CN114229837A - Graphene film and preparation method thereof - Google Patents

Graphene film and preparation method thereof Download PDF

Info

Publication number
CN114229837A
CN114229837A CN202111537990.9A CN202111537990A CN114229837A CN 114229837 A CN114229837 A CN 114229837A CN 202111537990 A CN202111537990 A CN 202111537990A CN 114229837 A CN114229837 A CN 114229837A
Authority
CN
China
Prior art keywords
graphene
graphene film
porous
density
porous metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202111537990.9A
Other languages
Chinese (zh)
Other versions
CN114229837B (en
Inventor
任文才
马超群
刘海超
成会明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Metal Research of CAS
Original Assignee
Institute of Metal Research of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Metal Research of CAS filed Critical Institute of Metal Research of CAS
Priority to CN202111537990.9A priority Critical patent/CN114229837B/en
Publication of CN114229837A publication Critical patent/CN114229837A/en
Application granted granted Critical
Publication of CN114229837B publication Critical patent/CN114229837B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/184Preparation
    • C01B32/186Preparation by chemical vapour deposition [CVD]
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/194After-treatment
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2204/00Structure or properties of graphene
    • C01B2204/04Specific amount of layers or specific thickness
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2204/00Structure or properties of graphene
    • C01B2204/20Graphene characterized by its properties
    • C01B2204/22Electronic properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2204/00Structure or properties of graphene
    • C01B2204/20Graphene characterized by its properties
    • C01B2204/24Thermal properties

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

The invention relates to the technical field of new materials and application thereof, in particular to a graphene film and a preparation method thereof. The method is characterized in that three-dimensionally communicated porous metal with high porosity and high density is used as a template, and a chemical vapor deposition process is utilized to grow a graphene layer on the surface of the metal template in a catalytic manner under the conditions of proper temperature and atmosphere. And removing the metal substrate to obtain the three-dimensionally communicated porous graphene skeleton. Pressing the three-dimensional graphene skeleton into a flexible film by applying pressure. The thickness, the pore space and the like of the graphene film can be regulated and controlled by regulating and controlling preparation parameters. The invention has simple process and low production cost. The prepared graphene film has high crystallization quality and flexibility, and has excellent heat conduction and electric conduction performance in the in-plane direction and the vertical plane direction. The graphene film is of an all-carbon structure with high crystallization quality, can be stably used in an air environment below 800 ℃, and has great application potential in the fields of heat conduction, electric conduction, electromagnetic shielding and the like.

Description

Graphene film and preparation method thereof
Technical Field
The invention relates to the technical field of new materials and application thereof, in particular to a graphene film and a preparation method thereof.
Background
The graphene serving as a new material has excellent electric conduction and heat conduction properties, and the electron mobility of the graphene can reach 200000cm2V-1s-1Can realize the highest current transmission density and heat conductivity coefficient at room temperatureUp to 5300W m-1K-1Much higher than carbon nanotubes and diamond. In addition, the graphene is a honeycomb-shaped perfect lattice formed by a single layer of carbon atoms, and has high structural stability and chemical stability. Therefore, the graphene has great application potential in the fields of heat conduction, electric conduction, electromagnetic shielding and the like.
With the miniaturization and integration of electronic devices, the power density of electronic devices has increased dramatically, and the heat dissipation of electronic devices is becoming a bottleneck restricting the performance improvement thereof. The heat dissipation film material is more and more widely applied to various electronic devices, especially portable devices such as mobile phones, flat panels, notebooks and the like. Because the graphite/graphene material has thermal conductivity far higher than that of a metal material and good flexibility, the current commercial heat dissipation films mainly comprise two types, namely a graphite film prepared by taking polyimide (which is strictly required as a raw material and is produced mainly in Japan and has a neck risk) as a precursor and a graphene film prepared by taking graphene oxide as a raw material. The polyimide is used as a precursor, a film with the thickness of below 50 micrometers can be generally prepared, the preparation process has strict requirements on raw materials, and the high-end polyimide precursor film is mainly produced by foreign enterprises such as Japan and has neck clamping risk. Dangerous chemicals such as potassium permanganate and concentrated sulfuric acid are generally involved in the preparation process of the graphene oxide, the preparation process is complex, chemical impurities and products are difficult to separate after mixing, and the difficulty in removing the impurities is high. Meanwhile, due to the existence of a large number of defects such as surface functional groups, even if the subsequent complex reduction process is carried out, the heat conduction and the electric conductivity of the alloy are still not ideal. Especially, the thermal conductivity is two to three orders of magnitude lower than that of the intrinsic graphene due to the damaged crystal lattice. Meanwhile, the two types of film preparation processes both require a slow heating carbonization process for more than ten hours and a subsequent ultrahigh temperature graphitization process for more than eight hours (the temperature is generally more than 2800 ℃, which consumes very much energy).
In addition, the heat-resistant high-performance thermal interface material which is very important and cannot be overcome always remains in the field of thermal management. The traditional metal material and ceramic material have higher heat-conducting property but have hardnessHigher and can not be directly used as a thermal interface material. Although the polymer-based thermal interface material can provide good interface contact, the thermal conductivity of the polymer-based thermal interface material is poor, and the general thermal conductivity is 10W m-1K-1Below, and due to the presence of the polymeric matrix material, it withstands temperatures generally below 150 ℃; while the conventional graphite/graphene-based film material has good flexibility and high-temperature resistance, the conventional graphite/graphene-based film material has the characteristics of highly oriented (along the plane direction) structure and anisotropic heat conduction. The thermal conductivity of the thermal interface material is much lower than 10W m in the required vertical plane-1K-1Generally at 5W m-1K-1The following are completely unsatisfactory for application.
As described above, the two major types of graphite/graphene films have problems that are difficult to overcome in terms of preparation process and application performance. Therefore, the bottleneck problem is overcome, and the high-temperature-resistant high-performance graphene film material is developed to be applied to the fields of heat dissipation film materials and heat conduction interface materials, and has important significance.
Disclosure of Invention
The invention aims to provide a graphene film and a preparation method thereof, the graphene film material has high temperature resistance and excellent heat conducting performance in the plane and the vertical plane direction, solves the problem that the two types of graphite/graphene films are difficult to overcome in preparation process and application performance at present, and can be applied to the field of heat dissipation film materials and heat conducting interface materials.
The technical scheme of the invention is as follows:
a method for preparing a graphene film, the method comprising the steps of:
(1) heating the reaction furnace cavity to a set temperature of 600-1200 ℃ under the protective atmosphere of carrier gas;
(2) placing a three-dimensionally communicated porous metal matrix with high porosity and high density into a constant-temperature area of a cavity of the reaction furnace, introducing reducing gas, and preserving heat for 0-60 min;
(3) introducing mixed atmosphere of carbon source gas, reducing gas and carrier gas into the cavity of the reaction furnace, and catalytically growing graphene on the surface of the porous metal substrate; the flow ratio of the carbon source gas, the reducing gas and the carrier gas in the mixed atmosphere is 1: (0-80): (0 to 100), preferably 1: (1-50): (0 to 50); the reaction time is 1-120 min, preferably 20-100 min;
(4) cooling the porous metal matrix in a carrier gas protective atmosphere, and taking out the porous metal matrix to obtain a three-dimensionally communicated high-density graphene skeleton structure growing on the porous metal matrix;
(5) removing the porous metal matrix by using a metal etching liquid to obtain three-dimensional porous graphene;
(6) and pressing the obtained three-dimensional porous graphene to form a graphene film.
In the preparation method of the graphene film, in the step (1), the protective atmosphere of carrier gas is one or a mixture of more than two of argon, nitrogen and helium, the set temperature is 900-1100 ℃, and the reaction in the step (3) is carried out at the set temperature to grow the graphene.
In the preparation method of the graphene film, in the step (2), the porous metal matrix is a porous alloy formed by one or more than two of three-dimensionally communicated porous nickel, porous copper, porous iron, porous cobalt, porous silver, porous gold, porous platinum and porous titanium with high porosity and high density, preferably nickel, copper or nickel-copper alloy; the porosity of the porous metal matrix is 210-4000 PPI, and the density is 0.5-6.5 g/cm3(ii) a Preferably, the porosity of the porous metal matrix is distributed in the range of 500-3000 PPI, and the surface density is 1.5-5.5 g/cm3
In the preparation method of the graphene film, in the step (3), the carbon source gas is one or more than two of methane, ethane, ethylene and acetylene, the reducing gas is one or two of hydrogen and ammonia, and the carrier gas is one or more than two of argon, nitrogen and helium.
In the preparation method of the graphene film, in the step (4), the carrier gas protective atmosphere is one or a mixture of more than two of argon, nitrogen and helium.
In the preparation method of the graphene film, in the step (5), the metal etching liquid is one or a mixed aqueous solution of more than two of hydrochloric acid, sulfuric acid, nitric acid, ammonium persulfate and ferric chloride.
In the preparation method of the graphene film, in the step (6), the three-dimensional porous graphene is pressed into a film in an extrusion or rolling mode, wherein the pressure is 0.2-300 MPa, and preferably 30-270 MPa.
According to the preparation method of the graphene film, the thickness, the pores and the form of the prepared porous graphene can be regulated and controlled by selecting different porous metal matrixes and/or regulating and controlling the temperature and the reaction atmosphere growth parameters in the reduction reaction; the thickness range of the prepared graphene film is 10-1000 mu m, and the density of the graphene film is 0.8-2.2 g/cm3(ii) a Preferably, the thickness of the prepared graphene film is 100-500 mu m, and the density of the graphene film is 1.2-2.1 g/cm3
The graphene film prepared by the method is of a three-dimensional fully-communicated structure, and due to the catalytic activity of the porous metal matrix, the graphene film which does not need to be graphitized and has excellent crystallization quality is obtained: the Raman spectrum of the graphene film is characterized, the characteristic peak of the graphene is obvious and has no defect peak (D peak); the X-ray diffraction pattern of the graphene film is characterized in that the characteristic diffraction peak of the graphene is obvious, the peak position is 26.5 degrees, the full width at half maximum is 0.102 degree, and no peak position shift and miscellaneous peaks exist.
The graphene film has controllable morphology, and has excellent heat conduction and electric conduction performance in the in-plane direction and the vertical plane direction due to excellent crystallization quality and three-dimensional full-communication structural characteristics: the in-plane thermal conductivity is 400-1500W/mK, the vertical plane thermal conductivity is 10-180W/mK, and the electrical conductivity is 1500-20000S/cm; preferably, the in-plane thermal conductivity is 800-1450W/mK, the vertical plane thermal conductivity is 30-150W/mK, and the electrical conductivity is 3000-18000S/cm.
The design mechanism of the invention is as follows:
the method takes three-dimensionally communicated porous metal with high porosity and high density as a template, and utilizes a chemical vapor deposition process to catalytically grow a graphene layer on the surface of the metal template under the conditions of proper temperature and atmosphere. And removing the metal substrate to obtain the three-dimensionally communicated porous graphene skeleton. Pressing the three-dimensional graphene skeleton into a flexible film by applying pressure. The thickness, the pore space and the like of the graphene film can be regulated and controlled by regulating and controlling preparation parameters. The invention has simple process and low production cost. The prepared graphene film has high crystallization quality and flexibility, and has excellent heat conduction and electric conduction performance in the in-plane direction and the vertical plane direction. The graphene film is of an all-carbon structure with high crystallization quality, and can be stably used in an air environment below 800 ℃.
The invention has the following advantages and beneficial effects:
1. the method takes the three-dimensionally communicated height as a substrate template to catalyze and grow the graphene. The shape and thickness of the prepared graphene can be regulated and controlled by regulating and controlling the type and the growth parameters, so that different application requirements are met.
2. All reactants and reaction liquid except inert carrier gas can be recycled, harmful waste gas and waste liquid are not generated in the whole process, and the preparation method is low-carbon and environment-friendly.
3. Due to the high reaction temperature and the catalytic activity of the transition metal matrix, the graphene film prepared by the method has the crystallization quality which is comparable to that of the mechanically exfoliated eigen-state graphene. The Raman spectrum shows that the characteristic peak of the graphene is obvious and has no defect peak (D peak). The XRD result shows that the graphene film has obvious characteristic diffraction peak, 26.5 degrees of peak position, 0.102 degree of full width at half maximum and no peak position shift and impurity peak. Therefore, the graphene film has excellent electrical and thermal conductivity.
4. The thermal weight loss result shows that the graphene film can tolerate the temperature of 800 ℃ in the air. Therefore, the material is different from the traditional heat-conducting interface material (the heat conductivity is generally below 10W/mK, and the temperature resistance is generally below 150 ℃), and can be used as a high-performance high-temperature-resistant (the heat conductivity is above 10W/mK, and the temperature resistance is above 800 ℃) thermal interface material.
5. The heat conductivity of the traditional heat dissipation film material in the vertical plane direction is very low and is far lower than 10W m-1K-1Typically at 5Wm-1K-1The temperature difference gradient in the direction vertical to the plane of the radiating film is obvious, heat is difficult to be effectively transferred in the whole radiating film material, and the performance of the radiating performance of the material is seriously influenced. Prepared by the inventionThe prepared heat dissipation film material has heat conductivity of more than 10W/mK in the direction vertical to the plane, and has better heat dissipation performance compared with the traditional heat dissipation film material.
6. The invention has simple process, easy amplification and mass production, does not need to go through the processes of carbonization and graphitization which are time and energy consuming (the carbonization process generally needs dozens of hours for slow temperature rise, the temperature of the subsequent graphitization process needs more than 2800 ℃ and takes more than eight hours), and has low production cost.
7. The graphene film material provided by the invention does not appear in the prior art, has positive technical effects and application, and has great application potential in the fields of heat conduction, electric conduction, electromagnetic shielding and the like.
Drawings
Fig. 1 is a photomicrograph of a graphene film.
Fig. 2 is a photomicrograph (surface) of a graphene film.
Fig. 3 is a photomicrograph (side) of a graphene film.
Fig. 4 is a raman spectrum of a graphene film.
Fig. 5 is an XRD characteristic peak of the graphene film. In the figure, the abscissa 2 θ represents the diffraction angle (degree) and the ordinate Intensity represents the relative Intensity (a.u.).
Fig. 6 is a thermogravimetric plot of graphene membrane.
Detailed Description
The present invention will be described in detail below with reference to the accompanying drawings and examples. The thermal conductivity of the prepared graphene film was tested by using LFA 467 flash method thermal conductivity instrument (the instrument is widely used in domestic electronic product manufacturing enterprises and scientific research units at present, and the test is performed according to ASTM E1461 standard).
Example 1:
in this example, the cavity of the reactor was heated to 1000 ℃ under a nitrogen atmosphere, and a constant temperature zone of the cavity of the reactor was filled with a solution having a porosity of 500PPI and an areal density of 2.5g/cm3Introducing hydrogen into the three-dimensionally communicated porous nickel with high porosity and high density, keeping the temperature for 10min, wherein the flow of the hydrogen is 600sccm, and the function of introducing the hydrogen firstly is as follows: removing the oxide layer on the surface of the substrate; continuously introducing the mixture of ethylene and hydrogenAnd (3) mixing gas, wherein the flow rate of the mixed gas is 620sccm, and the flow ratio of ethylene to hydrogen in the mixed gas is 1: and 30, reacting for 30min, and catalytically growing graphene on the surface of the three-dimensionally communicated high-porosity high-density porous nickel base.
Taking out the three-dimensionally communicated high-density graphene skeleton growing on the porous metal substrate in a nitrogen protective atmosphere, putting the three-dimensionally communicated high-density graphene skeleton into 3mol/L hydrochloric acid aqueous solution (etching solution), preserving heat for 60min at 80 ℃, completely removing nickel in the graphene skeleton, taking out the graphene skeleton, cleaning and drying to obtain the three-dimensionally communicated hollow graphene skeleton structure. And (3) placing the graphene framework in a tablet press die, and applying pressure of 30MPa to obtain the graphene membrane.
As shown in fig. 1, the macrostructure of the graphene film is shown in fig. 2 and fig. 3, which are respectively the micrographs of the surface and the side surface of the graphene film, and it can be seen from the figure that the graphene film has a three-dimensionally connected microstructure.
As shown in fig. 4, it can be seen from the raman spectrum of the obtained sample that the graphene prepared by the method has high crystalline quality due to the high reaction temperature and the catalytic activity of the metal matrix. The Raman spectrum shows that the characteristic peak of the graphene is obvious and has no defect peak (D peak).
As shown in fig. 5, the XRD result can see that the graphene film has a distinct graphene characteristic diffraction peak, a peak position of 26.5 degrees, a full width at half maximum of 0.102 degrees, and no peak position shift and no miscellaneous peak.
As shown in fig. 6, the thermal weight loss result shows that the material can withstand the temperature of 800 ℃ in the air, so that the material has excellent electric and thermal conductivity. The thickness of the prepared graphene film is 100 mu m, and the density is 1.5g/cm3The in-plane thermal conductivity was 910W/mK, the vertical-plane thermal conductivity was 42W/mK, and the electric conductivity was 4250S/cm.
In the following embodiments, the shape of the hollow graphite film after the metal substrate is etched is substantially the same as that of embodiment 1 in terms of raman spectrum, XRD, and thermogravimetric results, which are not described again.
Example 2:
heating the cavity of the reaction furnace to 1000 ℃ under the protection of argon, and introducing into the constant temperature area of the cavity of the reaction furnaceThe internal porosity is 800PPI, and the surface density is 3.5g/cm3The three-dimensional communicated high-porosity high-density porous copper is introduced with hydrogen, the flow of the hydrogen is 500sccm, and the hydrogen is introduced firstly: removing the oxide layer on the surface of the substrate; and continuously introducing a mixed gas of methane and hydrogen, wherein the flow rate of the mixed gas is 510sccm, and the flow rate ratio of the methane to the hydrogen in the mixed gas is 1: and (3) reacting for 50min, and catalytically growing graphene on the surface of the three-dimensionally communicated high-porosity high-density porous copper substrate.
Taking out the three-dimensionally communicated high-density graphene skeleton growing on the porous metal substrate in a nitrogen protective atmosphere, putting the three-dimensionally communicated high-density graphene skeleton into 2mol/L sulfuric acid aqueous solution (etching solution), preserving heat for 120min at 80 ℃, completely removing copper in the graphene skeleton, taking out the graphene skeleton, cleaning and drying to obtain the three-dimensionally communicated hollow graphene skeleton structure. And (3) placing the graphene framework in a tablet press die, and applying 40MPa pressure to obtain the graphene membrane. The thickness of the prepared graphene film is 120 mu m, and the density is 1.8g/cm3The in-plane thermal conductivity was 830W/mK, the vertical-plane thermal conductivity was 60W/mK, and the electric conductivity was 3520S/cm.
Example 3:
heating the cavity of the reaction furnace to 1100 ℃ under the protection of argon, adding 1100PPI with porosity of 1100 and surface density of 5.1g/cm into the constant-temperature zone of the cavity of the reaction furnace3The three-dimensional communicated porous nickel with high porosity and high density is introduced with hydrogen, the flow of the hydrogen is 500sccm, and the hydrogen is introduced firstly: removing the oxide layer on the surface of the substrate; and continuously introducing a mixed gas of methane, hydrogen and argon, wherein the flow rate of the mixed gas is 1010sccm, and the flow ratio of the methane to the hydrogen in the mixed gas is 1: and (3) reacting for 70min for 50min, and catalytically growing graphene on the surface of the three-dimensionally communicated high-porosity high-density porous nickel base.
Taking out a three-dimensionally communicated high-density graphene framework growing on a porous metal substrate in a nitrogen protective atmosphere, putting the graphene framework into 3mol/L hydrochloric acid aqueous solution (etching solution), preserving heat for 90min at 80 ℃, completely removing nickel in the graphene framework, taking out the graphene framework, cleaning and drying to obtain the three-dimensionally communicated high-density graphene frameworkHollow graphene framework structure. And (3) placing the graphene framework in a tablet press die, and applying 80MPa pressure to obtain the graphene membrane. The obtained graphene film has a thickness of 155 μm and a density of 1.95g/cm3The in-plane thermal conductivity was 1030W/mK, the vertical-plane thermal conductivity was 30W/mK, and the electric conductivity was 6575S/cm.
Example 4:
heating the cavity of the reaction furnace to 1100 ℃ under the protection of argon, adding 1550PPI with the porosity of 5.3g/cm into the constant-temperature area of the cavity of the reaction furnace3The three-dimensional communicated porous nickel-copper alloy with high porosity and high density is introduced with hydrogen, the flow of the hydrogen is 500sccm, and the hydrogen is introduced firstly: removing the oxide layer on the surface of the substrate; and continuously introducing a mixed gas of methane, hydrogen and argon, wherein the flow rate of the mixed gas is 1010sccm, and the flow ratio of the methane to the hydrogen in the mixed gas is 1: and (3) reacting for 80min for 50min, and catalytically growing graphene on the surface of the three-dimensionally communicated high-porosity high-density porous nickel-copper alloy substrate.
Taking out the three-dimensionally communicated high-density graphene framework growing on the porous metal substrate in a nitrogen protective atmosphere, putting the three-dimensionally communicated high-density graphene framework into 3mol/L hydrochloric acid aqueous solution (etching solution), preserving heat for 110min at 80 ℃, completely removing nickel-copper alloy in the graphene framework, taking out the graphene framework, cleaning and drying to obtain the three-dimensionally communicated hollow graphene framework structure. And (3) placing the graphene framework in a tablet press die, and applying 180MPa pressure to obtain the graphene membrane. The thickness of the prepared graphene film is 105 mu m, and the density is 2.1g/cm3The in-plane thermal conductivity is 1248W/mK, the vertical in-plane thermal conductivity is 35W/mK, and the electrical conductivity is 9600S/cm.
Example 5:
heating the cavity of the reaction furnace to 1050 ℃ under the nitrogen protection atmosphere, adding a constant temperature zone of the cavity of the reaction furnace with a porosity of 950PPI and an area density of 4.2g/cm3The three-dimensional communicated porous cobalt with high porosity and high density is introduced with hydrogen, the flow of the hydrogen is 500sccm, and the hydrogen is introduced firstly: removing the oxide layer on the surface of the substrate; continuously introducing mixed gas of methane, hydrogen and argon, wherein the flow rate of the mixed gas is1010sccm, and the flow ratio of methane to hydrogen in the mixed gas is 1: and 50, reacting for 60min, and catalytically growing graphene on the surface of the three-dimensionally communicated high-porosity high-density porous cobalt base body.
Taking out the three-dimensionally communicated high-density graphene skeleton growing on the porous metal substrate in a nitrogen protective atmosphere, putting the three-dimensionally communicated high-density graphene skeleton into 3mol/L hydrochloric acid aqueous solution (etching solution), preserving heat for 110min at 80 ℃, completely removing cobalt in the graphene skeleton, taking out the graphene skeleton, cleaning and drying to obtain the three-dimensionally communicated hollow graphene skeleton structure. And (3) placing the graphene framework in a tablet press die, and applying pressure of 90MPa to obtain the graphene membrane. The thickness of the prepared graphene film is 115 mu m, and the density is 1.74g/cm3The in-plane thermal conductivity was 945W/mK, the vertical-plane thermal conductivity was 48W/mK, and the electric conductivity was 5880S/cm.
In conclusion, the graphene film disclosed by the invention is controllable in form and thickness, high in crystallization quality, excellent in electric conductivity and heat conductivity, simple in preparation method and process, recyclable and reusable in most raw materials, and low in preparation cost. The examples provided above for the preparation of the graphene film are only for illustration and should not be considered as limiting the scope of the present invention, and any method of equivalent substitution or modification according to the technical solution of the present invention and the inventive concept thereof should be covered within the scope of the present invention.

Claims (10)

1. A method for preparing a graphene film, the method comprising the steps of:
(1) heating the reaction furnace cavity to a set temperature of 600-1200 ℃ under the protective atmosphere of carrier gas;
(2) placing a three-dimensionally communicated porous metal matrix with high porosity and high density into a constant-temperature area of a cavity of the reaction furnace, introducing reducing gas, and preserving heat for 0-60 min;
(3) introducing mixed atmosphere of carbon source gas, reducing gas and carrier gas into the cavity of the reaction furnace, and catalytically growing graphene on the surface of the porous metal substrate; the flow ratio of the carbon source gas, the reducing gas and the carrier gas in the mixed atmosphere is 1: (0-80): (0-100), and the reaction time is 1-120 min;
(4) cooling the porous metal matrix in a carrier gas protective atmosphere, and taking out the porous metal matrix to obtain a three-dimensionally communicated high-density graphene skeleton structure growing on the porous metal matrix;
(5) removing the porous metal matrix by using a metal etching liquid to obtain three-dimensional porous graphene;
(6) and pressing the obtained three-dimensional porous graphene to form a graphene film.
2. The method for preparing the graphene film according to claim 1, wherein in the step (1), the carrier gas protective atmosphere is one or a mixture of two or more of argon, nitrogen and helium, the set temperature is 900 to 1100 ℃, and the reaction in the step (3) is performed at the set temperature to grow the graphene.
3. The method for preparing the graphene film according to claim 1, wherein in the step (2), the porous metal substrate is a porous alloy formed by one or more than two of three-dimensionally connected porous nickel, porous copper, porous iron, porous cobalt, porous silver, porous gold, porous platinum and porous titanium with high porosity and high density; the porosity of the porous metal matrix is 210-4000 PPI, and the density is 0.5-6.5 g/cm3
4. The method for preparing the graphene film according to claim 1, wherein in the step (3), the carbon source gas is one or more of methane, ethane, ethylene and acetylene, the reducing gas is one or more of hydrogen and ammonia, and the carrier gas is one or more of argon, nitrogen and helium.
5. The method for preparing the graphene film according to claim 1, wherein in the step (4), the carrier gas protective atmosphere is one or a mixture of two or more of argon, nitrogen and helium.
6. The method for preparing the graphene film according to claim 1, wherein in the step (5), the metal etching solution is an aqueous solution in which one or more of hydrochloric acid, sulfuric acid, nitric acid, ammonium persulfate, and ferric chloride are mixed.
7. The method for preparing the graphene film according to claim 1, wherein in the step (6), the three-dimensional porous graphene is pressed into the film by means of extrusion or rolling, and the pressure is 0.2-300 MPa.
8. The method for preparing the graphene film according to claim 1, wherein the method can control the thickness, the pores and the morphology of the prepared porous graphene by selecting different porous metal substrates and/or controlling the temperature and the reaction atmosphere growth parameters in the reduction reaction; the thickness range of the prepared graphene film is 10-1000 mu m, and the density of the graphene film is 0.8-2.2 g/cm3
9. The graphene film prepared by the method according to any one of claims 1 to 8, wherein the graphene film is a three-dimensional fully-connected structure, and due to the catalytic activity of the porous metal matrix, the graphene film having excellent crystallization quality without graphitization is obtained: the Raman spectrum of the graphene film is characterized, the characteristic peak of the graphene is obvious and has no defect peak (D peak); the X-ray diffraction pattern of the graphene film is characterized in that the characteristic diffraction peak of the graphene is obvious, the peak position is 26.5 degrees, the full width at half maximum is 0.102 degree, and no peak position shift and miscellaneous peaks exist.
10. The graphene film according to claim 9, wherein the morphology of the graphene film is controllable, and the graphene film has excellent thermal and electrical conductivity in both in-plane and perpendicular-to-plane directions due to excellent crystalline quality and three-dimensional fully interconnected structural features: the in-plane thermal conductivity is 400 to 1500W/mK, the vertical-plane thermal conductivity is 10 to 180W/mK, and the electrical conductivity is 1500 to 20000S/cm.
CN202111537990.9A 2021-12-15 2021-12-15 Graphene film and preparation method thereof Active CN114229837B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111537990.9A CN114229837B (en) 2021-12-15 2021-12-15 Graphene film and preparation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111537990.9A CN114229837B (en) 2021-12-15 2021-12-15 Graphene film and preparation method thereof

Publications (2)

Publication Number Publication Date
CN114229837A true CN114229837A (en) 2022-03-25
CN114229837B CN114229837B (en) 2024-04-12

Family

ID=80756573

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111537990.9A Active CN114229837B (en) 2021-12-15 2021-12-15 Graphene film and preparation method thereof

Country Status (1)

Country Link
CN (1) CN114229837B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115850972A (en) * 2022-11-25 2023-03-28 中国科学院金属研究所 Preparation method of high-performance heat-conducting interface material

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104021946A (en) * 2014-06-12 2014-09-03 吉林大学 Super capacitor based on graphene material and manufacturing method of super capacitor
CN104973589A (en) * 2014-04-11 2015-10-14 中国科学院上海硅酸盐研究所 High-density, high-electric-conductive and high-heat-conductive graphene material grown through two-step method and preparation method thereof
CN105776186A (en) * 2014-12-25 2016-07-20 华中科技大学 Method for preparing structure-controllable three-dimensional graphene porous material
CN110170655A (en) * 2019-06-04 2019-08-27 浙江正泰电器股份有限公司 A kind of preparation method of metal matrix three-dimensional graphene composite material
CN110668434A (en) * 2019-11-29 2020-01-10 苏州世华新材料科技股份有限公司 Heat-conducting graphene film with adjustable vertical and in-plane heat conductivity coefficients and preparation method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104973589A (en) * 2014-04-11 2015-10-14 中国科学院上海硅酸盐研究所 High-density, high-electric-conductive and high-heat-conductive graphene material grown through two-step method and preparation method thereof
CN104021946A (en) * 2014-06-12 2014-09-03 吉林大学 Super capacitor based on graphene material and manufacturing method of super capacitor
CN105776186A (en) * 2014-12-25 2016-07-20 华中科技大学 Method for preparing structure-controllable three-dimensional graphene porous material
CN110170655A (en) * 2019-06-04 2019-08-27 浙江正泰电器股份有限公司 A kind of preparation method of metal matrix three-dimensional graphene composite material
CN110668434A (en) * 2019-11-29 2020-01-10 苏州世华新材料科技股份有限公司 Heat-conducting graphene film with adjustable vertical and in-plane heat conductivity coefficients and preparation method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115850972A (en) * 2022-11-25 2023-03-28 中国科学院金属研究所 Preparation method of high-performance heat-conducting interface material
CN115850972B (en) * 2022-11-25 2023-11-10 中国科学院金属研究所 Preparation method of high-performance heat-conducting interface material

Also Published As

Publication number Publication date
CN114229837B (en) 2024-04-12

Similar Documents

Publication Publication Date Title
CN108273541B (en) Green and efficient preparation method and application of graphite-phase carbon nitride nanosheets
Dai et al. Synthesis of high crystalline beta SiC nanowires on a large scale without catalyst
CN106185896B (en) The preparation method of three-dimensional grapheme and its composite material
WO2019095602A1 (en) Method for preparing three-dimensional graphene fiber by means of thermal chemical vapor deposition, and use thereof
CN102942177B (en) Method for preparing graphene sheet
CN107128926B (en) Preparation method of self-supporting carbide derived carbon nanowire
CN108557799B (en) High-purity high-conductivity graphene-like hierarchical porous carbon and preparation method thereof
WO2015081663A1 (en) Method for preparing aza graphene and nanometer metal graphene by using solid phase cracking method
CN110066175B (en) Preparation method of ultralight carbide ceramic foam
CN113460997B (en) Preparation method of three-dimensional grid-shaped graphene material
CN110846529A (en) Preparation method of graphene reinforced copper composite material
WO2016070396A1 (en) Method for preparing graphene by molten state inorganic salt reaction bed
CN103407988A (en) Method for preparing graphene film at low temperature
CN104386676A (en) Preparation method of graphene
CN114229837A (en) Graphene film and preparation method thereof
CN110451465B (en) Sea urchin-shaped boron nitride nanosphere-nanotube hierarchical structure and preparation method thereof
CN110697695A (en) Preparation method of graphene reinforced metal matrix foam framework structure composite material
CN113148994B (en) Graphene and preparation method and application thereof
WO2018205815A1 (en) Nitrogen-doped graphene macro preparation method
CN114214042B (en) Application of graphene film as high-temperature-resistant thermal interface material or heat dissipation film material
CN114214042A (en) Application of graphene film as high-temperature-resistant thermal interface material or heat dissipation film material
CN110950328A (en) Doped graphene powder and preparation method thereof
CN106544642A (en) A kind of method that utilization microwave method prepares silicon carbide nanometer line thin film
CN115862956A (en) Preparation method of graphene-based heat/electricity conducting composite material
CN114988716A (en) Tungsten carbide/graphene composite material and preparation method thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant