CN114235709A - 一种基于啁啾调制相关解调方式和双层光声模型的材料热扩散率测量方法 - Google Patents

一种基于啁啾调制相关解调方式和双层光声模型的材料热扩散率测量方法 Download PDF

Info

Publication number
CN114235709A
CN114235709A CN202111567799.9A CN202111567799A CN114235709A CN 114235709 A CN114235709 A CN 114235709A CN 202111567799 A CN202111567799 A CN 202111567799A CN 114235709 A CN114235709 A CN 114235709A
Authority
CN
China
Prior art keywords
double
photoacoustic
thermal diffusivity
layer
chirp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111567799.9A
Other languages
English (en)
Inventor
赵斌兴
孙启明
王静
周鹰
李斌成
杨玲
王天明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Priority to CN202111567799.9A priority Critical patent/CN114235709A/zh
Publication of CN114235709A publication Critical patent/CN114235709A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/1702Systems in which incident light is modified in accordance with the properties of the material investigated with opto-acoustic detection, e.g. for gases or analysing solids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • G01N25/18Investigating or analyzing materials by the use of thermal means by investigating thermal conductivity
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/15Correlation function computation including computation of convolution operations
    • G06F17/156Correlation function computation including computation of convolution operations using a domain transform, e.g. Fourier transform, polynomial transform, number theoretic transform
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/1702Systems in which incident light is modified in accordance with the properties of the material investigated with opto-acoustic detection, e.g. for gases or analysing solids
    • G01N2021/1706Systems in which incident light is modified in accordance with the properties of the material investigated with opto-acoustic detection, e.g. for gases or analysing solids in solids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/1702Systems in which incident light is modified in accordance with the properties of the material investigated with opto-acoustic detection, e.g. for gases or analysing solids
    • G01N2021/1708Systems in which incident light is modified in accordance with the properties of the material investigated with opto-acoustic detection, e.g. for gases or analysing solids with piezotransducers

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Mathematical Physics (AREA)
  • Computational Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Data Mining & Analysis (AREA)
  • Algebra (AREA)
  • Databases & Information Systems (AREA)
  • Software Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Computing Systems (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

本发明公开一种基于啁啾调制相关解调方式和双层光声模型的材料热扩散率测量方法,所述方法运用强度啁啾调制的激光激励双层样品产生光声信号,并由耦合在双层样品后表面的压电换能器所探测,该光声信号与双层样品中上层材料的热物理特性、上下两层材料弹性性能及厚度、啁啾激励光特性相关;在啁啾激励光特性及上下两层材料厚度已知的情况下,通过将不同上下层弹性性能比和热扩散率的啁啾激光激励参考光声信号与测量得到光声信号做相关运算,则相关峰最大值所对应的热扩散率即为上层材料的热扩散率。本方法为双层样品中上层材料的热扩散率测量提供了一种无损、快速的测量方法。

Description

一种基于啁啾调制相关解调方式和双层光声模型的材料热扩 散率测量方法
技术领域
本发明涉及固体材料热物性检测领域,具体涉及一种基于啁啾调制相关解调方式和双层光声模型的材料热扩散率无损、快速、定量表征方法。
背景技术
非均匀材料广泛应用于生产生活的各个领域,其中非均匀材料可以分为天然的和人工的两大类。天然的非均匀材料如岩石、土壤、生物组织等,也包括材料内部缺陷以及老化;人工的非均匀材料也可以统称为功能性梯度材料,指通过人为设计的功能性结构使材料具备某种特殊性质。而基于某一基底的双层材料是最重要的非均匀材料,遍及现代航空航天、电子信息、生物医学等各个材料科学领域。热物理性能是材料重要性能之一,对材料热物性参数实现无损、快速、定量、精确地测量和表征,既可以为材料科学领域的创新研究服务,也可以为工业生产与质量监控提供保障。而对双层样品材料的热扩散率无损检测在许多学科和技术领域尤为重要。
光声光热技术基于物质的光声光热效应,利用动态调制的激光在样品中激发出扩散波,并运用光学和声学的方法实现对扩散波的检测,由此来推测出样品表面、亚表面和体特征。光声技术是以光声效应为基础,通过对光声信号的分析,来获取样品材料的热物性参数和其他特性,具有实验简单、紧凑、检测频响宽、灵敏度高等特点。
目前,光声技术对材料热扩散率的测量范围有限,首先,传统光声模型多为单层模型,多测量单层材料热扩散率;其次,传统光声技术是频域测量技术,测试系统复杂、昂贵、耗时。因此,扩展光声技术的应用研究领域,发展应用于双层样品快速、无损、定量热扩散率测量的光声技术是材料热物性检测及光声光热领域的迫切需要。
发明内容
本发明所要解决的问题是:如何克服现有光声技术测量热扩散率方法的不足,提供一种适用于双层样品的新型热扩散率光声测量方法,实现热扩散率的快速、无损、定量测量。
本发明所提出的技术问题是这样解决的:本发明提出一种基于啁啾调制相关解调方式和双层光声模型的材料热扩散率测量方法,其系统包括函数发生器、激励激光器、透反镜、全反镜、聚焦透镜、待测双层样品、压电换能器、光电探测器、数据采集卡、计算机,其特征在于:强度啁啾调制的激光激励双层样品产生光声信号,该光声信号由耦合在双层样品后表面的压电换能器所探测;基于双层光声模型,在啁啾激励光特性及上下两层材料厚度已知的情况下,得到光声信号作为参考信号;通过不同上下层弹性性能比和热扩散率的参考信号与测量得到光声信号做相关运算,则相关峰最大值所对应的热扩散率即为上层材料的热扩散率。
所述的激光啁啾调制信号由函数发生器产生,啁啾调制信号的起始与截止频率均为低频,即满足弹性力学的准稳态近似;啁啾信号的起始和截止频率满足双层样品上层材料热厚条件,即f满足
Figure BDA0003422440410000021
其中,D为上层材料热扩散率,l为上层材料厚度,f为啁啾信号的起始和截至频率中较小值;啁啾信号的时间带宽积应为整数,即啁啾起始频率与截止频率之差与啁啾时长的乘积为整数。
所述的双层光声模型的上层材料满足热厚条件,即热波无法传到下层材料,下层材料只起到传声作用。
所述的压电换能器的厚度应远小于样品的厚度,使得其对样品振动的影响可以忽略。
所述的产生参考信号的具体算法是,先对实时监测到的激励光强时域信号进行傅立叶变换,再将之与不同上下层弹性性能比和热扩散率所对应的频域双层光声响应函数相乘。
所述的热扩散率反演具体算法是,一系列参考信号分别与测得的光声信号做相关运算,找到相关峰值最高的那个参考信号所对应的热扩散率即为测量值,并且此时的信噪比最大。
本发明的有益效果是:克服了现有光声热扩散率测量方法测量样品范围有限,测量速度慢等不足,基于啁啾调制、相关解调方式和双层光声模型,实现了双层样品无损、定量、快速的材料热物理性测量。
附图说明
图1为本发明的系统示意图,包括函数发生器、激励激光器、透反镜、全反镜、聚焦透镜、待测双层样品、压电换能器、光电探测器、数据采集卡和计算机。
图2为双层样品光声检测理论模型。
图3为啁啾调制激励光时域信号。
图4为基于相关检测的热扩散率定量测量的算法框图。其中f(t)为激励光强时域信号,s(t)为测量光声信号,T(D,p)为双层样品频域光声传递函数,FFT和IFFT为快速傅立叶变换和逆变换,Z*为取复共轭。
具体实施方式
下面结合图1、图2、图3、图4具体描述本发明提出的一种基于啁啾调制相关解调方式和双层光声模型的材料热扩散率测量方法。然而应当理解,附图的提供仅为了更好地理解本发明,不应该理解成对本发明的限制。具体的实施步骤如下:
如图1所示,函数发生器产生起始和截至频率、啁啾持续时间可调的啁啾信号如下:
Figure BDA0003422440410000031
其中,Q0为光激励的平均能量,f1(t)为频率调制函数,B为调频速率,fs为啁啾起始频率,fe为啁啾截止频率,T为啁啾持续时间。啁啾信号的起始和截止频率满足
Figure BDA0003422440410000032
其中,D为上层材料热扩散率,l为上层材料厚度,f为啁啾信号的起始和截至频率中的最小值;啁啾信号的时间带宽积应为整数,即啁啾起始频率与截止频率之差与啁啾时长的乘积为整数。
啁啾调制信号调制激光器使其发出光强啁啾调制的激光束,经过透反镜、全反镜后激励待测双层样品的前表面并在其中产生光声信号,该光声信号被耦合在样品后表面、厚度远小于样品厚度的压电换能器探测;经透反镜分束的一小部分光被光电探测器接收,实现对激励光强时域特征的实时监测;数据采集卡将测量光声信号和激励光强时域信号(如图3所示)采集并传送至计算机。计算机根据实时监测的激励光强信号,并结合不同上下层弹性性能比和不同热扩散率所对应的频域双层光声响应函数,产生一系列参考信号,步骤如下:
(1)首先对测得的激励光强时域信号f(t)做快速傅立叶变换,得到其频谱F(ω);
(2)将F(ω)与不同上下层弹性性能比和热扩散率所对应的频域双层光声传递函数T逐点相乘,传递函数T(ω,D,p)由下式给出:
Figure BDA0003422440410000041
其中,
Figure BDA0003422440410000042
A=pl+H,
Figure BDA0003422440410000043
σ2=iω/D
ω=2πf为角频率,D为双层样品上层材料热扩散率,l为上层材料厚度,H为下层材料厚度,p为上下两层材料的弹性性能比。
(3)将F(ω)与不同热扩散率所对应的T(ω,D,p)相乘后得到的一系列复向量分别进行归一化,使它们的二范数均为1,从而得到了一系列归一化了的频域参考信号。
将这些参考信号分别与测得的光声信号做相关运算,其中相关峰值最高的那个参考信号所对应的热扩散率即为双层样品上层材料热扩散率测量值,如图4所示。
本发明提出的一种基于啁啾调制相关解调方式和双层光声模型的材料热扩散率测量方法,基于双层光声模型,运用光强啁啾调制的激光束激励双层样品并在其中产生光声信号,通过相关解调方法反演热扩散率,可以为双层样品材料热物理性的检测提供一种无损、定量、快速的表征方法。

Claims (6)

1.一种基于啁啾调制相关解调方式和双层光声模型的材料热扩散率测量方法,其特征在于:强度啁啾调制的激光激励双层样品产生光声信号,该光声信号由耦合在双层样品后表面的压电换能器所探测;基于双层光声模型,在啁啾激励光特性及上下两层材料厚度已知的情况下,得到光声信号作为参考信号;通过不同上下层弹性性能比和热扩散率的参考信号与测量得到光声信号做相关运算,则相关峰最大值所对应的热扩散率即为上层材料的热扩散率。
2.根据权利要求1所述的基于啁啾调制相关解调方式和双层光声模型的材料热扩散率测量方法,其特征在于:激光的啁啾调制信号由函数发生器产生,啁啾调制信号的起始与截止频率均为低频,即满足弹性力学的准稳态近似,且满足双层样品上层材料热厚条件,即
Figure FDA0003422440400000011
其中,D为上层材料热扩散率,l为上层材料厚度,f为啁啾信号的起始和截至频率中较小值;啁啾信号的时间带宽积应为整数,即啁啾起始频率与截止频率之差与啁啾时长的乘积为整数。
3.根据权利要求1所述的基于啁啾调制相关解调方式和双层光声模型的材料热扩散率测量方法,其特征在于:双层光声模型的上层材料满足热厚条件,即热波无法传到下层材料,下层材料只起到传声作用。
4.根据权利要求1所述的基于啁啾调制相关解调方式和双层光声模型的材料热扩散率测量方法,其特征在于:压电换能器的厚度应远小于样品的厚度,使得其对样品振动的影响可以忽略。
5.根据权利要求1所述的基于啁啾调制相关解调方式和双层光声模型的材料热扩散率测量方法,其特征在于:产生参考信号的具体算法是,先对实时监测到的激励光强时域信号进行傅立叶变换,再将之与不同上下层弹性性能比和热扩散率所对应的频域双层光声响应函数相乘。
6.根据权利要求1所述的基于啁啾调制相关解调方式和双层光声模型的材料热扩散率测量方法,其特征在于:热扩散率反演具体算法是,权利要求5所述一系列参考信号分别与测得的光声信号做相关运算,找到相关峰值最高的那个参考信号所对应的热扩散率即为测量值。
CN202111567799.9A 2021-12-21 2021-12-21 一种基于啁啾调制相关解调方式和双层光声模型的材料热扩散率测量方法 Pending CN114235709A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111567799.9A CN114235709A (zh) 2021-12-21 2021-12-21 一种基于啁啾调制相关解调方式和双层光声模型的材料热扩散率测量方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111567799.9A CN114235709A (zh) 2021-12-21 2021-12-21 一种基于啁啾调制相关解调方式和双层光声模型的材料热扩散率测量方法

Publications (1)

Publication Number Publication Date
CN114235709A true CN114235709A (zh) 2022-03-25

Family

ID=80759907

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111567799.9A Pending CN114235709A (zh) 2021-12-21 2021-12-21 一种基于啁啾调制相关解调方式和双层光声模型的材料热扩散率测量方法

Country Status (1)

Country Link
CN (1) CN114235709A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115508407A (zh) * 2022-08-29 2022-12-23 电子科技大学 一种巴克码调制激光激励光声压电热扩散率测量方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109030411A (zh) * 2018-06-19 2018-12-18 电子科技大学 一种基于连续调制激光照射的复合绝缘子老化程度检测方法
CN110132331A (zh) * 2019-05-22 2019-08-16 电子科技大学 一种基于子啁啾脉冲提取的cotdr测量方法及其系统
CN113406009A (zh) * 2021-06-23 2021-09-17 电子科技大学 一种基于光声信号匹配滤波的金属材料热扩散率测量方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109030411A (zh) * 2018-06-19 2018-12-18 电子科技大学 一种基于连续调制激光照射的复合绝缘子老化程度检测方法
CN110132331A (zh) * 2019-05-22 2019-08-16 电子科技大学 一种基于子啁啾脉冲提取的cotdr测量方法及其系统
CN113406009A (zh) * 2021-06-23 2021-09-17 电子科技大学 一种基于光声信号匹配滤波的金属材料热扩散率测量方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
赵斌兴等: "光声压电技术对材料热扩散率分布成像研究" *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115508407A (zh) * 2022-08-29 2022-12-23 电子科技大学 一种巴克码调制激光激励光声压电热扩散率测量方法

Similar Documents

Publication Publication Date Title
Gan et al. The use of broadband acoustic transducers and pulse-compression techniques for air-coupled ultrasonic imaging
Gao et al. Laser ultrasonic study of Lamb waves: determination of the thickness and velocities of a thin plate
McLaskey et al. Acoustic emission sensor calibration for absolute source measurements
US7798000B1 (en) Non-destructive imaging, characterization or measurement of thin items using laser-generated lamb waves
CN104034287B (zh) 一种弹性各向异性金属基体热障涂层厚度超声测量方法
US11092573B2 (en) Apparatus, systems, and methods for determining nonlinear properties of a material to detect early fatigue or damage
CN113406009B (zh) 一种基于光声信号匹配滤波的金属材料热扩散率测量方法
US6330827B1 (en) Resonant nonlinear ultrasound spectroscopy
CN103698404B (zh) 基于冲激响应法的阻尼材料损耗因子测量方法及测量装置
CN106546368A (zh) 一种表征薄膜残余应力的方法
Goujon et al. Behaviour of acoustic emission sensors using broadband calibration techniques
CN104457635A (zh) 基于Welch法谱估计的超薄涂层厚度均匀性无损检测方法
US20050109110A1 (en) Structural health monitoring
CN114235709A (zh) 一种基于啁啾调制相关解调方式和双层光声模型的材料热扩散率测量方法
JP3864940B2 (ja) 膜強度測定方法、膜を有する被測定物の良否判定方法
Huan et al. Frequency-domain laser ultrasound (FDLU) non-destructive evaluation of stress–strain behavior in an aluminum alloy
CN102539543B (zh) 一种双层板兰姆波非接触式波速提取的方法
Liao et al. Estimation of complex modulus using wave coefficients
Harley et al. Managing complexity, uncertainty, and variability in guided wave structural health monitoring
Holland et al. Air-coupled, focused ultrasonic dispersion spectrum reconstruction in plates
CN104749082A (zh) 孔隙含量超声多功能评价方法及装置
Almqvist et al. Characterization of air-coupled ultrasound transducers in the frequency range 40 kHz–2 MHz using light diffraction tomography
Theobald et al. Acoustic emission transducers—development of a facility for traceable out-of-plane displacement calibration
Evans et al. Design of a self-calibrating simulated acoustic emission source
Lai et al. Ultrasonic resonance spectroscopic analysis of microliters of liquids

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20220325