CN114225097B - Self-healing hydrogel wound dressing loaded with antibacterial peptide and preparation method thereof - Google Patents
Self-healing hydrogel wound dressing loaded with antibacterial peptide and preparation method thereof Download PDFInfo
- Publication number
- CN114225097B CN114225097B CN202111342128.2A CN202111342128A CN114225097B CN 114225097 B CN114225097 B CN 114225097B CN 202111342128 A CN202111342128 A CN 202111342128A CN 114225097 B CN114225097 B CN 114225097B
- Authority
- CN
- China
- Prior art keywords
- solution
- self
- wound dressing
- loaded
- preparation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000000017 hydrogel Substances 0.000 title claims abstract description 136
- 238000002360 preparation method Methods 0.000 title claims abstract description 44
- 239000003910 polypeptide antibiotic agent Substances 0.000 title claims description 32
- 239000011159 matrix material Substances 0.000 claims abstract description 66
- 210000004876 tela submucosa Anatomy 0.000 claims abstract description 50
- 150000004676 glycans Chemical class 0.000 claims abstract description 39
- 229920001282 polysaccharide Polymers 0.000 claims abstract description 39
- 239000005017 polysaccharide Substances 0.000 claims abstract description 39
- 210000000813 small intestine Anatomy 0.000 claims abstract description 25
- 210000001519 tissue Anatomy 0.000 claims abstract description 15
- 125000000524 functional group Chemical group 0.000 claims abstract description 14
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 claims abstract description 11
- 239000000243 solution Substances 0.000 claims description 81
- 108700042778 Antimicrobial Peptides Proteins 0.000 claims description 68
- 102000044503 Antimicrobial Peptides Human genes 0.000 claims description 68
- 239000007853 buffer solution Substances 0.000 claims description 53
- 239000002244 precipitate Substances 0.000 claims description 51
- 230000000968 intestinal effect Effects 0.000 claims description 41
- IXPNQXFRVYWDDI-UHFFFAOYSA-N 1-methyl-2,4-dioxo-1,3-diazinane-5-carboximidamide Chemical compound CN1CC(C(N)=N)C(=O)NC1=O IXPNQXFRVYWDDI-UHFFFAOYSA-N 0.000 claims description 30
- 239000000661 sodium alginate Substances 0.000 claims description 30
- 235000010413 sodium alginate Nutrition 0.000 claims description 30
- 229940005550 sodium alginate Drugs 0.000 claims description 30
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 claims description 24
- 238000003756 stirring Methods 0.000 claims description 22
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 claims description 21
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 21
- 239000000843 powder Substances 0.000 claims description 16
- 238000000502 dialysis Methods 0.000 claims description 15
- 108050004290 Cecropin Proteins 0.000 claims description 14
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 14
- KFSLWBXXFJQRDL-UHFFFAOYSA-N Peracetic acid Chemical compound CC(=O)OO KFSLWBXXFJQRDL-UHFFFAOYSA-N 0.000 claims description 14
- 102000007260 Deoxyribonuclease I Human genes 0.000 claims description 12
- 108010008532 Deoxyribonuclease I Proteins 0.000 claims description 12
- 102000057297 Pepsin A Human genes 0.000 claims description 12
- 108090000284 Pepsin A Proteins 0.000 claims description 12
- 239000000706 filtrate Substances 0.000 claims description 12
- 229940111202 pepsin Drugs 0.000 claims description 12
- 239000008367 deionised water Substances 0.000 claims description 11
- 229910021641 deionized water Inorganic materials 0.000 claims description 11
- 239000008176 lyophilized powder Substances 0.000 claims description 11
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 claims description 9
- YWZCOYQPEZBEOE-UHFFFAOYSA-N [3-(aminomethyl)phenyl]boronic acid Chemical compound NCC1=CC=CC(B(O)O)=C1 YWZCOYQPEZBEOE-UHFFFAOYSA-N 0.000 claims description 8
- 210000004347 intestinal mucosa Anatomy 0.000 claims description 8
- 239000002245 particle Substances 0.000 claims description 8
- 238000012546 transfer Methods 0.000 claims description 8
- SJRJJKPEHAURKC-UHFFFAOYSA-N N-methylmorpholine Substances CN1CCOCC1 SJRJJKPEHAURKC-UHFFFAOYSA-N 0.000 claims description 7
- 239000002202 Polyethylene glycol Substances 0.000 claims description 7
- 102000004142 Trypsin Human genes 0.000 claims description 7
- 108090000631 Trypsin Proteins 0.000 claims description 7
- ZPIRTVJRHUMMOI-UHFFFAOYSA-N octoxybenzene Chemical compound CCCCCCCCOC1=CC=CC=C1 ZPIRTVJRHUMMOI-UHFFFAOYSA-N 0.000 claims description 7
- 229920001223 polyethylene glycol Polymers 0.000 claims description 7
- 239000012588 trypsin Substances 0.000 claims description 7
- 239000004744 fabric Substances 0.000 claims description 6
- 229920001661 Chitosan Polymers 0.000 claims description 5
- KIUKXJAPPMFGSW-DNGZLQJQSA-N (2S,3S,4S,5R,6R)-6-[(2S,3R,4R,5S,6R)-3-Acetamido-2-[(2S,3S,4R,5R,6R)-6-[(2R,3R,4R,5S,6R)-3-acetamido-2,5-dihydroxy-6-(hydroxymethyl)oxan-4-yl]oxy-2-carboxy-4,5-dihydroxyoxan-3-yl]oxy-5-hydroxy-6-(hydroxymethyl)oxan-4-yl]oxy-3,4,5-trihydroxyoxane-2-carboxylic acid Chemical compound CC(=O)N[C@H]1[C@H](O)O[C@H](CO)[C@@H](O)[C@@H]1O[C@H]1[C@H](O)[C@@H](O)[C@H](O[C@H]2[C@@H]([C@@H](O[C@H]3[C@@H]([C@@H](O)[C@H](O)[C@H](O3)C(O)=O)O)[C@H](O)[C@@H](CO)O2)NC(C)=O)[C@@H](C(O)=O)O1 KIUKXJAPPMFGSW-DNGZLQJQSA-N 0.000 claims description 4
- HTTJABKRGRZYRN-UHFFFAOYSA-N Heparin Chemical compound OC1C(NC(=O)C)C(O)OC(COS(O)(=O)=O)C1OC1C(OS(O)(=O)=O)C(O)C(OC2C(C(OS(O)(=O)=O)C(OC3C(C(O)C(O)C(O3)C(O)=O)OS(O)(=O)=O)C(CO)O2)NS(O)(=O)=O)C(C(O)=O)O1 HTTJABKRGRZYRN-UHFFFAOYSA-N 0.000 claims description 4
- 125000002057 carboxymethyl group Chemical group [H]OC(=O)C([H])([H])[*] 0.000 claims description 4
- 229920000669 heparin Polymers 0.000 claims description 4
- 229960002897 heparin Drugs 0.000 claims description 4
- 229920002674 hyaluronan Polymers 0.000 claims description 4
- 229960003160 hyaluronic acid Drugs 0.000 claims description 4
- 238000005303 weighing Methods 0.000 claims description 4
- 239000002904 solvent Substances 0.000 claims description 3
- 229910001629 magnesium chloride Inorganic materials 0.000 claims description 2
- 238000001556 precipitation Methods 0.000 claims description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 claims 1
- 230000008520 organization Effects 0.000 claims 1
- HXITXNWTGFUOAU-UHFFFAOYSA-N phenylboronic acid Chemical compound OB(O)C1=CC=CC=C1 HXITXNWTGFUOAU-UHFFFAOYSA-N 0.000 abstract description 58
- 230000000844 anti-bacterial effect Effects 0.000 abstract description 27
- 239000002131 composite material Substances 0.000 abstract description 22
- 238000004132 cross linking Methods 0.000 abstract description 9
- 102000004196 processed proteins & peptides Human genes 0.000 abstract description 4
- 108090000765 processed proteins & peptides Proteins 0.000 abstract description 4
- 230000008961 swelling Effects 0.000 abstract 1
- 206010052428 Wound Diseases 0.000 description 70
- 208000027418 Wounds and injury Diseases 0.000 description 70
- 230000000052 comparative effect Effects 0.000 description 14
- 241000894006 Bacteria Species 0.000 description 9
- 230000029663 wound healing Effects 0.000 description 9
- 206010059866 Drug resistance Diseases 0.000 description 8
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 8
- 230000015572 biosynthetic process Effects 0.000 description 8
- 210000004877 mucosa Anatomy 0.000 description 8
- 239000003242 anti bacterial agent Substances 0.000 description 7
- 230000006378 damage Effects 0.000 description 7
- 239000000499 gel Substances 0.000 description 7
- BMTZEAOGFDXDAD-UHFFFAOYSA-M 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholin-4-ium;chloride Chemical compound [Cl-].COC1=NC(OC)=NC([N+]2(C)CCOCC2)=N1 BMTZEAOGFDXDAD-UHFFFAOYSA-M 0.000 description 6
- 102000010834 Extracellular Matrix Proteins Human genes 0.000 description 6
- 108010037362 Extracellular Matrix Proteins Proteins 0.000 description 6
- 210000004027 cell Anatomy 0.000 description 6
- 210000002744 extracellular matrix Anatomy 0.000 description 6
- 238000000338 in vitro Methods 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 239000008188 pellet Substances 0.000 description 6
- 229920004890 Triton X-100 Polymers 0.000 description 5
- 239000013504 Triton X-100 Substances 0.000 description 5
- 229940088710 antibiotic agent Drugs 0.000 description 5
- 230000001580 bacterial effect Effects 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 239000000523 sample Substances 0.000 description 5
- 210000003491 skin Anatomy 0.000 description 5
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 4
- 102000003974 Fibroblast growth factor 2 Human genes 0.000 description 4
- 108090000379 Fibroblast growth factor 2 Proteins 0.000 description 4
- 241000192125 Firmicutes Species 0.000 description 4
- 206010061218 Inflammation Diseases 0.000 description 4
- 108010009583 Transforming Growth Factors Proteins 0.000 description 4
- 102000009618 Transforming Growth Factors Human genes 0.000 description 4
- 108010073929 Vascular Endothelial Growth Factor A Proteins 0.000 description 4
- 102000005789 Vascular Endothelial Growth Factors Human genes 0.000 description 4
- 108010019530 Vascular Endothelial Growth Factors Proteins 0.000 description 4
- 239000000460 chlorine Substances 0.000 description 4
- 229910052801 chlorine Inorganic materials 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 238000004108 freeze drying Methods 0.000 description 4
- 230000004054 inflammatory process Effects 0.000 description 4
- 231100000225 lethality Toxicity 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 229920000642 polymer Polymers 0.000 description 4
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 230000037314 wound repair Effects 0.000 description 4
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 3
- 206010048038 Wound infection Diseases 0.000 description 3
- 238000002835 absorbance Methods 0.000 description 3
- 230000006866 deterioration Effects 0.000 description 3
- 238000005886 esterification reaction Methods 0.000 description 3
- 239000001257 hydrogen Substances 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- 239000008055 phosphate buffer solution Substances 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 230000001105 regulatory effect Effects 0.000 description 3
- 231100000241 scar Toxicity 0.000 description 3
- 230000002522 swelling effect Effects 0.000 description 3
- 102000000503 Collagen Type II Human genes 0.000 description 2
- 108010041390 Collagen Type II Proteins 0.000 description 2
- 102000001187 Collagen Type III Human genes 0.000 description 2
- 108010069502 Collagen Type III Proteins 0.000 description 2
- 108090000695 Cytokines Proteins 0.000 description 2
- 102000004127 Cytokines Human genes 0.000 description 2
- 241000588724 Escherichia coli Species 0.000 description 2
- 229920002683 Glycosaminoglycan Polymers 0.000 description 2
- 241001465754 Metazoa Species 0.000 description 2
- 238000005481 NMR spectroscopy Methods 0.000 description 2
- 208000028990 Skin injury Diseases 0.000 description 2
- 206010072170 Skin wound Diseases 0.000 description 2
- 241000191967 Staphylococcus aureus Species 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 230000000843 anti-fungal effect Effects 0.000 description 2
- 230000000840 anti-viral effect Effects 0.000 description 2
- 229940121375 antifungal agent Drugs 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 239000012620 biological material Substances 0.000 description 2
- 239000008366 buffered solution Substances 0.000 description 2
- 239000013068 control sample Substances 0.000 description 2
- 238000005265 energy consumption Methods 0.000 description 2
- 230000002708 enhancing effect Effects 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 230000005847 immunogenicity Effects 0.000 description 2
- 208000015181 infectious disease Diseases 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- BQJCRHHNABKAKU-KBQPJGBKSA-N morphine Chemical compound O([C@H]1[C@H](C=C[C@H]23)O)C4=C5[C@@]12CCN(C)[C@@H]3CC5=CC=C4O BQJCRHHNABKAKU-KBQPJGBKSA-N 0.000 description 2
- 239000010413 mother solution Substances 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 230000000717 retained effect Effects 0.000 description 2
- 230000035807 sensation Effects 0.000 description 2
- 239000006228 supernatant Substances 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 230000007838 tissue remodeling Effects 0.000 description 2
- VBEQCZHXXJYVRD-GACYYNSASA-N uroanthelone Chemical compound C([C@@H](C(=O)N[C@H](C(=O)N[C@@H](CS)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CS)C(=O)N[C@H](C(=O)N[C@@H]([C@@H](C)CC)C(=O)NCC(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N[C@@H](CO)C(=O)NCC(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CS)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(O)=O)C(C)C)[C@@H](C)O)NC(=O)[C@H](CO)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CO)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@@H](NC(=O)[C@H](CC=1NC=NC=1)NC(=O)[C@H](CCSC)NC(=O)[C@H](CS)NC(=O)[C@@H](NC(=O)CNC(=O)CNC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CS)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)CNC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CO)NC(=O)[C@H](CO)NC(=O)[C@H]1N(CCC1)C(=O)[C@H](CS)NC(=O)CNC(=O)[C@H]1N(CCC1)C(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CO)NC(=O)[C@@H](N)CC(N)=O)C(C)C)[C@@H](C)CC)C1=CC=C(O)C=C1 VBEQCZHXXJYVRD-GACYYNSASA-N 0.000 description 2
- 208000035143 Bacterial infection Diseases 0.000 description 1
- 208000032544 Cicatrix Diseases 0.000 description 1
- 102000008186 Collagen Human genes 0.000 description 1
- 108010035532 Collagen Proteins 0.000 description 1
- IAJILQKETJEXLJ-UHFFFAOYSA-N Galacturonsaeure Natural products O=CC(O)C(O)C(O)C(O)C(O)=O IAJILQKETJEXLJ-UHFFFAOYSA-N 0.000 description 1
- XLYOFNOQVPJJNP-ZSJDYOACSA-N Heavy water Chemical class [2H]O[2H] XLYOFNOQVPJJNP-ZSJDYOACSA-N 0.000 description 1
- 239000006142 Luria-Bertani Agar Substances 0.000 description 1
- OVRNDRQMDRJTHS-UHFFFAOYSA-N N-acelyl-D-glucosamine Natural products CC(=O)NC1C(O)OC(CO)C(O)C1O OVRNDRQMDRJTHS-UHFFFAOYSA-N 0.000 description 1
- OVRNDRQMDRJTHS-FMDGEEDCSA-N N-acetyl-beta-D-glucosamine Chemical compound CC(=O)N[C@H]1[C@H](O)O[C@H](CO)[C@@H](O)[C@@H]1O OVRNDRQMDRJTHS-FMDGEEDCSA-N 0.000 description 1
- MBLBDJOUHNCFQT-LXGUWJNJSA-N N-acetylglucosamine Natural products CC(=O)N[C@@H](C=O)[C@@H](O)[C@H](O)[C@H](O)CO MBLBDJOUHNCFQT-LXGUWJNJSA-N 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- AEMOLEFTQBMNLQ-WAXACMCWSA-N alpha-D-glucuronic acid Chemical compound O[C@H]1O[C@H](C(O)=O)[C@@H](O)[C@H](O)[C@H]1O AEMOLEFTQBMNLQ-WAXACMCWSA-N 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 230000033115 angiogenesis Effects 0.000 description 1
- 230000000845 anti-microbial effect Effects 0.000 description 1
- 239000003146 anticoagulant agent Substances 0.000 description 1
- 229940127219 anticoagulant drug Drugs 0.000 description 1
- 208000022362 bacterial infectious disease Diseases 0.000 description 1
- 230000008952 bacterial invasion Effects 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000003115 biocidal effect Effects 0.000 description 1
- 230000036770 blood supply Effects 0.000 description 1
- 210000004204 blood vessel Anatomy 0.000 description 1
- 230000036760 body temperature Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 229920001436 collagen Polymers 0.000 description 1
- 230000002860 competitive effect Effects 0.000 description 1
- 208000006111 contracture Diseases 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 230000003013 cytotoxicity Effects 0.000 description 1
- 231100000135 cytotoxicity Toxicity 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 206010012601 diabetes mellitus Diseases 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 125000000600 disaccharide group Chemical group 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 210000000416 exudates and transudate Anatomy 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 239000003292 glue Substances 0.000 description 1
- 230000023597 hemostasis Effects 0.000 description 1
- 230000036571 hydration Effects 0.000 description 1
- 238000006703 hydration reaction Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 230000008595 infiltration Effects 0.000 description 1
- 238000001764 infiltration Methods 0.000 description 1
- 230000002757 inflammatory effect Effects 0.000 description 1
- 230000028709 inflammatory response Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000009545 invasion Effects 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 230000001050 lubricating effect Effects 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 210000004379 membrane Anatomy 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 229940050176 methyl chloride Drugs 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 229960005181 morphine Drugs 0.000 description 1
- 229950006780 n-acetylglucosamine Drugs 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- 231100000956 nontoxicity Toxicity 0.000 description 1
- 235000015097 nutrients Nutrition 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 239000000546 pharmaceutical excipient Substances 0.000 description 1
- 239000000825 pharmaceutical preparation Substances 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 230000035790 physiological processes and functions Effects 0.000 description 1
- 230000035755 proliferation Effects 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 238000000425 proton nuclear magnetic resonance spectrum Methods 0.000 description 1
- 238000007634 remodeling Methods 0.000 description 1
- 230000008521 reorganization Effects 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 238000000518 rheometry Methods 0.000 description 1
- 230000037387 scars Effects 0.000 description 1
- 210000004927 skin cell Anatomy 0.000 description 1
- 230000004215 skin function Effects 0.000 description 1
- 238000002791 soaking Methods 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 210000000106 sweat gland Anatomy 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L26/00—Chemical aspects of, or use of materials for, wound dressings or bandages in liquid, gel or powder form
- A61L26/0061—Use of materials characterised by their function or physical properties
- A61L26/008—Hydrogels or hydrocolloids
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L26/00—Chemical aspects of, or use of materials for, wound dressings or bandages in liquid, gel or powder form
- A61L26/0009—Chemical aspects of, or use of materials for, wound dressings or bandages in liquid, gel or powder form containing macromolecular materials
- A61L26/0023—Polysaccharides
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L26/00—Chemical aspects of, or use of materials for, wound dressings or bandages in liquid, gel or powder form
- A61L26/0009—Chemical aspects of, or use of materials for, wound dressings or bandages in liquid, gel or powder form containing macromolecular materials
- A61L26/0028—Polypeptides; Proteins; Degradation products thereof
- A61L26/0047—Specific proteins or polypeptides not covered by groups A61L26/0033 - A61L26/0042
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L26/00—Chemical aspects of, or use of materials for, wound dressings or bandages in liquid, gel or powder form
- A61L26/0057—Ingredients of undetermined constitution or reaction products thereof
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L26/00—Chemical aspects of, or use of materials for, wound dressings or bandages in liquid, gel or powder form
- A61L26/0095—Composite materials, i.e. containing one material dispersed in a matrix of the same or different material
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2300/00—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
- A61L2300/20—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices containing or releasing organic materials
- A61L2300/252—Polypeptides, proteins, e.g. glycoproteins, lipoproteins, cytokines
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2300/00—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
- A61L2300/40—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a specific therapeutic activity or mode of action
- A61L2300/404—Biocides, antimicrobial agents, antiseptic agents
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Public Health (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Epidemiology (AREA)
- Veterinary Medicine (AREA)
- Composite Materials (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Dispersion Chemistry (AREA)
- Materials For Medical Uses (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Medicinal Preparation (AREA)
Abstract
Description
技术领域technical field
本发明涉及医药生物材料技术领域,特别是涉及一种负载抗菌肽的可自愈水凝胶创面敷料及其制备方法。The invention relates to the technical field of medical biomaterials, in particular to a self-healing hydrogel wound dressing loaded with antimicrobial peptides and a preparation method thereof.
背景技术Background technique
皮肤是覆盖人体表面并直接接触外界环境的重要器官,具有感觉外界刺激、调节体温以及保护人体免受外界伤害的作用。由于与外界直接接触的特点,皮肤也成为最脆弱的组织之一。虽然大多数常见的皮肤损伤可以在一段时间内基本恢复到原来的外观,但成人皮肤损伤很难100%的恢复皮肤功能,而是通常伴随着疤痕组织的形成和皮肤附属物,如毛发,汗腺等的严重缺乏。皮肤创伤的修复分为止血,炎症,增殖,重塑四个连续协调的过程。但是,伤口愈合过程一般不能完美有序地进行,各种因素在任何阶段的影响都可能导致伤口修复异常,如过度炎症、烧伤、大面积皮肤组织损失、感染以及糖尿病等。The skin is an important organ that covers the surface of the human body and directly contacts the external environment. It has the functions of sensing external stimuli, regulating body temperature and protecting the human body from external damage. Due to the characteristics of direct contact with the outside world, the skin is also one of the most vulnerable tissues. Although most common skin injuries can basically return to their original appearance over a period of time, it is difficult for adult skin injuries to restore 100% of the skin function, but usually accompanied by the formation of scar tissue and skin appendages, such as hair, sweat glands There is a serious lack of waiting. The repair of skin wounds is divided into four continuous and coordinated processes: hemostasis, inflammation, proliferation, and remodeling. However, the wound healing process generally does not proceed in a perfect and orderly manner, and the influence of various factors at any stage may lead to abnormal wound repair, such as excessive inflammation, burns, extensive loss of skin tissue, infection, and diabetes.
创面敷料可以覆盖伤口,提供抵御外部感染的临时屏障,并作为诱导模板,引导皮肤细胞重组以及随后宿主组织的浸润和整合,显示出对伤口愈合的显著效果。理想的皮肤创面敷料应满足以下要求:(1)良好的组织相容性,无毒性或炎症;(2)良好的保湿性,能维持创面湿润环境,促进细胞水合,对创面渗出物有一定的吸收;(3)有足够的物理机械强度,保证其完整性,避免材料破损引起的外来细菌入侵。许多创面敷料已被开发出来以促进伤口修复,如半透膜、半透泡沫、水胶和水凝胶。在这些敷料中,水凝胶因其良好的亲水性、生物相容性和像细胞外基质(ECM)这样的三维多孔结构而成为最具竞争力的敷料候选材料,也引起了许多研究人员的兴趣。Wound dressings can cover wounds, provide a temporary barrier against external infections, and serve as inductive templates to guide skin cell reorganization and subsequent infiltration and integration of host tissues, showing significant effects on wound healing. An ideal skin wound dressing should meet the following requirements: (1) good histocompatibility, no toxicity or inflammation; (2) good moisture retention, which can maintain a moist environment of the wound, promote cell hydration, and have a certain effect on wound exudate. (3) It has sufficient physical and mechanical strength to ensure its integrity and avoid foreign bacterial invasion caused by material damage. Many wound dressings have been developed to facilitate wound repair, such as semipermeable membranes, semipermeable foams, hydrogels, and hydrogels. Among these dressings, hydrogels are the most competitive dressing candidates due to their good hydrophilicity, biocompatibility, and three-dimensional porous structure like extracellular matrix (ECM), which has also attracted many researchers interest of.
在伤口愈合过程中,细菌感染会延长炎症阶段,过度的炎症不利于伤口的愈合,因此,在敷料中添加抗菌剂是有必要的,通过添加不同的抗菌剂可以得到不同的抗菌敷料,常规的抗生素抗菌敷料虽然能够起到较好的抗菌效果,但是抗生素的过度使用易使细菌产生耐药性;常规的无机纳米粒子抗菌敷料如纳米银敷料等,虽然有较好的抗菌性能,但由于其较大的细胞毒性,不可避免的会给创面带来一定程度的损害。同时,普通的水凝胶敷料暴露在外部张力或组织活动下时容易破裂或断裂。水凝胶的破裂除了会导致自身性能恶化甚至丧失外,还会进一步引起外来细菌的入侵,导致伤口感染。In the wound healing process, bacterial infection will prolong the inflammatory phase, and excessive inflammation is not conducive to wound healing. Therefore, it is necessary to add antibacterial agents to the dressing. Different antibacterial dressings can be obtained by adding different antibacterial agents. Conventional Although antibiotic antibacterial dressings can play a better antibacterial effect, excessive use of antibiotics can easily lead to drug resistance of bacteria; conventional inorganic nanoparticle antibacterial dressings, such as nano-silver dressings, have good antibacterial properties, but due to their Larger cytotoxicity will inevitably bring a certain degree of damage to the wound surface. Meanwhile, common hydrogel dressings are prone to cracking or breaking when exposed to external tension or tissue activity. The rupture of the hydrogel will not only lead to the deterioration or even loss of its own performance, but also further cause the invasion of foreign bacteria and lead to wound infection.
发明内容Contents of the invention
基于此,本发明的目的在于,提供一种负载抗菌肽的可自愈水凝胶创面敷料,其具有良好的抗菌作用,且具有一定自愈性能的优点。Based on this, the object of the present invention is to provide a self-healing hydrogel wound dressing loaded with antimicrobial peptides, which has good antibacterial effect and has the advantage of certain self-healing properties.
一种负载抗菌肽的可自愈水凝胶创面敷料,其由复合水凝胶基质以及负载于所述复合水凝胶基质的抗菌肽;所述复合水凝胶基质由苯硼酸、线性亲水性多糖以及脱细胞猪小肠粘膜下层基质材料交联形成,所述线性亲水性多糖为天然来源的并包含有羧基官能团的多糖。A self-healing hydrogel wound dressing loaded with antibacterial peptides, which consists of a composite hydrogel matrix and antimicrobial peptides loaded on the composite hydrogel matrix; the composite hydrogel matrix is composed of phenylboronic acid, linear hydrophilic The linear hydrophilic polysaccharide is a polysaccharide of natural origin and contains a carboxyl functional group.
本发明实施例所述负载抗菌肽的可自愈水凝胶创面敷料,其选用线性亲水性多糖以及脱细胞猪小肠粘膜下层基质材料与苯硼酸交联形成复合水凝胶基质,基于苯硼酸(PBA)与线性亲水性多糖以及脱细胞猪小肠粘膜下层基质材料所含有的氨基官能团与羧基官能团发生酯化反应,通过该反应交联成胶进而得到可作为创面敷料的水凝胶。该交联反应通过动态共价键的形成,充分利用动态共价键自身所具有的可逆性和平衡性,使所得水凝胶基质具有良好的溶胀性能,同时在一定条件下能够呈现出自修复能力,进而避免了现有水凝胶创面敷料其在使用后由于暴露在外部张力作用下或在组织活动时容易破裂或断裂,不仅导致自身性能恶化甚至丧失,还进一步引起外来细菌入侵,引发伤口感染的问题,同时,该动态共价键还能赋予所述水凝胶基质适宜的柔软度,使用时不会对伤口造成异物感,在伤口愈合后可轻易自创免除剥离,不会对创面造成二次损伤。The antimicrobial peptide-loaded self-healing hydrogel wound dressing described in the embodiments of the present invention uses linear hydrophilic polysaccharides and acellular porcine small intestinal submucosa matrix material cross-linked with phenylboronic acid to form a composite hydrogel matrix, based on phenylboronic acid (PBA) undergoes an esterification reaction with the linear hydrophilic polysaccharide and the amino functional group and carboxyl functional group contained in the matrix material of the decellularized porcine small intestine submucosa, through which the reaction is cross-linked to form a gel, and then a hydrogel that can be used as a wound dressing is obtained. Through the formation of dynamic covalent bonds, the crosslinking reaction makes full use of the reversibility and balance of the dynamic covalent bonds themselves, so that the obtained hydrogel matrix has good swelling properties and can exhibit self-healing ability under certain conditions. , thus avoiding that the existing hydrogel wound dressings are easily broken or broken due to exposure to external tension or tissue activities after use, which not only leads to deterioration or even loss of their own performance, but also further causes foreign bacteria to invade and cause wound infection At the same time, the dynamic covalent bond can also endow the hydrogel matrix with suitable softness, which will not cause foreign body sensation to the wound during use, and can be easily self-created and exfoliated after the wound is healed, without causing any damage to the wound surface. Secondary damage.
另外,本发明中通过选用天然来源的线性亲水性多糖以及脱细胞猪小肠粘膜下层基质材料,使制得的水凝胶材料具有良好的生物相容性,且脱细胞猪小肠粘膜下层基质材料(SIS)作为一种细胞外基质(ECM),其免疫原性较小,绝大多数成分为I型和III型胶原,可提供一定的机械强度,同时SIS中还保留有多种细胞因子,如基本成纤维细胞生长因子(bFGF)、转化生长因子(TGF)、表皮生长因子(EGF)、血管内皮生长因子(VEGF)等,这些成分对组织重塑和伤口愈合起到了重要作用,应用于创面敷料时可有效促进创面修复。In addition, in the present invention, by selecting linear hydrophilic polysaccharides from natural sources and acellular porcine small intestinal submucosa matrix material, the prepared hydrogel material has good biocompatibility, and the decellularized porcine small intestinal submucosa matrix material (SIS), as an extracellular matrix (ECM), has less immunogenicity, and most of its components are type I and type III collagen, which can provide a certain mechanical strength, and at the same time, a variety of cytokines are retained in SIS, Such as basic fibroblast growth factor (bFGF), transforming growth factor (TGF), epidermal growth factor (EGF), vascular endothelial growth factor (VEGF), etc., these components play an important role in tissue remodeling and wound healing, and are used in Wound dressing can effectively promote wound repair.
进一步在所述复合水凝胶基质中负载抗菌肽材料,相对于无机纳米抗菌粒子以及抗生素,抗菌肽(AMPs)因其抗菌机制与抗生素不同,不容易产生耐药性,从而在众多的抗生素替代品中,AMPs因其广谱的抗菌、抗真菌、抗病毒和免疫增强作用而备受关注。抗菌肽的抗菌性能优良,且不易产生耐药性,且负载于所述复合水凝胶基质时还能够参与动态共价键的形成,进而表现出缓释的特点,可起到长效抗菌的作用。Further, antimicrobial peptide materials are loaded in the composite hydrogel matrix. Compared with inorganic nano-antibacterial particles and antibiotics, antimicrobial peptides (AMPs) are not easy to produce drug resistance because of their antibacterial mechanism and antibiotics. AMPs have attracted much attention due to their broad-spectrum antibacterial, antifungal, antiviral and immune enhancing effects. Antimicrobial peptides have excellent antibacterial performance and are not easy to produce drug resistance, and when loaded on the composite hydrogel matrix, they can also participate in the formation of dynamic covalent bonds, thereby showing the characteristics of slow release, which can play a role of long-acting antibacterial effect.
进一步地,所述线性亲水性多糖选自海藻酸钠、透明质酸、羧甲基壳聚糖、肝素中的一种或多种,其生物相容性良好。Further, the linear hydrophilic polysaccharide is selected from one or more of sodium alginate, hyaluronic acid, carboxymethyl chitosan, and heparin, and has good biocompatibility.
进一步地,所述抗菌肽为天蚕素抗菌肽,其为动物抗菌肽,其对革兰氏阳性菌、部分革兰氏阴性菌具有很强的杀伤力,在所述负载抗菌肽的可自愈水凝胶创面敷料中的浓度为0.05~1.0mg/L。Further, the antimicrobial peptide is cecropin antimicrobial peptide, which is an animal antimicrobial peptide, which has strong lethality to Gram-positive bacteria and some Gram-negative bacteria, and can be self-healing in the loaded antimicrobial peptide The concentration in the hydrogel wound dressing is 0.05-1.0 mg/L.
另外,本发明实施例还提供一种负载抗菌肽的可自愈水凝胶创面敷料的制备方法,其包括如下具体操作步骤:In addition, the embodiment of the present invention also provides a preparation method of a self-healing hydrogel wound dressing loaded with antimicrobial peptides, which includes the following specific steps:
S1、苯硼酸化线性亲水性多糖的制备S1. Preparation of phenylborated linear hydrophilic polysaccharide
将线性亲水性多糖粉末溶解于纯水中,随后向该溶液中分别加入3-氨基甲基苯硼酸(PBA)以及氯化4-(4,6-二甲氧基-1,3,5-三嗪-2-基)-4-甲基吗啉(DMTMM),待完全溶解后调节溶液的pH值至6.0~7.0,室温下搅拌后转移至透析袋中,在预定温度条件下用去离子水透析预定时间,得到的透析液冷冻干燥后得到所述苯硼酸化线性亲水性多糖;Dissolve linear hydrophilic polysaccharide powder in pure water, then add 3-aminomethylphenylboronic acid (PBA) and 4-(4,6-dimethoxy-1,3,5 -Triazin-2-yl)-4-methylmorpholine (DMTMM), adjust the pH value of the solution to 6.0-7.0 after it is completely dissolved, transfer it to a dialysis bag after stirring at room temperature, and use it under predetermined temperature conditions Ion water dialysis for a predetermined time, and the obtained dialysate is freeze-dried to obtain the phenylborated linear hydrophilic polysaccharide;
S2、脱细胞猪小肠粘膜下层基质材料(SIS)冻干粉的制备S2. Preparation of acellular porcine small intestinal submucosa matrix material (SIS) freeze-dried powder
S21、将清洗并处理好的猪小肠粘膜剪成小片后浸入含有胰蛋白酶和乙二胺四乙酸(EDTA)的PBS缓冲溶液中,在预定温度条件下搅拌预定时间,离心并收集沉淀;S21. Cut the cleaned and treated pig small intestinal mucosa into small pieces, then immerse in a PBS buffer solution containing trypsin and ethylenediaminetetraacetic acid (EDTA), stir for a predetermined time under predetermined temperature conditions, centrifuge and collect the precipitate;
S22、将步骤S21所得沉淀加入至含有聚乙二醇辛基苯基醚(Triton-X-100)和乙二胺四乙酸(EDTA)的PBS缓冲溶液中处理预定时间,离心并收集沉淀,使用PBS缓冲溶液洗涤沉淀若干次;S22. Add the precipitate obtained in step S21 to a PBS buffer solution containing polyethylene glycol octylphenyl ether (Triton-X-100) and ethylenediaminetetraacetic acid (EDTA) for a predetermined time, centrifuge and collect the precipitate, and use Wash the precipitate several times with PBS buffer solution;
S23、将步骤S22所得沉淀浸入至含有脱氧核糖核酸酶I(DNase I)及氯化镁(MgC12)的PBS缓冲溶液中,在预定温度条件下搅拌预定时间,以完全去除组织中的细胞,离心并收集沉淀,使用PBS缓冲溶液洗涤沉淀若干次;S23. Immerse the precipitate obtained in step S22 into a PBS buffer solution containing deoxyribonuclease I (DNase I) and magnesium chloride (MgCl 2 ), stir at a predetermined temperature for a predetermined time to completely remove cells in the tissue, centrifuge and Collect the precipitate and wash the precipitate several times with PBS buffer solution;
S24、将步骤S23所得沉淀用过氧乙酸的乙醇溶液浸泡灭菌,离心并收集沉淀,使用PBS缓冲溶液洗涤若干次后冻干得到冻干脱细胞猪小肠粘膜下层组织;S24. Soak and sterilize the precipitate obtained in step S23 with an ethanol solution of peracetic acid, centrifuge and collect the precipitate, wash several times with PBS buffer solution, and freeze-dry to obtain freeze-dried decellularized porcine small intestinal submucosa tissue;
S25、将步骤S24所得冻干脱细胞猪小肠粘膜下层组织与胃蛋白酶投入至乙酸溶液中,搅拌预定时间,使用滤布过滤除去较大的颗粒,随后将滤液转移到透析袋中,在预定温度条件下用去离子水透析预定时间,将滤液冻干,得到脱细胞猪小肠粘膜下层基质材料冻干粉;S25. Put the freeze-dried decellularized porcine small intestinal submucosa tissue and pepsin obtained in step S24 into the acetic acid solution, stir for a predetermined time, filter with a filter cloth to remove larger particles, and then transfer the filtrate to a dialysis bag. dialyzing with deionized water for a predetermined time under certain conditions, and freeze-drying the filtrate to obtain the freeze-dried powder of acellular porcine small intestinal submucosa matrix material;
S3、负载抗菌肽的可自愈水凝胶创面敷料的制备S3. Preparation of self-healing hydrogel wound dressings loaded with antimicrobial peptides
称取预定量的步骤S1所得苯硼酸化线性亲水性多糖粉末溶解于PBS缓冲溶液中,得溶液A;称取预定量的步骤S2所得脱细胞猪小肠粘膜下层基质材料冻干粉溶解于PBS缓冲溶液中,得溶液B;将抗菌肽粉末分散至步骤溶液B中,随后将溶液A与溶液B混合均匀,即得所述负载抗菌肽的可自愈水凝胶创面敷料。Weighing a predetermined amount of phenylborated linear hydrophilic polysaccharide powder obtained in step S1 and dissolving it in PBS buffer solution to obtain solution A; weighing a predetermined amount of lyophilized powder of acellular porcine small intestinal submucosa matrix material obtained in step S2 and dissolving it in PBS In the buffer solution, solution B is obtained; the antimicrobial peptide powder is dispersed into the step solution B, and then solution A and solution B are uniformly mixed to obtain the antimicrobial peptide-loaded self-healing hydrogel wound dressing.
本发明实施例所述负载抗菌肽的可自愈水凝胶创面敷料的制备方法,其首先使用苯硼酸对线性亲水性多糖进行改性处理,赋予其苯硼酸结构,进一步与自制脱细胞猪小肠粘膜下层基质材料上所富含的氨基与羧基官能团发生反应,达到交联形成动态共价键的目的,制备方法操作简单,且对设备条件及温度条件要求低,能耗低,制备成本低,便于大规模临床应用。The preparation method of the antimicrobial peptide-loaded self-healing hydrogel wound dressing described in the embodiment of the present invention first uses phenylboronic acid to modify the linear hydrophilic polysaccharide, endows it with a phenylboronic acid structure, and further combines with self-made decellularized pig The amino groups rich in small intestinal submucosa matrix materials react with carboxyl functional groups to achieve the purpose of cross-linking to form dynamic covalent bonds. The preparation method is simple to operate, and has low requirements on equipment conditions and temperature conditions, low energy consumption, and low preparation costs. , which is convenient for large-scale clinical application.
进一步地,步骤S1中3-氨基甲基苯硼酸(PBA)以及氯化4-(4,6-二甲氧基-1,3,5-三嗪-2-基)-4-甲基吗啉(DMTMM)所用摩尔比为1:1~1:1.5。Further, in step S1, 3-aminomethylphenylboronic acid (PBA) and 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methyl chloride The molar ratio of morphine (DMTMM) is 1:1~1:1.5.
进一步地,步骤S21中为使用含有0.25wt%胰蛋白酶以及1mmol/L乙二胺四乙酸的PBS缓冲溶液对猪小肠粘膜进行处理;Further, in step S21, the pig small intestinal mucosa is treated with a PBS buffer solution containing 0.25wt% trypsin and 1mmol/L ethylenediaminetetraacetic acid;
步骤S22中为使用含有1wt%聚乙二醇辛基苯基醚以及25mmol/L乙二胺四乙酸的PBS缓冲溶液对步骤S21所得沉淀进行处理;In step S22, the precipitate obtained in step S21 is treated with a PBS buffer solution containing 1 wt% polyethylene glycol octylphenyl ether and 25 mmol/L ethylenediaminetetraacetic acid;
步骤S23中为使用含有30U/mL脱氧核糖核酸酶I以及10mmol/L氯化镁的PBS缓冲溶液对步骤S22所得沉淀进行处理;In step S23, the precipitate obtained in step S22 is treated with a PBS buffer solution containing 30U/mL deoxyribonuclease I and 10mmol/L magnesium chloride;
步骤S24中为使用过氧乙酸浓度为0.1%的4%乙醇溶液对步骤S23所得沉淀浸泡灭菌1.5~2h;In step S24, 4% ethanol solution with a peracetic acid concentration of 0.1% is used to sterilize the precipitate obtained in step S23 by soaking for 1.5 to 2 hours;
步骤S25中为按照每100mg冻干脱细胞猪小肠粘膜下层组织使用15mg胃蛋白酶的比例加入至乙酸溶液中搅拌22~26h。In step S25, 15 mg of pepsin is used for every 100 mg of freeze-dried decellularized porcine small intestinal submucosa tissue, and then added to the acetic acid solution and stirred for 22-26 hours.
进一步地,步骤S3中溶液A与溶液B的溶剂均为PBS缓冲溶液,其pH范围为7.0~8.0,溶液A中苯硼酸化线性亲水性多糖的质量浓度为5%,溶液B中脱细胞猪小肠粘膜下层基质材料的质量浓度为5%,溶液A与溶液B混合的质量比为1:0.6~1:1.4。Further, the solvents of solution A and solution B in step S3 are both PBS buffer solution, the pH range of which is 7.0-8.0, the mass concentration of phenylborated linear hydrophilic polysaccharide in solution A is 5%, and the decellularized polysaccharide in solution B is The mass concentration of the porcine small intestine submucosa matrix material is 5%, and the mixed mass ratio of solution A and solution B is 1:0.6˜1:1.4.
进一步地,步骤S4中所述抗菌肽在所述复合水凝胶基质溶液中的质量浓度为0.01~0.1%。Further, the mass concentration of the antimicrobial peptide in the composite hydrogel matrix solution in step S4 is 0.01-0.1%.
进一步地,步骤S21中为在35~40℃下搅拌5~7h;步骤S22中沉淀处理时间为23~25h;步骤S23中为在35~40℃下搅拌23~25h;步骤S24中搅拌时间为23~25h。Further, in step S21, stir at 35-40°C for 5-7h; in step S22, the precipitation treatment time is 23-25h; in step S23, stir at 35-40°C for 23-25h; in step S24, the stirring time is 23~25h.
为了更好地理解和实施,下面结合附图详细说明本发明。For better understanding and implementation, the present invention will be described in detail below in conjunction with the accompanying drawings.
附图说明Description of drawings
图1为对比例1所述可自愈水凝胶创面敷料的自愈性能示意图;Fig. 1 is a schematic diagram of the self-healing performance of the self-healing hydrogel wound dressing described in Comparative Example 1;
图2为实施例4中制备的SA和SA-PBA的核磁氢谱图;Fig. 2 is the nuclear magnetic hydrogen spectrogram of SA and SA-PBA prepared in
图3为对比例1、2、3中制备的三组可自愈水凝胶创面敷料的弹性模量(G')和粘性模量(G")随角频率变化的关系图;Fig. 3 is the relationship diagram of elastic modulus (G') and viscous modulus (G") of three groups of self-healing hydrogel wound dressings prepared in Comparative Examples 1, 2, and 3 as a function of angular frequency;
图4为实施例4制得的负载抗菌肽的可自愈水凝胶创面敷料进行AMP体外释放曲线图。Fig. 4 is the in vitro release curve of AMP from the antimicrobial peptide-loaded self-healing hydrogel wound dressing prepared in Example 4.
具体实施方式Detailed ways
为了使本发明的上述目的、特征和优点能够更加明显易懂,下面通过本发明的具体实施方式做详细的说明。In order to make the above objects, features and advantages of the present invention more obvious and comprehensible, specific implementations of the present invention will be described in detail below.
在下面的描述中阐述了很多具体细节以便于充分理解本发明,但是本发明还可以采用其他不同于本发明在此描述的其他方式来实施,本领域技术人员可以在不为违背本发明内涵的情况下做类似推广,因此本发明不受以下公开的实施例的限制。In the following description, a lot of specific details have been set forth in order to fully understand the present invention, but the present invention can also be implemented in other ways that are different from the present invention described here, and those skilled in the art can do so without departing from the connotation of the present invention. Similar promotions are made in the following cases, so the present invention is not limited by the following disclosed embodiments.
实施例1Example 1
本发明实施例1提供一种负载抗菌肽的可自愈水凝胶创面敷料,其由复合水凝胶基质以及负载于所述复合水凝胶基质的抗菌肽;所述复合水凝胶基质由苯硼酸、线性亲水性多糖以及脱细胞猪小肠粘膜下层基质材料交联形成,所述线性亲水性多糖为天然来源的并包含有羧基官能团的多糖。具体地,在本实施例中,为海藻酸钠。海藻酸钠(SA)是一种线性亲水性多糖,具有药物制剂辅料所需的稳定性、溶解性、粘性和安全性,由于其良好的生物相容性和良好的生物可吸收性,已经在医学领域得到了广泛的应用。所述抗菌肽为天蚕素抗菌肽,其对革兰氏阳性菌、部分革兰氏阴性菌具有很强的杀伤力,且不易产生抗药性,其在所述负载抗菌肽的可自愈水凝胶创面敷料中的浓度为0.05mg/L。
实施例2Example 2
本发明实施例2提供一种负载抗菌肽的可自愈水凝胶创面敷料,其由复合水凝胶基质以及负载于所述复合水凝胶基质的抗菌肽;所述复合水凝胶基质由苯硼酸、线性亲水性多糖以及脱细胞猪小肠粘膜下层基质材料交联形成,所述线性亲水性多糖为天然来源的并包含有羧基官能团的多糖。具体地,在本实施例中,为透明质酸。透明质酸是一种酸性粘多糖,是D-葡萄糖醛酸及N-乙酰葡糖胺组成的双糖单位糖胺聚糖,以其独特的分子结构和理化性质在机体内显示出多种重要的生理功能,如润滑关节,调节血管壁的通透性,调节蛋白质,水电解质扩散及运转,促进创伤愈合等。所述抗菌肽为天蚕素抗菌肽,其对革兰氏阳性菌、部分革兰氏阴性菌具有很强的杀伤力,且不易产生抗药性,其在所述负载抗菌肽的可自愈水凝胶创面敷料中的浓度为0.5mg/L。
实施例3Example 3
本发明实施例3提供一种负载抗菌肽的可自愈水凝胶创面敷料,其由复合水凝胶基质以及负载于所述复合水凝胶基质的抗菌肽;所述复合水凝胶基质由苯硼酸、线性亲水性多糖以及脱细胞猪小肠粘膜下层基质材料交联形成,所述线性亲水性多糖为天然来源的并包含有羧基官能团的多糖。具体地,在本实施例中,为羧甲基壳聚糖和肝素。羧甲基壳聚糖是一种重要的水溶性壳聚糖衍生物,其具备良好的生物相容性和生物降解性,在水凝胶和愈合创伤类生物材料中广泛应用。肝素是动物体内一种天然抗凝血物质,其能够缓解疼痛、抗凝、抑制炎症反应、促进血管再生,恢复局部血供,并能影响胶原的合成和降解,创面愈合后皮肤光滑,减轻瘢痕及瘢痕挛缩。所述抗菌肽为天蚕素抗菌肽,其对革兰氏阳性菌、部分革兰氏阴性菌具有很强的杀伤力,且不易产生抗药性,其在所述负载抗菌肽的可自愈水凝胶创面敷料中的浓度为1.0mg/L。
实施例4Example 4
本发明实施例4提供一种负载抗菌肽的可自愈水凝胶创面敷料的制备方法,其包括如下具体操作步骤:
S1、苯硼酸化海藻酸钠(SA-PBA)的制备Preparation of S1, phenylborated sodium alginate (SA-PBA)
称取1g海藻酸钠(SA),将其溶解于20mL纯水中,随后向该溶液中分别加入0.38g(0.25mmol)3-氨基甲基苯硼酸(PBA)以及0.83g(0.3mmol)氯化4-(4,6-二甲氧基-1,3,5-三嗪-2-基)-4-甲基吗啉(DMTMM),待完全溶解后用1mol/L的盐酸溶液调节溶液的pH值至6.5,在室温下搅拌72h后转移至截留分子量为6~8kDa透析袋中,在室温条件下用去离子水透析3d,得到的透析液用台式冻干机冷冻干燥后得到所述苯硼酸化海藻酸钠(SA-PBA聚合物偶联物),将产物保存于干燥器中备用;Weigh 1g of sodium alginate (SA), dissolve it in 20mL of pure water, then add 0.38g (0.25mmol) of 3-aminomethylphenylboronic acid (PBA) and 0.83g (0.3mmol) of chlorine to the solution 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholine (DMTMM), after being completely dissolved, adjust the solution with 1mol/L hydrochloric acid solution pH value to 6.5, stirred at room temperature for 72 hours, then transferred to a dialysis bag with a molecular weight cut-off of 6-8 kDa, dialyzed with deionized water for 3 days at room temperature, and obtained the dialysate obtained after freeze-drying with a desktop lyophilizer to obtain the Phenylborated sodium alginate (SA-PBA polymer conjugate), the product is stored in a desiccator for subsequent use;
S2、脱细胞猪小肠粘膜下层基质材料(SIS)冻干粉的制备S2. Preparation of acellular porcine small intestinal submucosa matrix material (SIS) freeze-dried powder
S21、将新鲜的猪小肠肠道内污物去除,清洗干净,用小刀将小肠组织刮除,直到其变为半透明状得到猪小肠粘膜,将处理好的猪小肠粘膜剪切成2cm×2cm的尺寸,随后将其浸入含有0.25wt%胰蛋白酶以及1mmol/L乙二胺四乙酸(EDTA)的磷酸缓冲溶液(PBS缓冲溶液)中,于磁力搅拌器在37℃下以300rpm的转速搅拌6h,以8000rpm的转速离心并收集沉淀;S21. Remove the dirt in the fresh pig small intestine, clean it, scrape off the small intestine tissue with a knife until it becomes translucent to obtain the pig small intestine mucosa, and cut the processed pig small intestine mucosa into 2cm×2cm size, then immerse it in a phosphate buffered solution (PBS buffered solution) containing 0.25wt% trypsin and 1mmol/L ethylenediaminetetraacetic acid (EDTA), and stir with a magnetic stirrer at 37°C for 6h at a speed of 300rpm, Centrifuge at a speed of 8000rpm and collect the precipitate;
S22、将步骤S21所得沉淀加入至含有1wt%聚乙二醇辛基苯基醚(Triton-X-100)以及25mmol/L乙二胺四乙酸(EDTA)的PBS缓冲溶液中处理24h,离心并收集沉淀,使用PBS缓冲溶液洗涤沉淀若干次;S22. Add the precipitate obtained in step S21 to a PBS buffer solution containing 1 wt% polyethylene glycol octylphenyl ether (Triton-X-100) and 25mmol/L ethylenediaminetetraacetic acid (EDTA) for 24h, centrifuge and Collect the precipitate and wash the precipitate several times with PBS buffer solution;
S23、将步骤S22所得沉淀浸入至含有30U/mL脱氧核糖核酸酶I(DNase I)以及10mmol/L氯化镁(MgC12)的PBS缓冲溶液中,在37℃下搅拌24h,以完全去除组织中的细胞,离心并收集沉淀,使用PBS缓冲溶液洗涤沉淀若干次;S23. Immerse the precipitate obtained in step S22 into a PBS buffer solution containing 30 U/mL deoxyribonuclease I (DNase I) and 10 mmol/L magnesium chloride (MgCl 2 ), and stir at 37° C. for 24 hours to completely remove the Cells, centrifuge and collect the pellet, wash the pellet several times with PBS buffer solution;
S24、将步骤S23所得沉淀用过氧乙酸浓度为0.1%的4%乙醇溶液浸泡灭菌2h,离心并收集沉淀,使用PBS缓冲溶液洗涤若干次后冻干得到冻干脱细胞猪小肠粘膜下层组织;S24. Soak and sterilize the precipitate obtained in step S23 with a 4% ethanol solution with a peracetic acid concentration of 0.1% for 2 hours, centrifuge and collect the precipitate, wash with PBS buffer solution several times, and freeze-dry to obtain freeze-dried decellularized porcine small intestinal submucosa tissue ;
S25、按照按照每100mg冻干脱细胞猪小肠粘膜下层组织使用15mg胃蛋白酶的比例将步骤S24所得冻干脱细胞猪小肠粘膜下层组织与胃蛋白酶投入至0.5mol/L的乙酸溶液中,搅拌24h,使用滤布过滤除去较大的颗粒,随后将滤液转移到截留分子量为6~8kDa的透析袋中,在室温下用去离子水透析3d,将滤液冻干,得到脱细胞猪小肠粘膜下层基质材料(SIS)冻干粉;S25. Put the freeze-dried decellularized porcine small intestinal submucosa tissue and pepsin obtained in step S24 into a 0.5 mol/L acetic acid solution according to the ratio of using 15 mg of pepsin per 100 mg of freeze-dried decellularized porcine small intestinal submucosa tissue, and stirred for 24 hours , use filter cloth to filter to remove larger particles, then transfer the filtrate to a dialysis bag with a molecular weight cut-off of 6-8 kDa, dialyze with deionized water for 3 days at room temperature, freeze-dry the filtrate, and obtain the decellularized porcine small intestinal submucosa matrix Material (SIS) lyophilized powder;
S3、负载抗菌肽的可自愈水凝胶创面敷料(SA-PBA/AMP/SIS水凝胶)的制备S3. Preparation of self-healing hydrogel wound dressing (SA-PBA/AMP/SIS hydrogel) loaded with antimicrobial peptides
称取0.05g的步骤S1所得SA-PBA溶解于1mL的pH=7.4的PBS缓冲溶液中,得SA-PBA质量浓度为5%的溶液A;称取预定量的步骤S2所得脱细胞猪小肠粘膜下层基质材料冻干粉溶解于PBS缓冲溶液中,配置得到SIS质量浓度为5%的溶液B;将天蚕素抗菌肽(AMP)粉末分散至溶液B中,且抗菌肽其分散的质量浓度为0.1%,随后将溶液A与溶液B按照1:1的质量比混合均匀,即得SA-PBA质量浓度以及SIS质量浓度均为2.5%的所述负载抗菌肽的可自愈水凝胶创面敷料(SA-PBA/AMP/SIS水凝胶),其中所述SA-PBA/AMP/SIS水凝胶中AMP的最终浓度为0.5mg/mL。Weigh 0.05 g of SA-PBA obtained in step S1 and dissolve it in 1 mL of PBS buffer solution with pH=7.4 to obtain solution A with a mass concentration of SA-PBA of 5%; weigh a predetermined amount of decellularized porcine small intestinal mucosa obtained in step S2 The lyophilized powder of the lower matrix material was dissolved in PBS buffer solution, and a solution B with a mass concentration of SIS of 5% was configured to obtain a solution B; cecropin (AMP) powder was dispersed into solution B, and the dispersed mass concentration of the antimicrobial peptide was 0.1 %, then solution A and solution B are mixed evenly according to the mass ratio of 1:1, and the self-healing hydrogel wound dressing ( SA-PBA/AMP/SIS hydrogel), wherein the final concentration of AMP in the SA-PBA/AMP/SIS hydrogel is 0.5 mg/mL.
实施例5Example 5
本发明实施例5提供一种负载抗菌肽的可自愈水凝胶创面敷料的制备方法,其包括如下具体操作步骤:
S1、苯硼酸化海藻酸钠(SA-PBA)的制备Preparation of S1, phenylborated sodium alginate (SA-PBA)
称取1g海藻酸钠(SA),将其溶解于20mL纯水中,随后向该溶液中分别加入0.38g(0.25mmol)3-氨基甲基苯硼酸(PBA)以及0.83g(0.3mmol)氯化4-(4,6-二甲氧基-1,3,5-三嗪-2-基)-4-甲基吗啉(DMTMM),待完全溶解后用1mol/L的盐酸溶液调节溶液的pH值至6.5,在室温下搅拌72h后转移至截留分子量为6~8kDa透析袋中,在室温条件下用去离子水透析2d,得到的透析液用台式冻干机冷冻干燥后得到所述苯硼酸化海藻酸钠(SA-PBA聚合物偶联物),将产物保存于干燥器中备用;Weigh 1g of sodium alginate (SA), dissolve it in 20mL of pure water, then add 0.38g (0.25mmol) of 3-aminomethylphenylboronic acid (PBA) and 0.83g (0.3mmol) of chlorine to the solution 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholine (DMTMM), after being completely dissolved, adjust the solution with 1mol/L hydrochloric acid solution pH value to 6.5, stirred at room temperature for 72h, then transferred to a dialysis bag with a molecular weight cut-off of 6-8kDa, and dialyzed with deionized water for 2d at room temperature, and the obtained dialysate was freeze-dried with a desktop lyophilizer to obtain the described Phenylborated sodium alginate (SA-PBA polymer conjugate), the product is stored in a desiccator for subsequent use;
S2、脱细胞猪小肠粘膜下层基质材料(SIS)冻干粉的制备S2. Preparation of acellular porcine small intestinal submucosa matrix material (SIS) freeze-dried powder
S21、将新鲜的猪小肠肠道内污物去除,清洗干净,用小刀将小肠组织刮除,直到其变为半透明状得到猪小肠粘膜,将处理好的猪小肠粘膜剪切成2cm×2cm的尺寸,随后将其浸入含有0.25wt%胰蛋白酶以及1mmol/L乙二胺四乙酸(EDTA)的磷酸缓冲溶液(PBS缓冲溶液)中,于磁力搅拌器在35℃下以300rpm的转速搅拌5h,以8000rpm的转速离心并收集沉淀;S21. Remove the dirt in the fresh pig small intestine, clean it, scrape off the small intestine tissue with a knife until it becomes translucent to obtain the pig small intestine mucosa, and cut the processed pig small intestine mucosa into 2cm×2cm size, then immerse it in a phosphate buffer solution (PBS buffer solution) containing 0.25wt% trypsin and 1mmol/L ethylenediaminetetraacetic acid (EDTA), and stir at a speed of 300rpm in a magnetic stirrer for 5h at 35°C, Centrifuge at a speed of 8000rpm and collect the precipitate;
S22、将步骤S21所得沉淀加入至含有1wt%聚乙二醇辛基苯基醚(Triton-X-100)以及25mmol/L乙二胺四乙酸(EDTA)的PBS缓冲溶液中处理24h,离心并收集沉淀,使用PBS缓冲溶液洗涤沉淀若干次;S22. Add the precipitate obtained in step S21 to a PBS buffer solution containing 1 wt% polyethylene glycol octylphenyl ether (Triton-X-100) and 25mmol/L ethylenediaminetetraacetic acid (EDTA) for 24h, centrifuge and Collect the precipitate and wash the precipitate several times with PBS buffer solution;
S23、将步骤S22所得沉淀浸入至含有30U/mL脱氧核糖核酸酶I(DNase I)以及10mmol/L氯化镁(MgC12)PBS缓冲溶液中,在35℃下搅23h,以完全去除组织中的细胞,离心并收集沉淀,使用PBS缓冲溶液洗涤沉淀若干次;S23. Immerse the precipitate obtained in step S22 into a PBS buffer solution containing 30 U/mL deoxyribonuclease I (DNase I) and 10 mmol/L magnesium chloride (MgCl 2 ), and stir at 35° C. for 23 hours to completely remove cells in the tissue , centrifuge and collect the precipitate, wash the precipitate several times with PBS buffer solution;
S24、将步骤S23所得沉淀用过氧乙酸浓度为0.1%的4%乙醇溶液浸泡灭菌1.5h,离心并收集沉淀,使用PBS缓冲溶液洗涤若干次后冻干得到冻干脱细胞猪小肠粘膜下层组织;S24. Soak and sterilize the precipitate obtained in step S23 in 4% ethanol solution with a peracetic acid concentration of 0.1% for 1.5 h, centrifuge and collect the precipitate, wash with PBS buffer solution for several times, and freeze-dry to obtain freeze-dried decellularized porcine small intestinal submucosa organize;
S25、按照按照每100mg冻干脱细胞猪小肠粘膜下层组织使用15mg胃蛋白酶的比例将步骤S24所得冻干脱细胞猪小肠粘膜下层组织与胃蛋白酶投入至0.5mol/L的乙酸溶液中,搅拌23h,使用滤布过滤除去较大的颗粒,随后将滤液转移到截留分子量为6~8kDa的透析袋中,在室温下用去离子水透析2d,将滤液冻干,得到脱细胞猪小肠粘膜下层基质材料(SIS)冻干粉;S25. Put the freeze-dried decellularized porcine small intestinal submucosa tissue and pepsin obtained in step S24 into a 0.5 mol/L acetic acid solution according to the ratio of using 15 mg of pepsin per 100 mg of freeze-dried decellularized porcine small intestinal submucosa tissue, and stirred for 23 hours , use filter cloth to filter to remove larger particles, then transfer the filtrate to a dialysis bag with a molecular weight cut-off of 6-8 kDa, dialyze with deionized water for 2 days at room temperature, and freeze-dry the filtrate to obtain the decellularized porcine small intestinal submucosa matrix Material (SIS) lyophilized powder;
S3、负载抗菌肽的可自愈水凝胶创面敷料(SA-PBA/AMP/SIS水凝胶)的制备S3. Preparation of self-healing hydrogel wound dressing (SA-PBA/AMP/SIS hydrogel) loaded with antimicrobial peptides
称取0.05g的步骤S1所得SA-PBA溶解于1mL的pH=7.0的PBS缓冲溶液中,得SA-PBA质量浓度为5%的溶液A;称取预定量的步骤S2所得脱细胞猪小肠粘膜下层基质材料冻干粉溶解于PBS缓冲溶液中,配置得到SIS质量浓度为5%的溶液B;将天蚕素抗菌肽(AMP)粉末分散至溶液B中,且抗菌肽其分散的质量浓度为0.1%,随后将溶液A与溶液B按照1:0.6混合均匀,即得所述负载抗菌肽的可自愈水凝胶创面敷料(SA-PBA/SIS水凝胶)。Weigh 0.05 g of SA-PBA obtained in step S1 and dissolve it in 1 mL of PBS buffer solution with pH=7.0 to obtain solution A with a mass concentration of SA-PBA of 5%; weigh a predetermined amount of decellularized porcine small intestinal mucosa obtained in step S2 The lyophilized powder of the lower matrix material was dissolved in PBS buffer solution, and a solution B with a mass concentration of SIS of 5% was configured to obtain a solution B; cecropin (AMP) powder was dispersed into solution B, and the dispersed mass concentration of the antimicrobial peptide was 0.1 %, then solution A and solution B were uniformly mixed at a ratio of 1:0.6 to obtain the antimicrobial peptide-loaded self-healing hydrogel wound dressing (SA-PBA/SIS hydrogel).
实施例6Example 6
本发明实施例6提供一种负载抗菌肽的可自愈水凝胶创面敷料的制备方法,其包括如下具体操作步骤:
S1、苯硼酸化海藻酸钠(SA-PBA)的制备Preparation of S1, phenylborated sodium alginate (SA-PBA)
称取1g海藻酸钠(SA),将其溶解于20mL纯水中,随后向该溶液中分别加入0.38g(0.25mmol)3-氨基甲基苯硼酸(PBA)以及0.83g(0.3mmol)氯化4-(4,6-二甲氧基-1,3,5-三嗪-2-基)-4-甲基吗啉(DMTMM),待完全溶解后用1mol/L的盐酸溶液调节溶液的pH值至6.5,在室温下搅拌72h后转移至截留分子量为6~8kDa透析袋中,在室温条件下用去离子水透析3d,得到的透析液用台式冻干机冷冻干燥后得到所述苯硼酸化海藻酸钠(SA-PBA聚合物偶联物),将产物保存于干燥器中备用;Weigh 1g of sodium alginate (SA), dissolve it in 20mL of pure water, then add 0.38g (0.25mmol) of 3-aminomethylphenylboronic acid (PBA) and 0.83g (0.3mmol) of chlorine to the solution 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholine (DMTMM), after being completely dissolved, adjust the solution with 1mol/L hydrochloric acid solution pH value to 6.5, stirred at room temperature for 72 hours, then transferred to a dialysis bag with a molecular weight cut-off of 6-8 kDa, dialyzed with deionized water for 3 days at room temperature, and obtained the dialysate obtained after freeze-drying with a desktop lyophilizer to obtain the Phenylborated sodium alginate (SA-PBA polymer conjugate), the product is stored in a desiccator for subsequent use;
S2、脱细胞猪小肠粘膜下层基质材料(SIS)冻干粉的制备S2. Preparation of acellular porcine small intestinal submucosa matrix material (SIS) freeze-dried powder
S21、将新鲜的猪小肠肠道内污物去除,清洗干净,用小刀将小肠组织刮除,直到其变为半透明状得到猪小肠粘膜,将处理好的猪小肠粘膜剪切成2cm×2cm的尺寸,随后将其浸入含有0.25wt%胰蛋白酶以及1mmol/L乙二胺四乙酸(EDTA)的磷酸缓冲溶液(PBS缓冲溶液)中,于磁力搅拌器在40℃下以300rpm的转速搅拌7h,以8000rpm的转速离心并收集沉淀;S21. Remove the dirt in the fresh pig small intestine, clean it, scrape off the small intestine tissue with a knife until it becomes translucent to obtain the pig small intestine mucosa, and cut the processed pig small intestine mucosa into 2cm×2cm size, then immerse it in a phosphate buffer solution (PBS buffer solution) containing 0.25wt% trypsin and 1mmol/L ethylenediaminetetraacetic acid (EDTA), and stir at a speed of 300rpm at 40°C for 7h on a magnetic stirrer, Centrifuge at a speed of 8000rpm and collect the precipitate;
S22、将步骤S21所得沉淀加入至含有1wt%聚乙二醇辛基苯基醚(Triton-X-100)以及25mmol/L乙二胺四乙酸(EDTA)的PBS缓冲溶液中处理25h,离心并收集沉淀,使用PBS缓冲溶液洗涤沉淀若干次;S22. Add the precipitate obtained in step S21 to a PBS buffer solution containing 1 wt% polyethylene glycol octylphenyl ether (Triton-X-100) and 25 mmol/L ethylenediaminetetraacetic acid (EDTA) for 25 hours, centrifuge and Collect the precipitate and wash the precipitate several times with PBS buffer solution;
S23、将步骤S22所得沉淀浸入至含有30U/mL脱氧核糖核酸酶I(DNase I)以及10mmol/L氯化镁(MgC12)的PBS缓冲溶液中,在40℃下搅25h,以完全去除组织中的细胞,离心并收集沉淀,使用PBS缓冲溶液洗涤沉淀若干次;S23. Immerse the precipitate obtained in step S22 into a PBS buffer solution containing 30 U/mL deoxyribonuclease I (DNase I) and 10 mmol/L magnesium chloride (MgCl 2 ), and stir at 40° C. for 25 hours to completely remove the Cells, centrifuge and collect the pellet, wash the pellet several times with PBS buffer solution;
S24、将步骤S23所得沉淀用过氧乙酸浓度为0.1%的4%乙醇溶液浸泡灭菌2h,离心并收集沉淀,使用PBS缓冲溶液洗涤若干次后冻干得到冻干脱细胞猪小肠粘膜下层组织;S24. Soak and sterilize the precipitate obtained in step S23 with a 4% ethanol solution with a peracetic acid concentration of 0.1% for 2 hours, centrifuge and collect the precipitate, wash with PBS buffer solution several times, and freeze-dry to obtain freeze-dried decellularized porcine small intestinal submucosa tissue ;
S25、按照按照每100mg冻干脱细胞猪小肠粘膜下层组织使用15mg胃蛋白酶的比例将步骤S24所得冻干脱细胞猪小肠粘膜下层组织与胃蛋白酶投入至0.5mol/L的乙酸溶液中,搅拌25h,使用滤布过滤除去较大的颗粒,随后将滤液转移到截留分子量为6~8kDa的透析袋中,在室温下用去离子水透析3d,将滤液冻干,得到脱细胞猪小肠粘膜下层基质材料(SIS)冻干粉;S25. Put the freeze-dried decellularized porcine small intestinal submucosa tissue and pepsin obtained in step S24 into a 0.5 mol/L acetic acid solution according to the ratio of using 15 mg of pepsin per 100 mg of freeze-dried decellularized porcine small intestinal submucosa tissue, and stirred for 25 hours , use filter cloth to filter to remove larger particles, then transfer the filtrate to a dialysis bag with a molecular weight cut-off of 6-8 kDa, dialyze with deionized water for 3 days at room temperature, freeze-dry the filtrate, and obtain the decellularized porcine small intestinal submucosa matrix Material (SIS) lyophilized powder;
S3、负载抗菌肽的可自愈水凝胶创面敷料(SA-PBA/AMP/SIS水凝胶)的制备S3. Preparation of self-healing hydrogel wound dressing (SA-PBA/AMP/SIS hydrogel) loaded with antimicrobial peptides
称取0.05g的步骤S1所得SA-PBA溶解于1mL的pH=8.0的PBS缓冲溶液中,得SA-PBA质量浓度为5%的溶液A;称取预定量的步骤S2所得脱细胞猪小肠粘膜下层基质材料冻干粉溶解于PBS缓冲溶液中,配置得到SIS质量浓度为5%的溶液B;将天蚕素抗菌肽(AMP)粉末分散至溶液B中,且抗菌肽其分散的质量浓度为0.1%,随后将溶液A与溶液B按照质量比为1:1.4混合均匀,即得所述负载抗菌肽的可自愈水凝胶创面敷料(SA-PBA/SIS水凝胶)。Weigh 0.05 g of SA-PBA obtained in step S1 and dissolve it in 1 mL of PBS buffer solution with pH=8.0 to obtain solution A with a mass concentration of SA-PBA of 5%; weigh a predetermined amount of decellularized porcine small intestinal mucosa obtained in step S2 The lyophilized powder of the lower matrix material was dissolved in PBS buffer solution, and a solution B with a mass concentration of SIS of 5% was configured to obtain a solution B; cecropin (AMP) powder was dispersed into solution B, and the dispersed mass concentration of the antimicrobial peptide was 0.1 %, then solution A and solution B were uniformly mixed according to the mass ratio of 1:1.4 to obtain the antimicrobial peptide-loaded self-healing hydrogel wound dressing (SA-PBA/SIS hydrogel).
实施例7Example 7
本发明实施例7提供一种负载抗菌肽的可自愈水凝胶创面敷料的制备方法,其与实施例4的区别在于:制得的负载抗菌肽的可自愈水凝胶创面敷料(SA-PBA/AMP/SIS水凝胶)中天蚕素抗菌肽(AMP)的最终浓度为0.05mg/mL。
实施例8Example 8
本发明实施例8提供一种负载抗菌肽的可自愈水凝胶创面敷料的制备方法,其与实施例4的区别在于:制得的负载抗菌肽的可自愈水凝胶创面敷料(SA-PBA/AMP/SIS水凝胶)中天蚕素抗菌肽(AMP)的最终浓度为0.1mg/mL。
实施例9Example 9
本发明实施例9提供一种负载抗菌肽的可自愈水凝胶创面敷料的制备方法,其与实施例4的区别在于:制得的负载抗菌肽的可自愈水凝胶创面敷料(SA-PBA/AMP/SIS水凝胶)中天蚕素抗菌肽(AMP)的最终浓度为0.2mg/mL。Embodiment 9 of the present invention provides a preparation method of a self-healing hydrogel wound dressing loaded with antimicrobial peptides, which differs from Example 4 in that the prepared self-healing hydrogel wound dressing loaded with antimicrobial peptides (SA - The final concentration of cecropin (AMP) in PBA/AMP/SIS hydrogel) was 0.2 mg/mL.
实施例10Example 10
本发明实施例10提供一种负载抗菌肽的可自愈水凝胶创面敷料的制备方法,其与实施例4的区别在于:制得的负载抗菌肽的可自愈水凝胶创面敷料(SA-PBA/AMP/SIS水凝胶)中天蚕素抗菌肽(AMP)的最终浓度为0.8mg/mL。
实施例11Example 11
本发明实施例10提供一种负载抗菌肽的可自愈水凝胶创面敷料的制备方法,其与实施例4的区别在于:制得的负载抗菌肽的可自愈水凝胶创面敷料(SA-PBA/AMP/SIS水凝胶)中天蚕素抗菌肽(AMP)的最终浓度为1.0mg/mL。
对比例1Comparative example 1
对比例1提供一种可自愈水凝胶创面敷料的制备方法,其包括如下具体操作步骤:Comparative example 1 provides a kind of preparation method of self-healing hydrogel wound dressing, and it comprises following specific operation steps:
S1、苯硼酸化海藻酸钠(SA-PBA)的制备Preparation of S1, phenylborated sodium alginate (SA-PBA)
称取1g海藻酸钠(SA),将其溶解于20mL纯水中,随后向该溶液中分别加入0.38g(0.25mmol)3-氨基甲基苯硼酸(PBA)以及0.83g(0.3mmol)氯化4-(4,6-二甲氧基-1,3,5-三嗪-2-基)-4-甲基吗啉(DMTMM),待完全溶解后用1mol/L的盐酸溶液调节溶液的pH值至6.5,在室温下搅拌72h后转移至截留分子量为6~8kDa透析袋中,在室温条件下用去离子水透析3d,得到的透析液用台式冻干机冷冻干燥后得到所述苯硼酸化海藻酸钠(SA-PBA聚合物偶联物),将产物保存于干燥器中备用;Weigh 1g of sodium alginate (SA), dissolve it in 20mL of pure water, then add 0.38g (0.25mmol) of 3-aminomethylphenylboronic acid (PBA) and 0.83g (0.3mmol) of chlorine to the solution 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholine (DMTMM), after being completely dissolved, adjust the solution with 1mol/L hydrochloric acid solution pH value to 6.5, stirred at room temperature for 72 hours, then transferred to a dialysis bag with a molecular weight cut-off of 6-8 kDa, dialyzed with deionized water for 3 days at room temperature, and obtained the dialysate obtained after freeze-drying with a desktop lyophilizer to obtain the Phenylborated sodium alginate (SA-PBA polymer conjugate), the product is stored in a desiccator for subsequent use;
S2、脱细胞猪小肠粘膜下层基质材料(SIS)冻干粉的制备S2. Preparation of acellular porcine small intestinal submucosa matrix material (SIS) freeze-dried powder
S21、将新鲜的猪小肠肠道内污物去除,清洗干净,用小刀将小肠组织刮除,直到其变为半透明状得到猪小肠粘膜,将处理好的猪小肠粘膜剪切成2cm×2cm的尺寸,随后将其浸入含有0.25wt%胰蛋白酶以及1mmol/L乙二胺四乙酸(EDTA)的磷酸缓冲溶液(PBS缓冲溶液)中,于磁力搅拌器在40℃下以300rpm的转速搅拌7h,以8000rpm的转速离心并收集沉淀;S21. Remove the dirt in the fresh pig small intestine, clean it, scrape off the small intestine tissue with a knife until it becomes translucent to obtain the pig small intestine mucosa, and cut the processed pig small intestine mucosa into 2cm×2cm size, then immerse it in a phosphate buffer solution (PBS buffer solution) containing 0.25wt% trypsin and 1mmol/L ethylenediaminetetraacetic acid (EDTA), and stir at a speed of 300rpm at 40°C for 7h on a magnetic stirrer, Centrifuge at a speed of 8000rpm and collect the precipitate;
S22、将步骤S21所得沉淀加入至含有1wt%聚乙二醇辛基苯基醚(Triton-X-100)以及25mmol/L乙二胺四乙酸(EDTA)的PBS缓冲溶液中处理25h,离心并收集沉淀,使用PBS缓冲溶液洗涤沉淀若干次;S22. Add the precipitate obtained in step S21 to a PBS buffer solution containing 1 wt% polyethylene glycol octylphenyl ether (Triton-X-100) and 25 mmol/L ethylenediaminetetraacetic acid (EDTA) for 25 hours, centrifuge and Collect the precipitate and wash the precipitate several times with PBS buffer solution;
S23、将步骤S22所得沉淀浸入至含有30U/mL脱氧核糖核酸酶I(DNase I)以及10mmol/L氯化镁(MgC12)的PBS缓冲溶液中,在40℃下搅25h,以完全去除组织中的细胞,离心并收集沉淀,使用PBS缓冲溶液洗涤沉淀若干次;S23. Immerse the precipitate obtained in step S22 into a PBS buffer solution containing 30 U/mL deoxyribonuclease I (DNase I) and 10 mmol/L magnesium chloride (MgCl 2 ), and stir at 40° C. for 25 hours to completely remove the Cells, centrifuge and collect the pellet, wash the pellet several times with PBS buffer solution;
S24、将步骤S23所得沉淀用过氧乙酸浓度为0.1%的4%乙醇溶液浸泡灭菌2h,离心并收集沉淀,使用PBS缓冲溶液洗涤若干次后冻干得到冻干脱细胞猪小肠粘膜下层组织;S24. Soak and sterilize the precipitate obtained in step S23 with a 4% ethanol solution with a peracetic acid concentration of 0.1% for 2 hours, centrifuge and collect the precipitate, wash with PBS buffer solution several times, and freeze-dry to obtain freeze-dried decellularized porcine small intestinal submucosa tissue ;
S25、按照按照每100mg冻干脱细胞猪小肠粘膜下层组织使用15mg胃蛋白酶的比例将步骤S24所得冻干脱细胞猪小肠粘膜下层组织与胃蛋白酶投入至0.5mol/L的乙酸溶液中,搅拌25h,使用滤布过滤除去较大的颗粒,随后将滤液转移到截留分子量为6~8kDa的透析袋中,在室温下用去离子水透析3d,将滤液冻干,得到脱细胞猪小肠粘膜下层基质材料(SIS)冻干粉;S25. Put the freeze-dried decellularized porcine small intestinal submucosa tissue and pepsin obtained in step S24 into a 0.5 mol/L acetic acid solution according to the ratio of using 15 mg of pepsin per 100 mg of freeze-dried decellularized porcine small intestinal submucosa tissue, and stirred for 25 hours , use filter cloth to filter to remove larger particles, then transfer the filtrate to a dialysis bag with a molecular weight cut-off of 6-8 kDa, dialyze with deionized water for 3 days at room temperature, freeze-dry the filtrate, and obtain the decellularized porcine small intestinal submucosa matrix Material (SIS) lyophilized powder;
S3、可自愈水凝胶创面敷料(SA-PBA/SIS水凝胶)的制备S3, preparation of self-healing hydrogel wound dressing (SA-PBA/SIS hydrogel)
称取0.05g的步骤S1所得SA-PBA溶解于1mL的pH=7.4的PBS缓冲溶液中,得SA-PBA质量浓度为5%的溶液A;称取预定量的步骤S2所得脱细胞猪小肠粘膜下层基质材料(SIS)冻干粉溶解于PBS缓冲溶液中,配置得到SIS质量浓度为5%的溶液B;将溶液A与溶液B按照1:1的质量比混合均匀,即得SA-PBA质量浓度以及SIS质量浓度均为2.5%的可自愈水凝胶创面敷料(2.5%SA-PBA/2.5%SIS水凝胶)。Weigh 0.05 g of SA-PBA obtained in step S1 and dissolve it in 1 mL of PBS buffer solution with pH=7.4 to obtain solution A with a mass concentration of SA-PBA of 5%; weigh a predetermined amount of decellularized porcine small intestinal mucosa obtained in step S2 The lyophilized powder of the lower matrix material (SIS) was dissolved in PBS buffer solution, and a solution B with a mass concentration of SIS of 5% was prepared; the solution A and solution B were mixed evenly according to the mass ratio of 1:1, and the mass of SA-PBA was obtained. A self-healing hydrogel wound dressing (2.5% SA-PBA/2.5% SIS hydrogel) with a concentration and a mass concentration of SIS of 2.5%.
对比例2Comparative example 2
对比例2提供一种可自愈水凝胶创面敷料的制备方法,其区别在于:制备得到SA-PBA质量浓度为2.5%、SIS质量浓度为1.5%的可自愈水凝胶创面敷料(2.5%SA-PBA/1.5%SIS水凝胶)。Comparative example 2 provides a kind of preparation method of self-healing hydrogel wound dressing, and its difference is: the prepared SA-PBA mass concentration is 2.5%, SIS mass concentration is 1.5% self-healing hydrogel wound dressing (2.5 % SA-PBA/1.5% SIS hydrogel).
对比例3Comparative example 3
对比例3提供一种可自愈水凝胶创面敷料的制备方法,其区别在于:制备得到SA-PBA质量浓度为2.5%、SIS质量浓度为3.5%的可自愈水凝胶创面敷料(2.5%SA-PBA/1.5%SIS水凝胶)。Comparative example 3 provides a kind of preparation method of self-healing hydrogel wound dressing, and its difference is: the prepared SA-PBA mass concentration is 2.5%, SIS mass concentration is 3.5% self-healing hydrogel wound dressing (2.5 % SA-PBA/1.5% SIS hydrogel).
对对比例1制得的2.5%SA-PBA/2.5%SIS水凝胶的自愈性能进行检测。具体地,请参照图1,图1为对比例1所述可自愈水凝胶创面敷料的自愈性能示意图,如图所示,本发明的技术方案通过选用线性亲水性多糖以及脱细胞猪小肠粘膜下层基质材料与苯硼酸交联形成复合水凝胶基质,基于苯硼酸与线性亲水性多糖以及所述脱细胞猪小肠粘膜下层基质材料所含有的氨基官能团与羧基官能团发生酯化反应,通过该反应交联成胶进而得到可作为创面敷料的水凝胶。该交联反应通过动态共价键的形成,充分利用动态共价键自身所具有的可逆性和平衡性,使所得水凝胶基质具有良好的溶胀性能,同时在一定条件下能够呈现出自修复能力。The self-healing performance of the 2.5% SA-PBA/2.5% SIS hydrogel prepared in Comparative Example 1 was tested. Specifically, please refer to Figure 1. Figure 1 is a schematic diagram of the self-healing performance of the self-healing hydrogel wound dressing described in Comparative Example 1. As shown in the figure, the technical solution of the present invention adopts linear hydrophilic polysaccharide and decellularized The porcine small intestinal submucosa matrix material is cross-linked with phenylboronic acid to form a composite hydrogel matrix, based on the esterification reaction between phenylboronic acid and linear hydrophilic polysaccharides and the amino functional group and carboxyl functional group contained in the decellularized porcine small intestinal submucosa matrix material , through the reaction cross-linked into a gel to obtain a hydrogel that can be used as a wound dressing. Through the formation of dynamic covalent bonds, the crosslinking reaction makes full use of the reversibility and balance of the dynamic covalent bonds themselves, so that the obtained hydrogel matrix has good swelling properties and can exhibit self-healing ability under certain conditions. .
对实施例4中所制得的SA以及SA-PBA进行核磁共振氢谱分析。具体地,为以氘代重水作为溶剂,分别称取3~5mg SA和SA-PBA溶解,待溶液完全溶解至澄清后,装入干净的核磁管中,利用核磁共振光谱仪在室温条件下进行核磁结构测定,并采用MestReNova软件进行图谱分析,请参照图2,图2为实施例4中制备的SA和SA-PBA的核磁氢谱图,从图中看出,SA-PBA在化学位移ppm=7~8的区间内出现吸收峰,归属于苯硼酸结构中苯环上的氢,证明SA-PBA合成成功。The SA and SA-PBA prepared in Example 4 were subjected to proton nuclear magnetic resonance spectrum analysis. Specifically, in order to use deuterated heavy water as a solvent, weigh 3 to 5 mg SA and SA-PBA and dissolve them respectively. After the solution is completely dissolved and clear, put it into a clean nuclear magnetic tube, and use a nuclear magnetic resonance spectrometer to perform nuclear magnetic resonance at room temperature. Structural determination, and adopt MestReNova software to carry out pattern analysis, please refer to Fig. 2, Fig. 2 is the nuclear magnetic hydrogen spectrogram of SA and SA-PBA prepared in the
对对比例1-3所制得的可自愈水凝胶创面敷料进行流变学测试。具体地,为用直径为25mm的不锈钢平行板转头进行流变学测量。其中,G'表征样品的弹性模量,G"表征样品的粘性模量。将SA-PBA及SIS溶液在模具中混合成胶后,并自所述模具中将得到的水凝胶取出,于常温下从0.1到10rad/s的进行动态应变扫描,确定水凝胶的线性粘弹性范围,记录弹性模量(G')和粘性模量(G")变化曲线,得到图3,图3为对比例1、2、3中制备的2.5%SA-PBA/1.5%SIS、2.5%SA-PBA/2.5%SIS、2.5%SA-PBA/3.5%SIS三组可自愈水凝胶创面敷料的弹性模量(G')和粘性模量(G")随角频率变化的关系图,当弹性模量大于粘性模量时,水凝胶表现为凝胶态,从图中看出,当水凝胶成胶后,随着角频率的增加,G'始终大于G",表明水凝胶能够稳定呈现为凝胶态,同时2.5%SA-PBA/2.5%SIS组水凝胶的弹性模量要明显大于其他两组,表现出更好的强度。A rheological test was carried out on the self-healing hydrogel wound dressing prepared in Comparative Examples 1-3. Specifically, rheological measurements were performed with a stainless steel parallel-plate rotor with a diameter of 25 mm. Wherein, G' represents the elastic modulus of the sample, and G " represents the viscous modulus of the sample. After the SA-PBA and SIS solution are mixed into a gel in the mold, the obtained hydrogel is taken out from the mold, and Perform dynamic strain scanning from 0.1 to 10rad/s at room temperature, determine the linear viscoelastic range of the hydrogel, record the change curves of elastic modulus (G') and viscous modulus (G"), and obtain Figure 3, which is 2.5%SA-PBA/1.5%SIS, 2.5%SA-PBA/2.5%SIS, 2.5%SA-PBA/3.5%SIS three groups of self-healing hydrogel wound dressings prepared in comparative example 1,2,3 The relationship diagram of elastic modulus (G') and viscous modulus (G") with angular frequency. When the elastic modulus is greater than the viscous modulus, the hydrogel behaves as a gel state. It can be seen from the figure that when the water After the gel is gelled, G' is always greater than G" with the increase of the angular frequency, indicating that the hydrogel can be in a stable gel state, and the elastic modulus of the hydrogel in the 2.5% SA-PBA/2.5% SIS group To be significantly larger than the other two groups, showing better strength.
对本发明实施例4制得的负载抗菌肽的可自愈水凝胶创面敷料进行AMP体外释放实验。具体地,精密称取AMP标准品2.0mg置于10mL的容量瓶,用PH=7.4的PBS溶解至刻度后摇匀,所得的溶液即为AMP母液。然后用PBS将AMP母液分别稀释成浓度为10μg/mL,30μg/mL,50μg/mL,100μg/mL,200μg/mL的溶液。采用紫外分光光度计于221nm处检测溶液吸光度,根据吸光度与浓度的关系作标准曲线。按实施例4制备的负载AMP的水凝胶,将其放置到10mLPH=7.4的PBS中,37℃摇床振荡。开始计时,分别在预先设定时间点即1、2、4、6、8、10、12、24、48、72、96h时分别取1mL上清液于EP管,然后补加入等量的PBS缓冲溶液,于相同条件下进行后续释放实验,用紫外分光光度计检测取出的上清液中AMP吸光度,根据标准曲线计算浓度,计算AMP的累积释放百分数。每个样品平行做三次,结果以平均值和标准偏差表示,记录相关数据,并做得SA-PBA/AMP/SIS水凝胶中AMP的体外释放曲线如图4所示,图4为实施例4制得的负载抗菌肽的可自愈水凝胶创面敷料进行AMP体外释放曲线图,从图中可看到,AMP可在4天内从水凝胶中持续释放,起到长效抗菌的作用。The in vitro release experiment of AMP was carried out on the antimicrobial peptide-loaded self-healing hydrogel wound dressing prepared in Example 4 of the present invention. Specifically, 2.0 mg of AMP standard substance was accurately weighed and placed in a 10 mL volumetric flask, dissolved in PBS with pH=7.4 to the mark and shaken evenly, and the obtained solution was AMP mother solution. Then the AMP mother solution was diluted with PBS into solutions with concentrations of 10 μg/mL, 30 μg/mL, 50 μg/mL, 100 μg/mL and 200 μg/mL. Use a UV spectrophotometer to detect the absorbance of the solution at 221 nm, and make a standard curve according to the relationship between absorbance and concentration. The AMP-loaded hydrogel prepared according to Example 4 was placed in 10 mL of PBS with a pH of 7.4 and shaken on a shaker at 37°C. Start timing, take 1mL of supernatant in EP tube at the pre-set time points, i.e. 1, 2, 4, 6, 8, 10, 12, 24, 48, 72, and 96 hours, and then add the same amount of PBS For the buffer solution, a subsequent release experiment was carried out under the same conditions, and the absorbance of AMP in the supernatant taken out was detected by a UV spectrophotometer, and the concentration was calculated according to the standard curve, and the cumulative release percentage of AMP was calculated. Each sample is done in parallel three times, and the results are represented by mean and standard deviation, record relevant data, and make the in vitro release curve of AMP in SA-PBA/AMP/SIS hydrogel as shown in Figure 4, and Figure 4 is an
对对比例1以及本发明实施例4、7~11所制得的水凝胶进行体外抗菌测试。具体地,为用革兰氏阳性金黄色葡萄球菌和革兰氏阴性大肠杆菌评价水凝胶的抗菌性能。将抗菌试验中的细菌光密度值(Optical Density,简称OD值)调整为0.1。将水凝胶样品与细菌悬液在37℃的生化培养箱中共培养,12h后,对共混菌液进行OD值测量。将100μL的菌悬液稀释后接种在LB琼脂平板上,37℃培养24h后计数可培养菌落数,以作为对照样品,用以下公式In vitro antibacterial tests were carried out on the hydrogels prepared in Comparative Example 1 and Examples 4, 7-11 of the present invention. Specifically, the antimicrobial properties of the hydrogels were evaluated with Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli. The bacterial optical density value (Optical Density, OD value for short) in the antibacterial test was adjusted to 0.1. The hydrogel sample was co-cultured with the bacterial suspension in a biochemical incubator at 37°C, and after 12 hours, the OD value of the blended bacterial solution was measured. Dilute 100 μL of the bacterial suspension and inoculate it on an LB agar plate, and count the number of cultivable colonies after cultivating at 37°C for 24 hours as a control sample, using the following formula
AR(%)=(Nc-Ns)/Nc×100AR(%)=( Nc - Ns )/ Nc ×100
计算抗菌率(AR),其中Nc为对照样品的平均菌落数,Ns为水凝胶样品的平均细菌菌落数,相关数据如表1所示:Calculate the antibacterial rate (AR), where Nc is the average number of colonies of the control sample, Ns is the average number of bacterial colonies of the hydrogel sample, and the relevant data are shown in Table 1:
表1:不同水凝胶的体外抗菌测试结果Table 1: In vitro antibacterial test results of different hydrogels
从表中看出,不添加AMP的水凝胶(对比例1)抗菌率为负值,这可能是纯水凝胶材料为细菌提供了营养物质的缘故,而添加了AMP后,水凝胶表现出抗菌性,当水凝胶中AMP浓度为0.5mg/mL时(实施例4),其对大肠杆菌和金黄葡萄球菌的抗菌率分别达到96.53%和93.22%,表明在此浓度下,水凝胶表现出良好的抗菌作用。As can be seen from the table, the antibacterial rate of the hydrogel without AMP (comparative example 1) is negative, which may be the reason that the pure hydrogel material provides nutrients for bacteria, and after adding AMP, the hydrogel Show antibacterial property, when AMP concentration in the hydrogel is 0.5mg/mL (embodiment 4), its antibacterial rate to escherichia coli and Staphylococcus aureus reaches 96.53% and 93.22% respectively, shows that under this concentration, water The gel showed good antibacterial effect.
综上所述,本发明实施例1~3所述负载抗菌肽的可自愈水凝胶创面敷料,其选用线性亲水性多糖以及脱细胞猪小肠粘膜下层基质材料与苯硼酸交联形成复合水凝胶基质,基于苯硼酸(PBA)与线性亲水性多糖以及脱细胞猪小肠粘膜下层基质材料所含有的氨基官能团与羧基官能团发生酯化反应,通过该反应交联成胶进而得到可作为创面敷料的水凝胶。该交联反应通过动态共价键的形成,充分利用动态共价键自身所具有的可逆性和平衡性,使所得水凝胶基质具有良好的溶胀性能,同时在一定条件下能够呈现出自修复能力,进而避免了现有水凝胶创面敷料其在使用后由于暴露在外部张力作用下或在组织活动时容易破裂或断裂,不仅导致自身性能恶化甚至丧失,还进一步引起外来细菌入侵,引发伤口感染的问题,同时,该动态共价键还能赋予所述水凝胶基质适宜的柔软度,使用时不会对伤口造成异物感,在伤口愈合后可轻易自创免除剥离,不会对创面造成二次损伤。In summary, the antimicrobial peptide-loaded self-healing hydrogel wound dressings described in Examples 1 to 3 of the present invention are composed of linear hydrophilic polysaccharides and acellular porcine small intestinal submucosa matrix material cross-linked with phenylboronic acid The hydrogel matrix is based on the esterification reaction between phenylboronic acid (PBA) and linear hydrophilic polysaccharides and the amino functional groups and carboxyl functional groups contained in the matrix material of the acellular porcine small intestine submucosa. Hydrogels for wound dressings. Through the formation of dynamic covalent bonds, the crosslinking reaction makes full use of the reversibility and balance of the dynamic covalent bonds themselves, so that the obtained hydrogel matrix has good swelling properties and can exhibit self-healing ability under certain conditions. , thus avoiding that the existing hydrogel wound dressings are easily broken or broken due to exposure to external tension or tissue activities after use, which not only leads to deterioration or even loss of their own performance, but also further causes foreign bacteria to invade and cause wound infection At the same time, the dynamic covalent bond can also endow the hydrogel matrix with suitable softness, which will not cause foreign body sensation to the wound during use, and can be easily self-created and exfoliated after the wound is healed, without causing any damage to the wound surface. Secondary damage.
另外,本发明中通过选用天然来源的线性亲水性多糖以及脱细胞猪小肠粘膜下层基质材料,使制得的水凝胶材料具有良好的生物相容性,且脱细胞猪小肠粘膜下层基质材料(SIS)作为一种细胞外基质(ECM),其免疫原性较小,绝大多数成分为I型和III型胶原,可提供一定的机械强度,同时SIS中还保留有多种细胞因子,如基本成纤维细胞生长因子(bFGF)、转化生长因子(TGF)、表皮生长因子(EGF)、血管内皮生长因子(VEGF)等,这些成分对组织重塑和伤口愈合起到了重要作用,应用于创面敷料时可有效促进创面修复。In addition, in the present invention, by selecting linear hydrophilic polysaccharides from natural sources and acellular porcine small intestinal submucosa matrix material, the prepared hydrogel material has good biocompatibility, and the decellularized porcine small intestinal submucosa matrix material (SIS), as an extracellular matrix (ECM), has less immunogenicity, and most of its components are type I and type III collagen, which can provide a certain mechanical strength, and at the same time, a variety of cytokines are retained in SIS, Such as basic fibroblast growth factor (bFGF), transforming growth factor (TGF), epidermal growth factor (EGF), vascular endothelial growth factor (VEGF), etc., these components play an important role in tissue remodeling and wound healing, and are used in Wound dressing can effectively promote wound repair.
进一步在所述复合水凝胶基质中负载抗菌肽材料,相对于无机纳米抗菌粒子以及抗生素,抗菌肽(AMPs)因其抗菌机制与抗生素不同,不容易产生耐药性,从而在众多的抗生素替代品中,AMPs因其广谱的抗菌、抗真菌、抗病毒和免疫增强作用而备受关注。抗菌肽的抗菌性能优良,且不易产生耐药性,且负载于所述复合水凝胶基质时还能够参与动态共价键的形成,进而表现出缓释的特点,可起到长效抗菌的作用。Further, antimicrobial peptide materials are loaded in the composite hydrogel matrix. Compared with inorganic nano-antibacterial particles and antibiotics, antimicrobial peptides (AMPs) are not easy to produce drug resistance because of their antibacterial mechanism and antibiotics. AMPs have attracted much attention due to their broad-spectrum antibacterial, antifungal, antiviral and immune enhancing effects. Antimicrobial peptides have excellent antibacterial performance and are not easy to produce drug resistance, and when loaded on the composite hydrogel matrix, they can also participate in the formation of dynamic covalent bonds, thereby showing the characteristics of slow release, which can play a role of long-acting antibacterial effect.
本发明实施例4~11所述负载抗菌肽的可自愈水凝胶创面敷料的制备方法,其首先使用苯硼酸对线性亲水性多糖进行改性处理,赋予其苯硼酸结构,进一步与自制脱细胞猪小肠粘膜下层基质材料上所富含的氨基与羧基官能团发生反应,达到交联形成动态共价键的目的,制备方法操作简单,且对设备条件及温度条件要求低,能耗低,制备成本低,便于大规模临床应用。The preparation method of the antimicrobial peptide-loaded self-healing hydrogel wound dressing described in Examples 4 to 11 of the present invention first uses phenylboronic acid to modify the linear hydrophilic polysaccharide, endows it with a phenylboronic acid structure, and further combines with the self-made The amino and carboxyl functional groups rich in the acellular porcine small intestinal submucosa matrix material react to achieve the purpose of cross-linking to form dynamic covalent bonds. The preparation method is simple to operate, and has low requirements on equipment conditions and temperature conditions, and low energy consumption. The preparation cost is low, and it is convenient for large-scale clinical application.
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。The above-mentioned embodiments only express several implementation modes of the present invention, and the descriptions thereof are relatively specific and detailed, but should not be construed as limiting the patent scope of the invention. It should be pointed out that those skilled in the art can make several modifications and improvements without departing from the concept of the present invention, and these all belong to the protection scope of the present invention.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111342128.2A CN114225097B (en) | 2021-11-12 | 2021-11-12 | Self-healing hydrogel wound dressing loaded with antibacterial peptide and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111342128.2A CN114225097B (en) | 2021-11-12 | 2021-11-12 | Self-healing hydrogel wound dressing loaded with antibacterial peptide and preparation method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114225097A CN114225097A (en) | 2022-03-25 |
CN114225097B true CN114225097B (en) | 2023-02-03 |
Family
ID=80749257
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111342128.2A Active CN114225097B (en) | 2021-11-12 | 2021-11-12 | Self-healing hydrogel wound dressing loaded with antibacterial peptide and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114225097B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114949370B (en) * | 2022-05-05 | 2023-03-24 | 四川大学 | Self-healing hydrogel polypeptide film and preparation method and application thereof |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008039827A2 (en) * | 2006-09-26 | 2008-04-03 | Aeris Therapeutics, Inc. | Polymer systems for lung volume reduction therapy |
CN102065886A (en) * | 2008-04-14 | 2011-05-18 | 哈洛齐梅公司 | Modified hyaluronidases and uses in treating hyaluronan-associated diseases and conditions |
EP2727597A1 (en) * | 2012-11-06 | 2014-05-07 | Centre National de la Recherche Scientifique (CNRS) | Glucose responsive hydrogel comprising pba-grafted hyaluronic acid (ha) |
CN104971380A (en) * | 2014-04-11 | 2015-10-14 | 烟台隽秀生物科技有限公司 | Acellular matrix repairing gel and new method for preparing the same |
CN109010916A (en) * | 2017-06-12 | 2018-12-18 | 华沙整形外科股份有限公司 | Containing the mouldable preparation of aerobic sterol in acellular tissue matrices |
CN112516371A (en) * | 2020-12-23 | 2021-03-19 | 医工瑞思(福建)工程研究中心有限公司 | Tissue-specific wound dressing and preparation method and application thereof |
CN112851983A (en) * | 2020-12-31 | 2021-05-28 | 东华大学 | Electrostatic spraying film of hydrogel and preparation method and application thereof |
-
2021
- 2021-11-12 CN CN202111342128.2A patent/CN114225097B/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008039827A2 (en) * | 2006-09-26 | 2008-04-03 | Aeris Therapeutics, Inc. | Polymer systems for lung volume reduction therapy |
CN102065886A (en) * | 2008-04-14 | 2011-05-18 | 哈洛齐梅公司 | Modified hyaluronidases and uses in treating hyaluronan-associated diseases and conditions |
EP2727597A1 (en) * | 2012-11-06 | 2014-05-07 | Centre National de la Recherche Scientifique (CNRS) | Glucose responsive hydrogel comprising pba-grafted hyaluronic acid (ha) |
CN104971380A (en) * | 2014-04-11 | 2015-10-14 | 烟台隽秀生物科技有限公司 | Acellular matrix repairing gel and new method for preparing the same |
CN109010916A (en) * | 2017-06-12 | 2018-12-18 | 华沙整形外科股份有限公司 | Containing the mouldable preparation of aerobic sterol in acellular tissue matrices |
CN112516371A (en) * | 2020-12-23 | 2021-03-19 | 医工瑞思(福建)工程研究中心有限公司 | Tissue-specific wound dressing and preparation method and application thereof |
CN112851983A (en) * | 2020-12-31 | 2021-05-28 | 东华大学 | Electrostatic spraying film of hydrogel and preparation method and application thereof |
Non-Patent Citations (1)
Title |
---|
《基于苯硼酸酯可注射透明质酸水凝胶的构建与性能研究》;余晨希;《中国优秀博硕士学位论文全文数据库-医药卫生科技辑》;20210215(第2期);E080-93页 * |
Also Published As
Publication number | Publication date |
---|---|
CN114225097A (en) | 2022-03-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Sadeghi et al. | Carboxymethyl cellulose-human hair keratin hydrogel with controlled clindamycin release as antibacterial wound dressing | |
Chen et al. | Injectable wound dressing based on carboxymethyl chitosan triple-network hydrogel for effective wound antibacterial and hemostasis | |
Wang et al. | Preparation of antimicrobial hyaluronic acid/quaternized chitosan hydrogels for the promotion of seawater-immersion wound healing | |
Cao et al. | Double crosslinked HLC-CCS hydrogel tissue engineering scaffold for skin wound healing | |
Wang et al. | Shape-recoverable hyaluronic acid–waterborne polyurethane hybrid cryogel accelerates hemostasis and wound healing | |
Zhou et al. | A self-healing hydrogel based on crosslinked hyaluronic acid and chitosan to facilitate diabetic wound healing | |
Lin et al. | Preparation and properties of carboxymethyl chitosan/oxidized hydroxyethyl cellulose hydrogel | |
Liu et al. | Ionic liquid-based non-releasing antibacterial, anti-inflammatory, high-transparency hydrogel coupled with electrical stimulation for infected diabetic wound healing | |
Kim et al. | Development of clindamycin-loaded wound dressing with polyvinyl alcohol and sodium alginate | |
Tang et al. | Stable antibacterial polysaccharide-based hydrogels as tissue adhesives for wound healing | |
Guan et al. | Injectable gelatin/oxidized dextran hydrogel loaded with apocynin for skin tissue regeneration | |
Dong et al. | Tea polyphenol/glycerol-treated double-network hydrogel with enhanced mechanical stability and anti-drying, antioxidant and antibacterial properties for accelerating wound healing | |
CN111150880A (en) | Antibacterial composite hydrogel and preparation method thereof | |
Osman et al. | A sticky carbohydrate meets a mussel adhesive: Catechol-conjugated levan for hemostatic and wound healing applications | |
Kumar et al. | Recent advances in the use of algal polysaccharides for skin wound healing | |
Iswariya et al. | Design and development of a piscine collagen blended pullulan hydrogel for skin tissue engineering | |
CN113214507B (en) | Preparation method of antibacterial glycopeptide hydrogel | |
EP3620186B1 (en) | Biomaterial devices for guided tissue regeneration | |
Cao et al. | Photo-crosslinked enhanced double-network hydrogels based on modified gelatin and oxidized sodium alginate for diabetic wound healing | |
Li et al. | Ganoderma lucidum polysaccharide hydrogel accelerates diabetic wound healing by regulating macrophage polarization | |
Zhong et al. | Investigation on repairing diabetic foot ulcer based on 3D bio-printing Gel/dECM/Qcs composite scaffolds | |
Chen et al. | Mussel-inspired self-healing hydrogel form pectin and cellulose for hemostasis and diabetic wound repairing | |
Yaşayan et al. | Natural polymers for wound dressing applications | |
Li et al. | Biomimetic multifunctional hybrid sponge via enzymatic cross-linking to accelerate infected burn wound healing | |
Zhao et al. | Engineering pH responsive carboxyethyl chitosan and oxidized pectin-based hydrogels with self-healing, biodegradable and antibacterial properties for wound healing |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |