CN114232109B - Method for preparing polyether ketone fiber based on nondestructive dissolution wet method - Google Patents
Method for preparing polyether ketone fiber based on nondestructive dissolution wet method Download PDFInfo
- Publication number
- CN114232109B CN114232109B CN202111401064.9A CN202111401064A CN114232109B CN 114232109 B CN114232109 B CN 114232109B CN 202111401064 A CN202111401064 A CN 202111401064A CN 114232109 B CN114232109 B CN 114232109B
- Authority
- CN
- China
- Prior art keywords
- ketone
- fiber
- polyether
- polyetherketoneketone
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000000835 fiber Substances 0.000 title claims abstract description 105
- 238000000034 method Methods 0.000 title claims abstract description 46
- 238000004090 dissolution Methods 0.000 title claims abstract description 21
- 229920001643 poly(ether ketone) Polymers 0.000 title claims abstract description 17
- 229920001652 poly(etherketoneketone) Polymers 0.000 claims abstract description 100
- 238000009987 spinning Methods 0.000 claims abstract description 25
- 238000002166 wet spinning Methods 0.000 claims abstract description 20
- 239000002798 polar solvent Substances 0.000 claims abstract description 11
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 claims abstract description 9
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 claims abstract description 9
- 239000000460 chlorine Substances 0.000 claims abstract description 9
- 229910052801 chlorine Inorganic materials 0.000 claims abstract description 9
- 229910052731 fluorine Inorganic materials 0.000 claims abstract description 9
- 239000011737 fluorine Substances 0.000 claims abstract description 9
- 238000004804 winding Methods 0.000 claims abstract description 7
- 238000000465 moulding Methods 0.000 claims abstract description 5
- 238000001035 drying Methods 0.000 claims abstract description 3
- 230000001112 coagulating effect Effects 0.000 claims abstract 3
- 238000007493 shaping process Methods 0.000 claims abstract 2
- 238000005345 coagulation Methods 0.000 claims description 20
- 230000015271 coagulation Effects 0.000 claims description 20
- 238000003756 stirring Methods 0.000 claims description 16
- 239000000243 solution Substances 0.000 claims description 15
- DTQVDTLACAAQTR-UHFFFAOYSA-N Trifluoroacetic acid Chemical compound OC(=O)C(F)(F)F DTQVDTLACAAQTR-UHFFFAOYSA-N 0.000 claims description 14
- 230000001066 destructive effect Effects 0.000 claims description 13
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical compound N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 claims description 10
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 10
- 239000003063 flame retardant Substances 0.000 claims description 10
- 238000001125 extrusion Methods 0.000 claims description 9
- 230000004580 weight loss Effects 0.000 claims description 9
- JXTHNDFMNIQAHM-UHFFFAOYSA-N dichloroacetic acid Chemical compound OC(=O)C(Cl)Cl JXTHNDFMNIQAHM-UHFFFAOYSA-N 0.000 claims description 6
- WXNZTHHGJRFXKQ-UHFFFAOYSA-N 4-chlorophenol Chemical compound OC1=CC=C(Cl)C=C1 WXNZTHHGJRFXKQ-UHFFFAOYSA-N 0.000 claims description 5
- 238000002347 injection Methods 0.000 claims description 5
- 239000007924 injection Substances 0.000 claims description 5
- 239000002904 solvent Substances 0.000 claims description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 5
- UHOVQNZJYSORNB-UHFFFAOYSA-N benzene Substances C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 claims description 4
- 238000010438 heat treatment Methods 0.000 claims description 4
- 229960005215 dichloroacetic acid Drugs 0.000 claims description 3
- NDUPDOJHUQKPAG-UHFFFAOYSA-N Dalapon Chemical compound CC(Cl)(Cl)C(O)=O NDUPDOJHUQKPAG-UHFFFAOYSA-N 0.000 claims description 2
- 239000002245 particle Substances 0.000 claims description 2
- 239000000843 powder Substances 0.000 claims description 2
- 208000012886 Vertigo Diseases 0.000 claims 4
- 238000007711 solidification Methods 0.000 claims 2
- 230000008023 solidification Effects 0.000 claims 2
- 238000004519 manufacturing process Methods 0.000 claims 1
- 238000002360 preparation method Methods 0.000 abstract description 9
- 230000009471 action Effects 0.000 abstract description 4
- 150000002576 ketones Chemical group 0.000 abstract description 3
- 238000010008 shearing Methods 0.000 abstract description 2
- 239000000084 colloidal system Substances 0.000 abstract 1
- 230000008569 process Effects 0.000 description 17
- 229920000642 polymer Polymers 0.000 description 10
- 229920002530 polyetherether ketone Polymers 0.000 description 9
- 239000004696 Poly ether ether ketone Substances 0.000 description 8
- 238000002074 melt spinning Methods 0.000 description 8
- 238000009998 heat setting Methods 0.000 description 7
- 238000002156 mixing Methods 0.000 description 7
- 229920006260 polyaryletherketone Polymers 0.000 description 7
- 238000006277 sulfonation reaction Methods 0.000 description 7
- 239000002131 composite material Substances 0.000 description 6
- 239000011550 stock solution Substances 0.000 description 6
- 238000012360 testing method Methods 0.000 description 6
- QAOWNCQODCNURD-UHFFFAOYSA-N sulfuric acid Substances OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 5
- 238000011161 development Methods 0.000 description 4
- JUPQTSLXMOCDHR-UHFFFAOYSA-N benzene-1,4-diol;bis(4-fluorophenyl)methanone Chemical compound OC1=CC=C(O)C=C1.C1=CC(F)=CC=C1C(=O)C1=CC=C(F)C=C1 JUPQTSLXMOCDHR-UHFFFAOYSA-N 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 238000005191 phase separation Methods 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 238000001523 electrospinning Methods 0.000 description 2
- 229910052500 inorganic mineral Inorganic materials 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 239000011707 mineral Substances 0.000 description 2
- 239000002071 nanotube Substances 0.000 description 2
- OWTCGJRBQMOICX-UHFFFAOYSA-M phenacyl(triphenyl)phosphanium;chloride Chemical compound [Cl-].C=1C=CC=CC=1C(=O)C[P+](C=1C=CC=CC=1)(C=1C=CC=CC=1)C1=CC=CC=C1 OWTCGJRBQMOICX-UHFFFAOYSA-M 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000013589 supplement Substances 0.000 description 2
- 229920001169 thermoplastic Polymers 0.000 description 2
- 239000004416 thermosoftening plastic Substances 0.000 description 2
- KNKRKFALVUDBJE-UHFFFAOYSA-N 1,2-dichloropropane Chemical compound CC(Cl)CCl KNKRKFALVUDBJE-UHFFFAOYSA-N 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 229920003235 aromatic polyamide Polymers 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 238000007385 chemical modification Methods 0.000 description 1
- 238000007265 chloromethylation reaction Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000010292 electrical insulation Methods 0.000 description 1
- 229920006351 engineering plastic Polymers 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 230000009477 glass transition Effects 0.000 description 1
- 229920006253 high performance fiber Polymers 0.000 description 1
- 230000036571 hydration Effects 0.000 description 1
- 238000006703 hydration reaction Methods 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 239000002048 multi walled nanotube Substances 0.000 description 1
- 238000012704 multi-component copolymerization Methods 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920005594 polymer fiber Polymers 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000007151 ring opening polymerisation reaction Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229920005992 thermoplastic resin Polymers 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
Images
Classifications
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01D—MECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
- D01D5/00—Formation of filaments, threads, or the like
- D01D5/06—Wet spinning methods
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01D—MECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
- D01D10/00—Physical treatment of artificial filaments or the like during manufacture, i.e. during a continuous production process before the filaments have been collected
- D01D10/02—Heat treatment
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F6/00—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
- D01F6/58—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products
- D01F6/66—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from polyethers
- D01F6/665—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from polyethers from polyetherketones, e.g. PEEK
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
- Y02P70/62—Manufacturing or production processes characterised by the final manufactured product related technologies for production or treatment of textile or flexible materials or products thereof, including footwear
Landscapes
- Engineering & Computer Science (AREA)
- Textile Engineering (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Artificial Filaments (AREA)
Abstract
Description
技术领域technical field
本发明涉及一种基于无损溶解湿法制备聚醚酮酮纤维的方法,属于功能热纤维的制备技术领域。The invention relates to a method for preparing polyether ketone ketone fibers based on a non-destructive dissolution wet method, and belongs to the technical field of preparation of functional thermal fibers.
背景技术Background technique
高分子纤维是高分子材料的重要组成部分,在社会生活和工业生产中扮演着十分重要的角色。其中作为特种纤维的一种,能够在180℃以上长期使用或在更高温度下仍能在一定时间内保持良好物理性能的耐高温纤维得到了高度关注。Polymer fibers are an important part of polymer materials and play a very important role in social life and industrial production. Among them, as a kind of special fiber, the high-temperature-resistant fiber that can be used for a long time above 180°C or maintain good physical properties for a certain period of time at a higher temperature has received high attention.
随着我国航天航空、消防防护、核工业等领域的高速发展,对耐高温特种纤维的需求日益增加,亟需进一步优化其综合性能;而现有热固性树脂存在韧性不足、耐高温热塑性树脂存在纤维化难度大等问题,限制了耐高温特种纤维的发展。With the rapid development of my country's aerospace, fire protection, nuclear industry and other fields, the demand for high-temperature-resistant special fibers is increasing, and it is urgent to further optimize their comprehensive properties; while existing thermosetting resins have insufficient toughness, and high-temperature-resistant thermoplastic resins have fibers Problems such as difficulty in chemicalization limit the development of high-temperature-resistant special fibers.
在目前已商品化的热塑性特种工程塑料中,聚芳醚酮类聚合物是耐热等级最高的。聚芳醚酮是一类半结晶热塑性塑料,具有低密度、高机械性能、高温热稳定性、电绝缘以及耐化学腐蚀等优点。在聚芳醚酮家族中,聚醚醚酮和聚醚酮酮使用最为广泛。相比较而言,聚醚酮酮含有更多的酮键,分子结构存在对苯与间苯占比差异,具有更高的玻璃化转变温度和熔融温度、更为宽泛的热调控窗口以及更好的机械性能,近年来得到了更广泛的关注。基于聚醚酮酮发展具有高机械性能的高温特种纤维,对我国高性能纤维产业的转型升级具有重要略意义,也将会在诸多领域有广阔的应用空间。Among the currently commercialized thermoplastic special engineering plastics, polyaryletherketone polymers have the highest heat resistance grade. Polyaryletherketone is a class of semi-crystalline thermoplastics with low density, high mechanical properties, high temperature thermal stability, electrical insulation and chemical corrosion resistance. In the polyaryletherketone family, polyetheretherketone and polyetherketoneketone are the most widely used. In comparison, polyether ketone ketone contains more ketone bonds, and there are differences in the proportion of p-benzene and m-benzene in the molecular structure, with higher glass transition temperature and melting temperature, wider thermal control window and better The mechanical properties have received more extensive attention in recent years. The development of high-temperature special fibers with high mechanical properties based on polyether ketone ketone is of great significance to the transformation and upgrading of my country's high-performance fiber industry, and will also have broad application space in many fields.
从聚合物的纺丝性角度来看,由于聚芳醚酮类聚合物普遍具有耐溶性能强以及熔融温度高、熔体流动性差等问题,不仅难以实现湿法纺丝,而且直接采用熔融纺丝技术也面临诸多困难。目前的主要解决方法是通过将聚芳醚酮与无机润滑剂、聚酯等共混降低熔体粘度以提高加工性能,但纤维的机械性能也因混纺而降低。另一种方法是针对难溶的特点,通过磺化、氯甲基化、开环聚合、多元共聚等手段,提高其溶解能力,采用溶液法进行纺丝。但是对聚合物进行的化学改性破坏了其原有的结构,导致聚合物的耐热性能、机械性能或者耐化学腐蚀性能显著下降。因此长期以来,聚芳醚酮纤维的制备方法依然以熔融挤出及其衍生工艺(如熔融静电纺丝)为主(文献1:M.H.G.Deeg.Process of making an aromaticpolyetherketone fiber product.US patent 1985,US4747988;文献2:王贵宾,张海博,任殿福,张云鹤,关绍巍,姜振华,张淑玲,吴忠文.纺丝级聚醚醚酮树脂专用料及其制备方法。中国发明专利ZL200810050213.X;文献3:王贵宾,叶光斗,张淑玲,姜振华,陈逊,关绍巍,张云鹤,张海博,杨延华,吴忠文.聚醚醚酮纤维的熔融纺丝热拉伸定型制备方法.中国发明专利ZL200810050363.0;文献4:R.I.Shekar,T.M.Kotresh,P.M.D.Rao,K.Kumar.Propertiesof high modulus PEEK yarns for aerospace applications.J.Appl.Polym.Sci.2009,112(4),2497;文献5:V.M.Skrifvars,S./>P./>The effect of meltspinning process parameters on the spinnability of polyetheretherketone.J.Appl.Polym.Sci.2012,126(5),1564;文献6:邓德鹏,李云龙,贾远超,王荣海,张清新,刘勇.静电纺丝制备聚醚酮酮超细纤维.工程塑料应用2016,44(4),44;文献7:栾加双,许治平,王贵宾,张梅,张淑玲,李永刚,盖须召,杨砚超,马亚莉.一种聚醚醚酮短纤纱及其制备方法.中国发明专利ZL201710052321.X)。From the perspective of polymer spinnability, because polyaryletherketone polymers generally have problems such as strong solvent resistance, high melting temperature, and poor melt fluidity, it is not only difficult to realize wet spinning, but also directly adopts melt spinning Technology also faces many difficulties. The current main solution is to reduce the melt viscosity by blending polyaryletherketone with inorganic lubricants, polyesters, etc. to improve processing performance, but the mechanical properties of the fibers are also reduced due to blending. Another method is to improve its dissolving ability by means of sulfonation, chloromethylation, ring-opening polymerization, multi-component copolymerization, etc., and use a solution method for spinning. However, the chemical modification of the polymer destroys its original structure, resulting in a significant decrease in the heat resistance, mechanical properties or chemical corrosion resistance of the polymer. Therefore, for a long time, the preparation method of polyaryletherketone fiber is still based on melt extrusion and its derivative process (such as melt electrospinning) (document 1: MHGDeeg.Process of making an aromaticpolyetherketone fiber product.US patent 1985, US4747988; Document 2: Wang Guibin, Zhang Haibo, Ren Dianfu, Zhang Yunhe, Guan Shaowei, Jiang Zhenhua, Zhang Shuling, Wu Zhongwen. Spinning grade polyether ether ketone resin special material and its preparation method. Chinese invention patent ZL200810050213.X; Document 3: Wang Guibin, Ye Guangdou, Zhang Shuling, Jiang Zhenhua, Chen Xun, Guan Shaowei, Zhang Yunhe, Zhang Haibo, Yang Yanhua, Wu Zhongwen. Preparation method of polyetheretherketone fiber by melt spinning and thermal stretching. Chinese invention patent ZL200810050363.0; Document 4: RIShekar, TMKotresh, PMDRao, K.Kumar.Properties of high modulus PEEK yarns for aerospace applications.J.Appl.Polym.Sci.2009,112(4),2497; Literature 5:V. M. Skrifvars, S./> P./> The effect of meltspinning process parameters on the spinnability of polyetheretherketone. J.Appl.Polym.Sci.2012, 126(5), 1564; Literature 6: Deng Depeng, Li Yunlong, Jia Yuanchao, Wang Ronghai, Zhang Qingxin, Liu Yong. Electrospinning preparation Polyether ketone ketone superfine fiber. Engineering Plastics Application 2016, 44(4), 44; Literature 7: Luan Jiashuang, Xu Zhiping, Wang Guibin, Zhang Mei, Zhang Shuling, Li Yonggang, Gai Xuzhao, Yang Yanchao, Ma Yali. A Polyether ether ketone spun yarn and its preparation method. Chinese invention patent ZL201710052321.X).
此外,针对聚醚酮酮纤维及聚醚酮酮复合纤维,迄今仅有阿克马法国公司、阿科玛股份有限公司(美国)以及帝人芳纶有限公司(荷兰)在中国申请了相关发明专利,其中:专利CN102333910A公开了一种利用熔体纺丝制备聚醚酮酮复合纤维的方法,将含有碳、氮、硼、磷、硅、钨等元素的多壁纳米管分散到聚醚酮酮基体中,使用熔体纺丝制备聚醚酮酮复合纤维;授权专利201080007055.5提供了一种包含聚醚酮酮和矿物纳米管的复合纤维制备方法,通过熔体配混的方式将各种矿物纳米管与聚醚酮酮基体进行混合,再通过熔体纺丝制备复合纤维;专利CN110249083A是目前唯一采用湿法纺丝制备聚醚酮酮纤维的中国发明专利,为PCT国际专利WO 2018/087121在中国的申请,采用浓硫酸溶解聚醚酮酮得到纺丝原液,并使纺丝原液通过喷丝头进入凝固浴制备聚醚酮酮纤维。然而该方法仍然存在一系列技术问题限制了其发展及应用:1)聚醚酮酮在浓硫酸中的溶解实际是聚合物的磺化过程(文献1:R.Y.M.Huang,P.Shao,C.M.Burns,X.Feng.Sulfonation of poly(ether etherketone)(PEEK):Kinetic study and characterization.J.Appl.Polym.Sci.2001,82(11),2651;文献2:B.Li,T.Liu,Z.C.W.Tang,J.Jia,W.-H.Zhong.Novel hydrationinduced flexible sulfonated poly(etherketoneketone)foam with super dielectriccharacteristics.J.Mater.Chem.2011,21(35),13546),在溶解过程中聚醚酮酮已经发生了磺化反应,对纺丝得到的纤维性能有极大的影响;2)聚醚酮酮在浓硫酸中的溶解过程需要辅以额外的机械混合过程,比如该专利即推荐使用捏合机或挤出机来促进混合过程,这意味着实现均匀的混合或溶解依然存在困难;3)纺丝原液优选在50至90℃的温度下进行,一方面该温度区域会进一步促进聚醚酮酮的磺化,另一方面需要额外的控温装备,为湿法纺丝的稳定性带来了困难;4)湿法纺丝得到的聚醚酮酮纤维中存在残余酸,需要通过提高凝固浴的pH值来促进中和;5)得到的纤维结构均匀性差,力学强度低于80MPa,难以得到广泛应用。基于以上问题,亟需发展高效、稳定的湿法纺丝,以制备高性能聚醚酮酮纤维。In addition, for polyetherketoneketone fiber and polyetherketoneketone composite fiber, so far only Arkema France, Arkema Co., Ltd. (USA) and Teijin Aramid Co., Ltd. (Netherlands) have applied for related invention patents in China , wherein: Patent CN102333910A discloses a method for preparing polyether ketone ketone composite fibers by melt spinning, dispersing multi-walled nanotubes containing carbon, nitrogen, boron, phosphorus, silicon, tungsten and other elements into polyether ketone ketone In the matrix, polyether ketone ketone composite fibers are prepared by melt spinning; authorized patent 201080007055.5 provides a method for preparing composite fibers containing polyether ketone ketone and mineral nanotubes, and various mineral nanotubes are mixed by melt blending. The tube is mixed with the polyether ketone ketone matrix, and then the composite fiber is prepared by melt spinning; the patent CN110249083A is currently the only Chinese invention patent that uses wet spinning to prepare the polyether ketone ketone fiber, and it is PCT international patent WO 2018/087121 in China's application uses concentrated sulfuric acid to dissolve polyether ketone ketone to obtain a spinning stock solution, and makes the spinning stock solution pass through a spinneret into a coagulation bath to prepare polyether ketone ketone fibers. However, there are still a series of technical problems in this method that limit its development and application: 1) The dissolution of polyether ketone ketone in concentrated sulfuric acid is actually the sulfonation process of polymers (document 1: R.Y.M.Huang, P.Shao, C.M.Burns, X.Feng.Sulfonation of poly(ether etherketone)(PEEK):Kinetic study and characterization.J.Appl.Polym.Sci.2001,82(11),2651; Document 2: B.Li,T.Liu,Z.C.W.Tang , J.Jia, W.-H.Zhong.Novel hydration induced flexible sulfonated poly(etherketoneketone)foam with super dielectriccharacteristics.J.Mater.Chem.2011,21(35),13546), polyetherketoneketone has been A sulfonation reaction has occurred, which has a great impact on the properties of the fiber obtained by spinning; 2) The dissolution process of polyether ketone ketone in concentrated sulfuric acid needs to be supplemented by an additional mechanical mixing process. For example, the patent recommends the use of a kneader or Extruder is used to promote the mixing process, which means that it is still difficult to achieve uniform mixing or dissolution; 3) The spinning dope is preferably carried out at a temperature of 50 to 90 ° C. On the one hand, this temperature range will further promote the polyether ketone ketone Sulfonation, on the other hand, requires additional temperature control equipment, which brings difficulties to the stability of wet spinning; 4) there is residual acid in the polyether ketone ketone fiber obtained by wet spinning, which needs to be improved by increasing the temperature of the coagulation bath. 5) The uniformity of the obtained fiber structure is poor, and the mechanical strength is lower than 80MPa, which is difficult to be widely used. Based on the above problems, it is urgent to develop efficient and stable wet spinning to prepare high-performance PEEK fibers.
发明内容Contents of the invention
本发明解决的技术问题是:目前仅有通过熔融纺丝制备聚醚酮酮(复合)纤维的相关技术,而使用浓硫酸所实现湿法纺丝是基于聚醚酮酮聚合物的磺化手段,所溶解为磺化聚醚酮酮,因此尚没有通过无损溶解聚醚酮酮进行湿法纺丝的相关技术。此外,以上纺丝方法或在高温下进行,或需要引入机械混合过程,不仅步骤繁琐、成本高,所得到的纤维力学也存在结构均匀性差、强度低、性能不佳等问题。The technical problem solved by the present invention is: currently there is only related technology for preparing polyether ketone ketone (composite) fibers by melt spinning, and the wet spinning realized by using concentrated sulfuric acid is a sulfonation method based on polyether ketone ketone polymers. , the dissolved polyether ketone ketone is sulfonated polyether ketone ketone, so there is no related technology for wet spinning by non-destructive dissolution of polyether ketone ketone. In addition, the above spinning methods are carried out at high temperatures or require the introduction of a mechanical mixing process. Not only are the steps cumbersome and costly, but the resulting fibers also have problems such as poor structural uniformity, low strength, and poor performance.
为了解决上述技术问题,本发明提供了一种基于无损溶解制备聚醚酮酮纤维的方法,包括以下步骤:In order to solve the above technical problems, the present invention provides a method for preparing polyether ketone ketone fibers based on non-destructive dissolution, comprising the following steps:
步骤1:采用氟基或氯基极性溶剂无损溶解聚醚酮酮,得到纺丝原液;Step 1: Use fluorine-based or chlorine-based polar solvents to dissolve polyether ketone ketone without damage to obtain spinning dope;
步骤2:将步骤1得到的纺丝原液进行湿法纺丝,将其注射至凝固浴中凝固成型,再经预牵伸、干燥、卷绕得到初纺聚醚酮酮纤维;Step 2: Wet spinning the spinning stock solution obtained in Step 1, injecting it into a coagulation bath for coagulation and molding, and then pre-drawing, drying, and winding to obtain as-spun polyether ketone ketone fibers;
步骤3:将步骤2得到的初纺聚醚酮酮纤维经过多级热牵伸后卷绕收集,再经过热处理定型,获得聚醚酮酮纤维。Step 3: The as-spun polyether ketone ketone fiber obtained in step 2 is wound and collected after multi-stage thermal drawing, and then heat-treated and shaped to obtain a polyether ketone ketone fiber.
优选地,所述步骤1中的聚醚酮酮中,对苯位结构与邻苯位结构的摩尔比(简称对位与邻位结构比,或T/I比)为50:50、60:40、70:30、80:20或者100:0,所述聚醚酮酮选用粒径≤300μm的粉料。Preferably, in the polyether ketone ketone in the step 1, the molar ratio of the p-phenyl position structure to the ortho-phenyl position structure (referred to as the p-position and ortho-position structure ratio, or T/I ratio) is 50:50, 60: 40, 70:30, 80:20 or 100:0, the polyether ketone ketone is a powder with a particle size ≤ 300 μm.
优选地,所述步骤1中的氟基极性溶剂为三氟乙酸和/或3,3,3-三氟-2,2-二甲基丙酸;所述氯基极性溶剂为对氯苯酚、二氯乙酸和二氯丙酸中的至少一种。Preferably, the fluorine-based polar solvent in step 1 is trifluoroacetic acid and/or 3,3,3-trifluoro-2,2-dimethylpropionic acid; the chlorine-based polar solvent is p-chloro At least one of phenol, dichloroacetic acid and dichloropropionic acid.
更优选地,所述氟基极性溶剂为三氟乙酸,所述氯基极性溶剂为对氯苯酚。More preferably, the fluorine-based polar solvent is trifluoroacetic acid, and the chlorine-based polar solvent is p-chlorophenol.
优选地,所述步骤1中溶解的工艺参数为:搅拌速度1200~1800rpm,搅拌时间6~12h,搅拌温度25~50℃;所述纺丝原液中聚醚酮酮的浓度为5~22wt%。Preferably, the process parameters for dissolving in step 1 are: stirring speed 1200-1800rpm, stirring time 6-12h, stirring temperature 25-50°C; the concentration of polyether ketone ketone in the spinning stock solution is 5-22wt% .
优选地,所述步骤2中的湿法纺丝采用窄直径、大长径比的针头,其内径为0.1~0.5mm、长度为50~100mm;所述注射的工艺参数为:挤出速率0.05~2mL/min,挤出温度为25~30℃。Preferably, the wet spinning in step 2 adopts a needle with a narrow diameter and a large aspect ratio, the inner diameter of which is 0.1-0.5mm, and the length is 50-100mm; the process parameters of the injection are: extrusion rate 0.05 ~2mL/min, extrusion temperature is 25~30℃.
优选地,所述步骤2中的凝固浴为水或乙醇,其中,当选用三氟乙酸、3,3,3-三氟-2,2-二甲基丙酸、二氯乙酸、二氯丙酸作为溶剂时,优选水,当选用对氯苯酚为溶剂时,优选乙醇。Preferably, the coagulation bath in step 2 is water or ethanol, wherein, when trifluoroacetic acid, 3,3,3-trifluoro-2,2-dimethylpropionic acid, dichloroacetic acid, dichloropropane When acid is used as solvent, water is preferred, and when p-chlorophenol is selected as solvent, ethanol is preferred.
优选地,所述步骤2中的凝固浴的温度为5~40℃,所述成型所需的时间为0.5~2min。Preferably, the temperature of the coagulation bath in the step 2 is 5-40° C., and the time required for the molding is 0.5-2 minutes.
更优选地,所述凝固浴的温度为25~30℃。More preferably, the temperature of the coagulation bath is 25-30°C.
优选地,所述步骤2中的预牵伸具体为:将凝固成型所得的聚醚酮酮纤维导出凝固浴后经过3~5根导轨进行牵伸,牵伸倍数为1~2倍,牵伸时间为1~5min,以使纤维自然干燥,预牵伸后卷绕收集。Preferably, the pre-drawing in the step 2 is specifically: taking the polyether ketone ketone fiber obtained by coagulation molding out of the coagulation bath and then passing through 3 to 5 guide rails for drafting, the drafting ratio is 1 to 2 times, and the drafting The time is 1 to 5 minutes, so that the fibers are naturally dried, pre-drawn and collected by winding.
优选地,所述步骤3中的热牵伸是将步骤2所得到的初纺聚醚酮酮纤维采用水平管式炉进行热牵伸,所述水平管式炉的炉体长度为50~90cm,所述热牵伸采用三级热牵伸,具体工艺参数为:第一级牵伸温度200~220℃,牵伸倍数2~3.5倍,第二级牵伸温度230~250℃,牵伸倍数1.5~2倍,第三级牵伸温度240~260℃,牵伸倍数1.5~2倍。Preferably, the thermal drawing in step 3 is to thermally draw the as-spun polyether ketone ketone fiber obtained in step 2 using a horizontal tube furnace, and the length of the furnace body of the horizontal tube furnace is 50-90 cm , the hot drawing adopts three-stage hot drawing, and the specific process parameters are: the first-stage drawing temperature is 200-220°C, the drawing ratio is 2-3.5 times, the second-stage drawing temperature is 230-250°C, the drawing The multiple is 1.5-2 times, the third-stage drawing temperature is 240-260°C, and the drafting multiple is 1.5-2 times.
优选地,所述步骤3中的热处理定型的温度为240~300℃,时间为1~5h。Preferably, the temperature of the heat treatment in step 3 is 240-300° C., and the time is 1-5 hours.
更优选地,所述热处理定型的温度为250~280℃,时间为1.5~2h。More preferably, the temperature of the heat treatment is 250-280° C., and the time is 1.5-2 hours.
本发明还提供了上述的基于无损溶解制备聚醚酮酮纤维的方法制备所得的聚醚酮酮纤维,所述聚醚酮酮纤维的质量密度低于0.9g/cm3,孔隙率高于30%,拉伸断裂强度高于600MPa,热失重温度高于450℃,阻燃等级V-0级。The present invention also provides the polyether ketone ketone fiber prepared by the above method for preparing polyether ketone ketone fiber based on non-destructive dissolution, the mass density of the polyether ketone ketone fiber is lower than 0.9 g/cm 3 , and the porosity is higher than 30 %, the tensile breaking strength is higher than 600MPa, the thermal weight loss temperature is higher than 450°C, and the flame retardant grade is V-0.
本发明的设计思想是:Design idea of the present invention is:
(1)本发明使用氟基或氯基极性溶剂无损溶解聚醚酮酮,实现了聚醚酮酮真正意义上的溶解,避免了采用浓硫酸溶解聚醚酮酮带来的磺化反应,使得聚醚酮酮的优异物性在纤维中得以充分保持;(1) The present invention uses fluorine-based or chlorine-based polar solvents to dissolve polyether ketone ketone without damage, realizing the true dissolution of polyether ketone ketone, avoiding the sulfonation reaction caused by dissolving polyether ketone ketone with concentrated sulfuric acid, The excellent physical properties of polyether ketone ketone can be fully maintained in the fiber;
(2)聚醚酮酮溶液在湿法纺丝过程的剪切作用下形成牢固的网络结构,结合其分子自身的刚性,使得聚醚酮酮纤维成型过程(成型中发生溶剂与聚醚酮酮的相分离)能够保持纤维形状和体积不变,更有利于相分离诱导微孔结构的生成;(2) The polyether ketone ketone solution forms a firm network structure under the shearing action of the wet spinning process, combined with the rigidity of its molecule itself, making the polyether ketone ketone fiber forming process (solvent and polyether ketone ketone occur during the forming process) phase separation) can keep the fiber shape and volume unchanged, which is more conducive to the generation of phase separation-induced microporous structure;
(3)聚醚酮酮纤维中聚合物分子不仅构筑了致密的网络结构,也形成了丰富的微孔结构,从而实现了诸多性能的有机集成,如轻质、高强度、耐高温、阻燃等。(3) Polymer molecules in polyether ketone ketone fibers not only build a dense network structure, but also form a rich microporous structure, thus realizing the organic integration of many properties, such as light weight, high strength, high temperature resistance, flame retardant wait.
本发明与现有技术相比,具有如下有益效果:Compared with the prior art, the present invention has the following beneficial effects:
1.本发明以氟基或氯基极性溶剂无损溶解聚醚酮酮,通过调控湿法纺丝过程中纺丝原液浓度、针头规格、挤出速率、凝固浴种类、预牵伸速率制备得到初纺聚醚酮酮纤维,再经过热牵伸及高温热定型处理得到高性能聚醚酮酮纤维,与其它聚合物湿法纺丝过程中纤维体积会显著收缩所不同的是,聚醚酮酮特有的分子刚性和缠结特性使得纤维体积在纤维成型的相分离过程中保持不变,从而在纤维中构筑丰富的微孔结构,并在热牵伸过程中得到进一步优化调控;本发明制备所得到的聚醚酮酮纤维能够同时具有轻质、高强度、耐高温、阻燃等优异特性。1. The present invention dissolves polyether ketone ketone non-destructively with fluorine-based or chlorine-based polar solvents, and prepares it by adjusting the concentration of spinning stock solution, needle specification, extrusion rate, coagulation bath type, and pre-drawing rate in the wet spinning process. As-spun polyether ketone ketone fiber, and then heat-drawn and high-temperature heat-setting treatment to obtain high-performance polyether ketone ketone fiber, different from other polymers that shrink significantly in fiber volume during wet spinning, polyether ketone The unique molecular rigidity and entanglement characteristics of ketones keep the fiber volume unchanged during the phase separation process of fiber forming, thereby constructing a rich microporous structure in the fiber and further optimizing and regulating it during the thermal drawing process; the preparation of the present invention The obtained polyether ketone ketone fiber can simultaneously have excellent properties such as light weight, high strength, high temperature resistance, and flame retardancy.
2.由于聚芳醚酮类聚合物普遍难以溶解,导致相关湿法纺丝工艺十分匮乏,而其较高的熔融温度也给熔体纺丝带来了诸多困难,本发明实现了聚醚酮酮湿法纺丝新的突破,实现了高效、稳定的制备工艺,同时纤维微观结构具有充分的调控空间,为开发多种型号的纤维产品提供了可能,应用前景广阔。2. Since polyarylether ketone polymers are generally difficult to dissolve, the related wet spinning process is very scarce, and its higher melting temperature also brings many difficulties to melt spinning. The present invention realizes polyether ketone The new breakthrough of ketone wet spinning has realized an efficient and stable preparation process. At the same time, the fiber microstructure has sufficient control space, which provides the possibility to develop various types of fiber products and has broad application prospects.
附图说明Description of drawings
图1为实施例1中步骤1所得的纺丝原液;Fig. 1 is the spinning stock solution of step 1 gained in the embodiment 1;
图2为实施例1中步骤3所得的初纺聚醚酮酮纤维;Fig. 2 is the as-spun polyether ketone ketone fiber that step 3 gains among the embodiment 1;
图3为实施例1中步骤5所得的热定型的聚醚酮酮纤维;Fig. 3 is the heat-set polyether ketone ketone fiber of
图4为实施例1制备所得的聚醚酮酮纤维的横截面电镜扫描图片;Fig. 4 is the scanning electron microscope picture of the cross section of the polyether ketone ketone fiber prepared in embodiment 1;
图5为实施例1制备所得的聚醚酮酮纤维的力学测试结果;Fig. 5 is the mechanical test result of the polyether ketone ketone fiber prepared in embodiment 1;
图6为实施例1制备所得的聚醚酮酮纤维在空气环境下的热失重测试结果;Fig. 6 is the thermal weight loss test result of the polyether ketone ketone fiber prepared in embodiment 1 under air environment;
图7为实施例1制备所得的聚醚酮酮纤维阻燃测试结果。Fig. 7 is the flame retardant test result of the polyether ketone ketone fiber prepared in Example 1.
具体实施方式Detailed ways
为使本发明更明显易懂,兹以优选实施例,作详细说明如下。In order to make the present invention more comprehensible, preferred embodiments are described in detail as follows.
实施例1Example 1
本实施例提供了一种基于无损溶解湿法制备聚醚酮酮纤维的方法,具体包括:This embodiment provides a method for preparing polyether ketone ketone fibers based on a non-destructive dissolution wet method, which specifically includes:
1)首先制备聚醚酮酮溶液,将聚醚酮酮(T/I比为60:40)在室温下(25℃)溶解在三氟乙酸中,浓度为12.5wt%,搅拌速度1500rpm,搅拌时间6h,得到均匀、稳定的纺丝原液,如图1所示。1) First prepare a polyether ketone ketone solution, dissolve polyether ketone ketone (T/I ratio 60:40) in trifluoroacetic acid at room temperature (25°C), the concentration is 12.5wt%, stirring speed 1500rpm, stirring After 6 hours, a uniform and stable spinning solution was obtained, as shown in Figure 1.
2)采用内径为0.15mm、长度为60cm的注射针头,在室温下将聚醚酮酮溶液注入到温度同为室温的纯水凝固浴中,挤出速率为0.2mL/min。纤维在凝固浴中经过的时间为50s。2) Using an injection needle with an inner diameter of 0.15 mm and a length of 60 cm, inject the polyether ketone ketone solution into a pure water coagulation bath at the same room temperature at room temperature, and the extrusion rate is 0.2 mL/min. The time that the fiber passes in the coagulation bath is 50s.
3)将凝固成型的纤维导出凝固浴,经过5根导轨,在牵引作用下进行预牵伸,牵伸倍数为1.2倍,牵伸时间为2min,牵伸后直接收集在卷筒上,得到自然干燥的初纺聚醚酮酮纤维,如图2所示。3) Lead the solidified fiber out of the coagulation bath, pass through 5 guide rails, and carry out pre-drawing under the action of traction. The drafting ratio is 1.2 times, and the drafting time is 2 minutes. After drafting, it is directly collected on the reel to obtain natural fiber. Dry as-spun polyetherketoneketone fiber, as shown in Figure 2.
4)将初纺聚醚酮酮纤维从卷筒上导出,经过水平式管式炉进行热牵伸处理,再收集到另一卷筒上。采用80cm长的管式炉,采用三级(次)热牵伸,其中第一级牵伸温度210℃,牵伸倍数为2倍,第二级牵伸温度240℃,牵伸倍数为2倍,第三级牵伸温度260℃,牵伸倍数为1.5倍。4) The as-spun polyether ketone ketone fiber is exported from the reel, subjected to thermal drawing treatment through a horizontal tube furnace, and then collected on another reel. A tube furnace with a length of 80cm is adopted, and three-stage (secondary) hot drawing is adopted, wherein the first-stage drawing temperature is 210°C, and the drafting ratio is 2 times, and the second-stage drafting temperature is 240°C, and the drafting ratio is 2 times , The third stage drawing temperature is 260°C, and the drawing ratio is 1.5 times.
5)将热牵伸后的聚醚酮酮纤维连同卷筒一并放入热烘箱中进行高温热定型处理,热定型温度为280℃,热定型时间为1.5h,得到热定型的聚醚酮酮纤维,如图3所示。5) Put the hot-drawn polyether ketone ketone fibers together with the reel into a hot oven for high-temperature heat-setting treatment. The heat-setting temperature is 280 ° C, and the heat-setting time is 1.5 hours to obtain heat-set polyether ketone Ketone fibers, as shown in Figure 3.
经过以上步骤得到的聚醚酮酮纤维,直径均匀,为52μm,质量密度为0.85g/cm3(对应孔隙率为34.6%),拉伸断裂强度650MPa,热失重温度高于455℃,阻燃等级V-0级。图4~7所示为该纤维的横截面电镜扫描照片、力学测试曲线、失重测试曲线以及阻燃测试结果。The polyether ketone ketone fiber obtained through the above steps has a uniform diameter of 52 μm, a mass density of 0.85 g/cm 3 (corresponding to a porosity of 34.6%), a tensile breaking strength of 650 MPa, and a thermal weight loss temperature higher than 455 ° C. It is flame retardant Grade V-0 grade. Figures 4 to 7 show the cross-sectional scanning electron microscope photos, mechanical test curves, weight loss test curves and flame retardant test results of the fibers.
实施例2Example 2
本实施例提供了一种基于无损溶解湿法制备聚醚酮酮纤维的方法,具体包括:This embodiment provides a method for preparing polyether ketone ketone fibers based on a non-destructive dissolution wet method, which specifically includes:
1)首先制备聚醚酮酮溶液,将聚醚酮酮(T/I比为60:40)在40℃温度下溶解在三氟乙酸中,浓度为22wt%,搅拌速度1800rpm,搅拌时间6h,得到均匀、稳定的纺丝原液。1) First prepare a polyether ketone ketone solution, dissolve polyether ketone ketone (T/I ratio 60:40) in trifluoroacetic acid at a temperature of 40°C, the concentration is 22wt%, the stirring speed is 1800rpm, and the stirring time is 6h. A uniform and stable spinning dope is obtained.
2)采用内径为0.5mm、长度为50cm的注射针头,在室温下将聚醚酮酮溶液注入到温度为40℃的纯水凝固浴中,挤出速率为2mL/min。纤维在凝固浴中经过的时间为2min。2) Using an injection needle with an inner diameter of 0.5 mm and a length of 50 cm, inject the polyether ketone ketone solution into a pure water coagulation bath at a temperature of 40° C. at room temperature, and the extrusion rate is 2 mL/min. The elapsed time of the fiber in the coagulation bath was 2 min.
3)将凝固成型的纤维导出凝固浴,经过5根导轨,在牵引作用下进行预牵伸,牵伸倍数为1.1倍,牵伸时间为2min,牵伸后直接收集在卷筒上,得到自然干燥的初纺聚醚酮酮纤维。3) Lead the solidified fiber out of the coagulation bath, pass through 5 guide rails, and carry out pre-drawing under the action of traction. The drafting ratio is 1.1 times, and the drafting time is 2 minutes. After drafting, it is directly collected on the reel to obtain natural fiber. Dry as-spun polyetherketoneketone fibers.
4)将初纺聚醚酮酮纤维从卷筒上导出,经过水平式管式炉进行热牵伸处理,再收集到另一卷筒上。采用80cm长的管式炉,采用三级(次)热牵伸,其中第一级牵伸温度210℃,牵伸倍数为3倍,第二级牵伸温度240℃,牵伸倍数为2倍,第三级牵伸温度260℃,牵伸倍数为1.5倍。4) The as-spun polyether ketone ketone fiber is exported from the reel, subjected to thermal drawing treatment through a horizontal tube furnace, and then collected on another reel. A tube furnace with a length of 80cm is adopted, and three (secondary) hot drawing is adopted, wherein the first-stage drawing temperature is 210°C, and the drafting ratio is 3 times, and the second-stage drafting temperature is 240°C, and the drafting ratio is 2 times , The third stage drawing temperature is 260°C, and the drawing ratio is 1.5 times.
5)将热牵伸后的聚醚酮酮纤维连同卷筒一并放入热烘箱中进行高温热定型处理,热定型温度为280℃,热定型时间为2h,得到热定型的聚醚酮酮纤维。5) Put the hot-drawn polyether ketone ketone fiber together with the reel into a hot oven for high-temperature heat setting treatment. The heat setting temperature is 280 ° C, and the heat setting time is 2 hours to obtain heat-set polyether ketone ketone fiber.
经过以上步骤得到的聚醚酮酮纤维,直径为160μm,质量密度为0.87g/cm3(对应孔隙率为33.1%),拉伸断裂强度605MPa,热失重温度高于455℃,阻燃等级V-0级。The polyether ketone ketone fiber obtained through the above steps has a diameter of 160 μm, a mass density of 0.87 g/cm 3 (corresponding to a porosity of 33.1%), a tensile breaking strength of 605 MPa, a thermal weight loss temperature higher than 455 ° C, and a flame-retardant grade of V -
实施例3Example 3
本实施例提供了一种基于无损溶解湿法制备聚醚酮酮纤维的方法,具体包括:This embodiment provides a method for preparing polyether ketone ketone fibers based on a non-destructive dissolution wet method, which specifically includes:
1)制备聚醚酮酮溶液,将聚醚酮酮(T/I为50:50)在50℃温度下溶解在对氯苯酚中,浓度为8.5wt%,搅拌速度1200rpm,搅拌时间12h,得到均匀、稳定的湿法纺丝原液。1) Prepare a polyether ketone ketone solution, dissolve polyether ketone ketone (T/I is 50:50) in p-chlorophenol at a temperature of 50°C, the concentration is 8.5wt%, the stirring speed is 1200rpm, and the stirring time is 12h, to obtain Uniform and stable wet spinning dope.
2)与实施例1中的步骤2)操作相同,不同的是凝固浴为乙醇。2) Same operation as step 2) in Example 1, except that the coagulation bath is ethanol.
3)-5):同实施例1中的步骤3)-5)。3)-5): Same as steps 3)-5) in Example 1.
经过以上步骤得到的聚醚酮酮纤维,直径为38μm,质量密度为0.84g/cm3(对应孔隙率为35.4%),拉伸断裂强度675MPa,热失重温度高于455℃,阻燃等级V-0级。The polyether ketone ketone fiber obtained through the above steps has a diameter of 38 μm, a mass density of 0.84 g/cm 3 (corresponding to a porosity of 35.4%), a tensile breaking strength of 675 MPa, a thermal weight loss temperature higher than 455 ° C, and a flame-retardant grade of V -
实施例4Example 4
本实施例提供了一种基于无损溶解湿法制备聚醚酮酮纤维的方法,具体包括:This embodiment provides a method for preparing polyether ketone ketone fibers based on a non-destructive dissolution wet method, which specifically includes:
1)制备聚醚酮酮溶液,将聚醚酮酮(T/I比为70:30)在50℃溶解在对氯苯酚中,浓度为12wt%,搅拌速度1800rpm,搅拌时间9h,得到均匀、稳定的湿法纺丝原液。1) Prepare a polyether ketone ketone solution, dissolve polyether ketone ketone (T/I ratio 70:30) in p-chlorophenol at 50°C, the concentration is 12wt%, the stirring speed is 1800rpm, and the stirring time is 9h to obtain a uniform, Stable wet spinning dope.
2)与实施例1中的步骤2)操作相同,不同的是凝固浴为乙醇。2) Same operation as step 2) in Example 1, except that the coagulation bath is ethanol.
3)-5):同实施例1中的步骤3)-5)。3)-5): Same as steps 3)-5) in Example 1.
经过以上步骤得到的聚醚酮酮纤维,直径为59μm,质量密度为0.86g/cm3(对应孔隙率为33.8%),拉伸断裂强度685MPa,热失重温度高于455℃,阻燃等级V-0级。The polyether ketone ketone fiber obtained through the above steps has a diameter of 59 μm, a mass density of 0.86 g/cm 3 (corresponding to a porosity of 33.8%), a tensile breaking strength of 685 MPa, a thermal weight loss temperature higher than 455 ° C, and a flame-retardant grade of V -
对比例1Comparative example 1
1)制备聚醚酮酮溶液,将聚醚酮酮(T/I比为60:40)在室温下溶解在三氟乙酸中,浓度为4.5wt%,搅拌速度1200rpm,搅拌时间6h,得到均匀、稳定的纺丝原液。1) Prepare a polyether ketone ketone solution, dissolve polyether ketone ketone (T/I ratio 60:40) in trifluoroacetic acid at room temperature, the concentration is 4.5wt%, the stirring speed is 1200rpm, and the stirring time is 6h to obtain a uniform , Stable spinning dope.
2)与实施例1中的步骤2)操作相同时,不能形成连续纺丝,得到的是分段的聚醚酮酮短纤。2) When the operation is the same as step 2) in Example 1, continuous spinning cannot be formed, and segmented polyetherketoneketone short fibers are obtained.
对比例2Comparative example 2
1)与实施例1中的步骤1)操作相同。1) Same operation as step 1) in Example 1.
2)与实施例1中的步骤2)操作相同,不同的是挤出速率为3mL/min,在高速注入下,聚醚酮酮纤维发生卷曲,难以稳定牵引,不能形成连续纺丝。2) The operation is the same as that of step 2) in Example 1, except that the extrusion rate is 3mL/min. Under high-speed injection, the polyether ketone ketone fibers curl up, making it difficult to draw stably, and continuous spinning cannot be formed.
以上所述,仅为本发明的较佳实施例,并非对本发明任何形式上和实质上的限制,应当指出,对于本技术领域的普通技术人员,在不脱离本发明的前提下,还将可以做出若干改进和补充,这些改进和补充也应视为本发明的保护范围。The foregoing is only a preferred embodiment of the present invention, and is not intended to limit the present invention in any form and in essence. Several improvements and supplements are made, and these improvements and supplements should also be regarded as the protection scope of the present invention.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111401064.9A CN114232109B (en) | 2021-11-24 | 2021-11-24 | Method for preparing polyether ketone fiber based on nondestructive dissolution wet method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111401064.9A CN114232109B (en) | 2021-11-24 | 2021-11-24 | Method for preparing polyether ketone fiber based on nondestructive dissolution wet method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114232109A CN114232109A (en) | 2022-03-25 |
CN114232109B true CN114232109B (en) | 2023-06-02 |
Family
ID=80750758
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111401064.9A Active CN114232109B (en) | 2021-11-24 | 2021-11-24 | Method for preparing polyether ketone fiber based on nondestructive dissolution wet method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114232109B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114685971B (en) * | 2022-04-18 | 2023-08-29 | 东华大学 | Chopped carbon fiber/polyether ketone composite powder material and preparation method thereof |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104153027A (en) * | 2013-05-13 | 2014-11-19 | 北京化工大学 | Method for preparation of high performance carbon fiber protofilament by blending method |
CN110055601A (en) * | 2019-05-15 | 2019-07-26 | 中国科学院山西煤炭化学研究所 | A kind of wet spinning process and polyacrylonitrile fibre of polyacrylonitrile fibre |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012166340A1 (en) * | 2011-05-27 | 2012-12-06 | Arkema Inc. | Films and membranes of poly(aryl ketones) and methods of casting the same from solution |
EP3538694A1 (en) * | 2016-11-08 | 2019-09-18 | Teijin Aramid B.V. | Process for the manufacture of polyetherketoneketone fiber |
CN112251825B (en) * | 2020-10-12 | 2022-06-03 | 株洲时代新材料科技股份有限公司 | Preparation method of polyamide-imide copolymer fiber |
CN112810262B (en) * | 2021-01-15 | 2022-01-04 | 大连理工大学 | A kind of preparation method of thermoplastic composite material resistance welding element |
-
2021
- 2021-11-24 CN CN202111401064.9A patent/CN114232109B/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104153027A (en) * | 2013-05-13 | 2014-11-19 | 北京化工大学 | Method for preparation of high performance carbon fiber protofilament by blending method |
CN110055601A (en) * | 2019-05-15 | 2019-07-26 | 中国科学院山西煤炭化学研究所 | A kind of wet spinning process and polyacrylonitrile fibre of polyacrylonitrile fibre |
Also Published As
Publication number | Publication date |
---|---|
CN114232109A (en) | 2022-03-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Kaur et al. | Producing high‐quality precursor polymer and fibers to achieve theoretical strength in carbon fibers: A review | |
CN101768791B (en) | Polyacrylonitrile-based hollow carbon fiber precursor preparation method | |
CN101387017B (en) | Method for preparing modified polyetheretherketone fiber | |
CN104419996A (en) | Production method of ultrahigh molecular weight polyethylene fiber | |
CN114534513B (en) | Polyether-ether-ketone hollow fiber porous membrane and preparation method thereof | |
WO2007018136A1 (en) | Flame-resistant fiber, carbon fiber, and processes for the production of both | |
CN105543995B (en) | A kind of polyacrylonitrile organic aerogel fibrous material and its preparation method and application | |
CN102277645A (en) | Preparation method of high-performance polyacrylonitrile-based carbon fiber precursor | |
CN105544000B (en) | High-temperature oxidation resistant composite Nano PPS/Ti SiOx chopped fibers and preparation method thereof | |
CN114232109B (en) | Method for preparing polyether ketone fiber based on nondestructive dissolution wet method | |
CN104451935A (en) | Solidification method for preparing para-aramid by adopting dry jet-wet spinning | |
CN101487143B (en) | A kind of preparation method of polyimide fiber | |
Doan et al. | Scalable fabrication of cross-linked porous centrifugally spun polyimide fibers for thermal insulation application | |
CN110359114B (en) | Polyacrylonitrile fiber, polyacrylonitrile-based carbon fiber and preparation method thereof | |
CN103088446B (en) | Preparation method of polyether sulfone fiber | |
CN101705523A (en) | Method for preparing polyacrylonitrile protofilament by adopting gel spinning | |
CN112011855B (en) | Method for producing carbon fiber | |
CN116815352A (en) | Thermal management coaxial fiber membrane, and preparation method and application thereof | |
CN102154723B (en) | Method for preparing polyacrylonitrile-based carbon fiber precursors without skin-core structure | |
KR102115961B1 (en) | The manufacturing method of carbon fiber | |
CN106480535B (en) | A kind of method that melt spinning prepares polyformaldehyde fibre | |
KR101098040B1 (en) | Carbon nanotube composite filament and manufacturing method thereof | |
CN115679478B (en) | High-strength low-shrinkage polyether-ether-ketone monofilament and preparation method thereof | |
Li et al. | Effect of gelation time on the microstructures, mechanical properties and cyclization reactions of dry-jet gel-spun polyacrylonitrile fibers | |
CN118996639A (en) | High-strength polyether-ketone fiber and preparation method for inducing high densification based on molecular chain softening |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |