquid:
其中:in:
ε——吸液芯孔隙率;ε——Porosity of wick;
Vl——吸液芯体积/m3;V l ——volume of liquid wick/m 3 ;
步骤6:使用计算流体力学软件对三维平板水热管内的流动传热进行计算:Step 6: Use computational fluid dynamics software to calculate the flow and heat transfer in the three-dimensional flat plate water heat pipe:
步骤6-1:根据步骤5得到的交界面质量流率、压力、温度参数分别求解吸液芯和蒸汽腔的动量方程,得到速度分布,并使用压力修正方程对压力进行修正;Step 6-1: Solve the momentum equations of the wick and the vapor chamber respectively according to the interface mass flow rate, pressure, and temperature parameters obtained in step 5 to obtain velocity distribution, and use the pressure correction equation to correct the pressure;
步骤6-2:求解计算区域的能量守恒方程,得到计算区域的温度场;Step 6-2: Solve the energy conservation equation of the calculation area to obtain the temperature field of the calculation area;
步骤6-3:检查计算是否收敛:当残差值小于0.000001时认为计算达到收敛,如果收敛,则进行下一时间步长的计算,否则返回步骤5继续计算。Step 6-3: Check whether the calculation has converged: When the residual value is less than 0.000001, the calculation is considered to have converged. If it has converged, the calculation of the next time step is performed, otherwise return to step 5 to continue the calculation.
优选的,步骤2中,考虑到对热管进行精细模拟对网格质量的要求高,使用纯六面体网格对计算域进行网格划分。Preferably, in step 2, considering the high requirements on mesh quality for fine simulation of heat pipes, pure hexahedral meshes are used to mesh the computational domain.
与现有技术相比,本发明具有以下有益效果:Compared with the prior art, the present invention has the following beneficial effects:
1)本发明采用一种将吸液芯和蒸气腔单独计算,并通过加入两者相互作用的方法对热管进行计算,能够更加精细地模拟出吸液芯内部流动;1) The present invention adopts a method of calculating the wick and the vapor chamber separately and calculating the heat pipe by adding the interaction between the two, which can simulate the internal flow of the wick more precisely;
2)采用了一种用整体质量平衡计算系统不可压缩极限压力的数值格式,通过考虑蒸发段/冷凝段质量流量与界面物浓度、压力以及系统压力之间的耦合,提高了标准顺序程序的稳定性;2) A numerical format for calculating the incompressible limit pressure of the system using the overall mass balance is adopted. The stability of the standard sequential program is improved by considering the coupling between the mass flow rate of the evaporation section/condensation section and the concentration and pressure of the interface and the system pressure.
3)模型独立,方法通用性强,可用于其他形状热管的计算。3) The model is independent and the method is highly versatile and can be used to calculate heat pipes of other shapes.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
图1为三维平板热管的结构示意图;FIG1 is a schematic diagram of the structure of a three-dimensional flat heat pipe;
图2为热管内的能量传递过程示意图;FIG2 is a schematic diagram of the energy transfer process in a heat pipe;
图3为吸液芯与蒸汽腔交界面处控制体示意图;FIG3 is a schematic diagram of a control body at the interface between the wick and the steam chamber;
图4为本发明方法流程图。FIG4 is a flow chart of the method of the present invention.
具体实施方式DETAILED DESCRIPTION
下面结合图4所示流程图,以典型三维平板水热管为例,对本发明做出进一步详细描述:The present invention is further described in detail below with reference to the flow chart shown in FIG4 , taking a typical three-dimensional flat water heat pipe as an example:
本发明一种三维平板水热管数值计算方法,包括如下步骤:The present invention provides a numerical calculation method for a three-dimensional flat water heat pipe, comprising the following steps:
步骤1:图1为三维平板热管的结构示意图,通过几何模型建立软件solidworks依据真实的设计创建平板水热管三维几何模型,该三维几何模型包括管壁、吸液芯、蒸气腔以及蒸发段和冷凝段;Step 1: FIG1 is a schematic diagram of the structure of a three-dimensional flat plate heat pipe. A three-dimensional geometric model of the flat plate water heat pipe is created based on a real design using the geometric model building software solidworks. The three-dimensional geometric model includes a pipe wall, a liquid wick, a vapor cavity, and an evaporation section and a condensation section.
步骤2:运用网格划分软件对步骤1中得到平板水热管几何模型进行网格划分,本实施例考虑到对热管进行精细模拟对网格质量的要求高,使用纯六面体网格对计算域进行网格划分;Step 2: Use meshing software to mesh the flat water heat pipe geometric model obtained in step 1. In this embodiment, considering the high requirements for mesh quality for fine simulation of heat pipes, pure hexahedral meshes are used to mesh the calculation domain;
步骤3:将步骤2划分的网格导入到计算流体力学软件中,分别将热管的蒸发段和冷凝段设置为热流边界条件和对流边界条件,其他壁面设置为绝热壁面,并依据真实情况设置蒸发段加热的热流密度以及冷凝段的换热系数和冷却剂温度,设置吸液芯的孔隙率;Step 3: Import the mesh divided in step 2 into the computational fluid dynamics software, set the evaporation section and condensation section of the heat pipe as heat flow boundary conditions and convection boundary conditions respectively, set other walls as adiabatic walls, and set the heat flux density of the evaporation section heating, the heat transfer coefficient and coolant temperature of the condensation section according to the actual situation, and set the porosity of the wick;
步骤4:设置瞬态计算所需要的初始条件:设置初始蒸汽质量为0,初始化温度场,并令初始蒸气区域工作压强为当前温度下的饱和压力;Step 4: Set the initial conditions required for transient calculation: set the initial steam mass to 0, initialize the temperature field, and set the initial steam region working pressure to the saturated pressure at the current temperature;
步骤5:采用用户定义程序UDF来计算气液交界面质量流率、吸液芯-蒸气交界面处的温度和压力,以及每时间步的液体和蒸气密度:Step 5: Use the user defined procedure UDF to calculate the gas-liquid interface mass flow rate, the temperature and pressure at the wick-vapor interface, and the liquid and vapor densities at each time step:
步骤5-1:假设液体工质和蒸气工质的相变发生在吸液芯和蒸气腔界面,根据交界面处的能量守恒方程,计算交界面处的温度Ti:Step 5-1: Assuming that the phase change between the liquid working medium and the vapor working medium occurs at the interface between the wick and the vapor chamber, calculate the temperature Ti at the interface according to the energy conservation equation at the interface:
热管内的能量传递过程如图2所示,在蒸发段,液体在加热作用下变为蒸汽,热量从蒸发段传递到蒸汽腔;在冷凝段,蒸汽在冷却作用下发生冷凝,热量又从蒸汽腔传递到冷凝段。交界面处的能量守恒方程表示为:The energy transfer process in the heat pipe is shown in Figure 2. In the evaporation section, the liquid turns into steam under the action of heating, and the heat is transferred from the evaporation section to the steam chamber; in the condensation section, the steam condenses under the action of cooling, and the heat is transferred from the steam chamber to the condensation section. The energy conservation equation at the interface is expressed as:
其中:in:
λwick与λv分别代表吸液芯以及蒸气腔的热导率,W·m-1·K-1;λ wick and λ v represent the thermal conductivity of the wick and vapor chamber, respectively, in W·m -1 ·K -1 ;
Ai——交界面面积,m2;A i —interface area, m 2 ;
T——温度,其中Ti为交界面温度,K;T——temperature, where Ti is the interface temperature, K;
y——与交界面垂直方向距离,m;y——distance perpendicular to the interface, m;
mi——交界面质量传递,mi<0为蒸发,mi>0为冷凝,kg; mi ——interface mass transfer, mi < 0 means evaporation, mi > 0 means condensation, kg;
hfg——汽化潜热,J/kg;h fg ——latent heat of vaporization, J/kg;
Cl——液相定压比热,J/(kg·K);C l ——liquid phase specific heat at constant pressure, J/(kg·K);
Cv——气相定压比热,J/(kg·K);C v ——gas phase constant pressure specific heat, J/(kg·K);
图3为吸液芯与蒸汽腔交界面处控制体示意图,假设气液交界面两侧的两个控制体分别为PW及PV,其中PW代表吸液芯一侧,PV代表蒸气腔一侧,将能量守恒方程进行离散,得到交界面处的温度Ti:FIG3 is a schematic diagram of the control volume at the interface between the wick and the vapor chamber. Assuming that the two control volumes on both sides of the gas-liquid interface are PW and PV, PW represents the wick side and PV represents the vapor chamber side, the energy conservation equation is discretized to obtain the temperature Ti at the interface:
其中:in:
TPW——交界面附近吸液芯第一层网格温度,K; TPW — the first layer grid temperature of the wick near the interface, K;
TPV——交界面附近蒸汽腔第一层网格温度,K;T PV ——the first grid temperature of the steam chamber near the interface, K;
Δx——交界面面积,m2;Δx——interface area, m 2 ;
根据公式(2)计算出交界面的温度Ti:The interface temperature Ti is calculated according to formula (2):
步骤5-2:根据步骤5-1得到的交界面的温度,使用Clausius-Clapeyron方程计算交界面压力Pi:Step 5-2: Based on the interface temperature obtained in step 5-1, use the Clausius-Clapeyron equation to calculate the interface pressure P i :
其中:in:
Po——参考压力,Pa;P o ——reference pressure, Pa;
Pi——交界面压力,Pa;P i ——interface pressure, Pa;
To——参考温度,K;T o ——reference temperature, K;
Ti——交界面温度,K; Ti —interface temperature, K;
hfg——汽化潜热,J/kg;h fg ——latent heat of vaporization, J/kg;
R——气体常数,J/kg;R——gas constant, J/kg;
步骤5-3:对气液交界面质量流率进行计算:Step 5-3: Mass flow rate at the gas-liquid interface Perform the calculation:
其中:in:
——交界面质量流率,kg/s; ——interface mass flow rate, kg/s;
σ——调节系数;表面张力,N/m;σ——adjustment coefficient; surface tension, N/m;
Pv——蒸气腔压力,Pa;P v ——vapor chamber pressure, Pa;
Tv——蒸气腔温度,K;T v ——vapor chamber temperature, K;
步骤5-4:根据理想气体公式和蒸气区域的整体质量平衡计算蒸气区域工作压强,并计算蒸气密度:Step 5-4: Calculate the vapor zone working pressure based on the ideal gas equation and the overall mass balance of the vapor zone, and calculate the vapor density:
其中:in:
Pop——蒸汽区域工作压强,Pa; Pop - working pressure of steam area, Pa;
——上一时间步长计算得到的蒸气腔内蒸气质量,kg; ——The steam mass in the steam chamber calculated at the previous time step, kg;
——交界面质量流率,kg/s; ——interface mass flow rate, kg/s;
Δt——时间步长,s;Δt——time step, s;
R——气体常数;R——gas constant;
Vcell——蒸气腔压力,Pa;V cell ——vapor chamber pressure, Pa;
根据流体的不可压缩假设,控制体内的蒸气密度由系统压强计算:Based on the incompressible assumption of the fluid, the vapor density in the control volume is calculated from the system pressure:
步骤5-5:计算液体的平均密度ρl:Step 5-5: Calculate the average density ρ l of the liquid:
在瞬态过程中吸液芯一般是不饱和的,不考虑不饱和的问题,而采用平均液体密度进行计算来维持液体质量平衡。In the transient process, the wick is generally unsaturated. The unsaturated problem is not considered, and the average liquid density is used for calculation to maintain the liquid mass balance.
计算当前时刻吸液芯内液体质量:Calculate the mass of liquid in the wick at the current moment:
其中:in:
Ml——吸液芯内液体质量,kg;M l ——mass of liquid in the absorbent core, kg;
——上一时间步长计算得到的吸液芯内液体质量,kg; ——The mass of liquid in the wick calculated at the previous time step, kg;
——交界面质量流率,kg/s; ——interface mass flow rate, kg/s;
Δt——时间步长,s;Δt——time step, s;
根据吸液芯内的液体质量,计算液体的平均密度:Based on the mass of liquid in the wick, calculate the average density of the liquid:
其中:in:
ε——吸液芯孔隙率;ε——Porosity of wick;
Vl——吸液芯体积/m3;V l ——volume of liquid wick/m 3 ;
步骤6:使用计算流体力学软件对三维平板水热管内的流动传热进行计算:Step 6: Use computational fluid dynamics software to calculate the flow and heat transfer in the three-dimensional flat plate water heat pipe:
步骤6-1:根据步骤5得到的交界面质量流率、压力、温度等参数分别求解吸液芯和蒸汽腔的动量方程,得到速度分布,并使用压力修正方程对压力进行修正;Step 6-1: Solve the momentum equations of the wick and the steam chamber respectively according to the interface mass flow rate, pressure, temperature and other parameters obtained in step 5 to obtain the velocity distribution, and use the pressure correction equation to correct the pressure;
步骤6-2:求解计算区域的能量守恒方程,得到计算区域的温度场;Step 6-2: Solve the energy conservation equation of the calculation area to obtain the temperature field of the calculation area;
步骤6-3:检查计算是否收敛:当残差值小于0.000001时认为计算达到收敛,如果收敛,则进行下一时间步长的计算,否则返回步骤5继续计算。Step 6-3: Check whether the calculation has converged: When the residual value is less than 0.000001, the calculation is considered to have converged. If it has converged, the calculation of the next time step is performed, otherwise return to step 5 to continue the calculation.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111564511.2A CN114239435B (en) | 2021-12-20 | 2021-12-20 | Numerical calculation method for three-dimensional flat plate water heat pipe |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111564511.2A CN114239435B (en) | 2021-12-20 | 2021-12-20 | Numerical calculation method for three-dimensional flat plate water heat pipe |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114239435A CN114239435A (en) | 2022-03-25 |
CN114239435B true CN114239435B (en) | 2023-05-16 |
Family
ID=80759505
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111564511.2A Active CN114239435B (en) | 2021-12-20 | 2021-12-20 | Numerical calculation method for three-dimensional flat plate water heat pipe |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114239435B (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107423459A (en) * | 2017-03-21 | 2017-12-01 | 哈尔滨工程大学 | A kind of heat exchanger porous media model porosity and Permeability Parameters processing method based on CAD software |
CN107704674A (en) * | 2017-09-26 | 2018-02-16 | 吉林省电力科学研究院有限公司 | The method for numerical simulation of air cooling tubes condenser water vapor condensation process |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20190276906A1 (en) * | 2011-03-30 | 2019-09-12 | Macrae Technologies, Inc. | High heat flux regime coolers |
NO337063B1 (en) * | 2014-01-24 | 2016-01-11 | Ledaflow Tech Da | Method for Transient Quasi-Three-Dimensional Simulation of Multiphase Fluid Flow in Pipelines |
CN108694274A (en) * | 2018-04-18 | 2018-10-23 | 青岛海聚仿真软件技术有限公司 | Condense the Numeral Emulation System and its method of phase transformation secondary development analysis |
CN109670216B (en) * | 2018-11-30 | 2023-07-04 | 中国船舶重工集团公司第七一九研究所 | Passive residual heat removal condenser position optimization design method based on CFD technology |
CN112597640B (en) * | 2020-12-08 | 2024-08-09 | 清华大学 | Heat pipe simulation method and device and electronic equipment |
CN113434988B (en) * | 2021-06-11 | 2022-10-28 | 西安交通大学 | Heat transfer characteristic analysis method for heat pipe in nuclear power system |
CN113609795B (en) * | 2021-08-02 | 2022-12-09 | 西安交通大学 | A 3D Calculation Method for Thermal-hydraulic Characteristics of Helical Tube Steam Generator in High Temperature Gas-cooled Reactor |
-
2021
- 2021-12-20 CN CN202111564511.2A patent/CN114239435B/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107423459A (en) * | 2017-03-21 | 2017-12-01 | 哈尔滨工程大学 | A kind of heat exchanger porous media model porosity and Permeability Parameters processing method based on CAD software |
CN107704674A (en) * | 2017-09-26 | 2018-02-16 | 吉林省电力科学研究院有限公司 | The method for numerical simulation of air cooling tubes condenser water vapor condensation process |
Also Published As
Publication number | Publication date |
---|---|
CN114239435A (en) | 2022-03-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN112084591B (en) | Radiator cooling channel design method based on three-dimensional topological optimization | |
CN201374890Y (en) | Flat-plate heat pipe and heat abstractor formed by integrated design thereof with porous medium | |
CN103060592A (en) | Through-hole metal foam with gradually varied morphologic characteristics, preparation method of through-hole metal foam, and heat exchange device | |
Kant et al. | Analysis of a novel constructal fin tree embedded thermochemical energy storage for buildings applications | |
Kandilli et al. | Optimisation design and operation parameters of a photovoltaic thermal system integrated with natural zeolite | |
CN102419123B (en) | Anti-gravity bubbling loop heat pipe | |
CN114626260A (en) | A topology optimization design method for the flow channel of a counter-flow heat exchanger | |
JP2023550396A (en) | Molten salt storage amount calculation method that supports deep peak adjustment of thermal power generation units using molten salt heat storage | |
CN114239435B (en) | Numerical calculation method for three-dimensional flat plate water heat pipe | |
Ding et al. | Thermal performance analysis of a 20-feet latent cold energy storage device integrated with a novel fin-plate unit for building cooling | |
Chen et al. | The energy efficiency of multistage interfacial desalination: Comprehensive analysis and further improvement strategy | |
Zhang et al. | Dynamic heat transfer characteristics of gravity heat pipe with heat storage | |
Li et al. | Pore-scale study on Rayleigh-Bénard convection formed in the melting process of metal foam composite phase change material | |
Öztop et al. | Analysis of melting behavior of layered different phase change materials for a cylinder insert into a channel | |
CN112032809B (en) | Renewable energy-based hybrid thermal power station system and dynamic control method thereof | |
CN103822519B (en) | Porous surface boiling heat transfer intensifying device and preparation method thereof | |
Xiong et al. | Study on the flow and heat transfer characteristics inside high-porosity open-cell copper foams: Experimental and numerical explorations | |
CN203731914U (en) | Multi-hole surface boiling heat exchange reinforcing device | |
Momeni et al. | Thermal Response Analysis of a Cross-Flow PCM Heat Exchanger Based on Air and Liquid Flow | |
Ohol et al. | E® ect of PCM-lled hallow n heat sink for cooling of electronic components| a numerical approach for thermal management perspective | |
CN116541640B (en) | Normalized steam heat transfer calculation method of alkali metal heat pipe | |
CN205718603U (en) | Vaporizer and the loop circuit heat pipe of condenser adjustable angle | |
Peng12 et al. | The effect of nanofluid to vertical single U-tube ground heat exchanger | |
CN219390648U (en) | Phase change loop vapor chamber | |
CN205402869U (en) | Waste heat heating |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |