CN114217343A - 一种用于便携式低功耗核辐射探测器的前放电路 - Google Patents

一种用于便携式低功耗核辐射探测器的前放电路 Download PDF

Info

Publication number
CN114217343A
CN114217343A CN202111385520.5A CN202111385520A CN114217343A CN 114217343 A CN114217343 A CN 114217343A CN 202111385520 A CN202111385520 A CN 202111385520A CN 114217343 A CN114217343 A CN 114217343A
Authority
CN
China
Prior art keywords
circuit
field effect
low
effect transistor
resistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202111385520.5A
Other languages
English (en)
Other versions
CN114217343B (zh
Inventor
郭晓彬
毕明德
李�瑞
王强
范磊
施礼
金坦
陈祥磊
蔺常勇
黄欣杰
万新峰
任才
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
719th Research Institute of CSIC
Original Assignee
719th Research Institute of CSIC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 719th Research Institute of CSIC filed Critical 719th Research Institute of CSIC
Priority to CN202111385520.5A priority Critical patent/CN114217343B/zh
Publication of CN114217343A publication Critical patent/CN114217343A/zh
Application granted granted Critical
Publication of CN114217343B publication Critical patent/CN114217343B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/17Circuit arrangements not adapted to a particular type of detector
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/26Modifications of amplifiers to reduce influence of noise generated by amplifying elements
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/45Differential amplifiers
    • H03F3/45071Differential amplifiers with semiconductor devices only
    • H03F3/45479Differential amplifiers with semiconductor devices only characterised by the way of common mode signal rejection
    • H03F3/45928Differential amplifiers with semiconductor devices only characterised by the way of common mode signal rejection using IC blocks as the active amplifying circuit
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/70Charge amplifiers

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Molecular Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Amplifiers (AREA)
  • Measurement Of Radiation (AREA)

Abstract

本发明属于核辐射探测领域,提供一种用于便携式低功耗核辐射探测器的前放电路,包括低噪声处理电路、电荷灵敏放大电路、相位补偿电路、电压放大电路;所述低噪声处理电路,利用场效应管的开断特性,用于开关控制电路的开断,同时对信号进行初级反向放大;所述电荷灵敏放大电路,用于将场效应管处输出的电流脉冲信号转换成电压脉冲信号;所述相位补偿电路,用于相位补偿;所述电压放大电路包括反向电压放大和差分放大,用于放大信号至便于观测状态。本发明将半导体前端传感器的输出信号经过场效应管低噪声处理、电荷灵敏放大处理、相位补偿、反相电压放大以及差分放大后,获得高精度信号,有利于核探测器小型化、便携式、低功耗、高信噪比的发展。

Description

一种用于便携式低功耗核辐射探测器的前放电路
技术领域
本发明属于核辐射探测领域,具体涉及一种用于便携式低功耗核辐射探测器的前放电路(前端放大电路),适用于半导体探测器。
背景技术
核辐射一般有α、β以及γ三种射线,当其大量或者长期辐射于生物体会产生严重损害,因此利用辐射探测技术对核辐射剂量进行测量是非常必要的。常用的核辐射探测器是利用传感器将核辐射转变成电子信号,进而通过电子学的方法输出为人们便于观察的信号,这就要求核辐射探测器具有高准确度、高灵敏度以及高稳定性等性能指标。目前核辐射探测器前放电路设计往往需要在功耗、信噪比以及探测效率之间权衡,例如使用双极性电源供电(增加功耗)或是减少放大倍数(损失探测效率)以获得信噪比较好的信号。
发明内容
本发明的目的就是为了克服上述现有技术的不足之处,提供一种用于便携式低功耗核辐射探测器的前放电路,将半导体前端传感器的输出信号经过场效应管低噪声处理、电荷灵敏放大处理、相位补偿、反相电压放大以及差分放大后,获得高精度信号,有利于核探测器小型化、便携式、低功耗、高信噪比的发展。
为实现上述目的,本发明的技术解决方案如下。
一种用于便携式低功耗核辐射探测器的前放电路,包括依次相连的低噪声处理电路、电荷灵敏放大电路、相位补偿电路、电压放大电路;
所述低噪声处理电路,利用场效应管的开断特性,场效应管位于隔直电容之后,用于开关控制电路的开断,同时对信号进行初级反向放大;
所述电荷灵敏放大电路,用于将场效应管处输出的电流脉冲信号转换成电压脉冲信号;
所述相位补偿电路,用于相位补偿;
所述电压放大电路包括反向电压放大电路和差分放大电路,用于放大信号至便于观测状态。放大倍数为两级增益之积,能使用较小的阻值实现高增益,较大的电阻存在不稳定性以及热噪声大的缺点。
在上述技术方案中,所述低噪声处理电路的场效应管采用3DJ7G,输入信号经隔直电容C7接场效应管的栅极,场效应管的栅极接电阻R19后接地,当无信号通过时,R19保证场效应管栅极电压稳定,增加系统的稳定性。
场效应管的漏极接上拉电阻R15,场效应管的源极接电阻R20接地,电阻R20并联电容C15,电阻R20为场效应管放大倍数反馈电阻。
3DJ7G由于漏源极饱和电流(IDSS)只有2mA,因此上拉电阻R15的选择范围更宽,在增加上拉电阻阻值时,对脉冲信号能够提供更大的放大倍数,同时由于其本身的低噪声特性,能获得更好的信噪比。
在上述技术方案中,所述电荷灵敏放大电路的运算放大器采用AD8039,其噪声水平低至8𝑛𝑉√𝐻𝑧,压摆率为425𝑉/𝑢𝑠。
在上述技术方案中,所述相位补偿电路的相位补偿电容C16连接在电荷灵敏处理之后,与电阻R21组成低通滤波电路,抑制信号中的高频噪音。
在上述技术方案中,所述差分放大电路的差分放大器采用THS4131,其噪声水平为1.3 𝑛𝑉√𝐻𝑧,压摆率为51𝑉/𝑢𝑠,同时其输出端的差分结构能够抑制耦合噪声。
在上述技术方案中,所有元器件供电方案均使用单电源+5V供电,经过实验测量,电路整体功耗仅为5mA。
本发明相比于现有前放电路设计,具有如下突出优点:
1.有利于核探测器发展趋于小型化、便携式、高精度。
2.场效应管使用3DJ7G,噪声更低,漏源级电流更小,通过增加上拉电阻阻值能获得更好的信噪比。
3.本方案不仅仅局限于PIPS前端传感器,该电路原理同样适用于其他半导体(如MSND)前端传感器,适用面广,同时成本低。
附图说明
图1为本发明电路的具体电路连接图。
图2为使用本发明前放电路利用PIPS传感器测量241AM示波器输出图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚明白,以下结合具体实施例,并参照附图,对本发明进一步详细说明。
如图1所示,本发明实施例提供一种用于便携式低功耗核辐射探测器的前放电路,其电路具体组成有:
(1)电阻R2、R5及传感器等效内阻共同组成的分压系统,可通过调节两者电阻阻值调节传感器的供电电压,以PIPS为例,R2=300KΩ,R5=1MΩ时,PIPS能获得4.5V的供电电压,满足其正常工作电压范围。
(2)以场效应管J3为核心组成的低噪声处理电路,所述低噪声处理电路的场效应管采用3DJ7G,输入信号经隔直电容C7接场效应管的栅极,场效应管的栅极接电阻R19后接地,当无信号通过时,R19保证场效应管栅极电压稳定,增加系统的稳定性。
场效应管的漏极接上拉电阻R15,场效应管的源极接电阻R20接地,电阻R20并联电容C15,电阻R20为场效应管放大倍数反馈电阻。
利用场效应管的开断特性,当无信号通过时,电容C7为隔直电容,使场效应管栅极电压为零,场效应管截止;当传感器端接收到放射源信号并将其转换成脉冲信号输出时,根据N型场效应管特性,状态由截止变为导通,对信号进行反向放大。在常见的设计中,该处场效应管一般使用2N4416,其漏源级饱和电流最小为5mA,这就导致过大的上拉电阻会使信号失真。本实施例中选用3DJ7G,该场效应管在满足低噪声的同时,漏源级饱和电流仅为2mA,可增加上拉电阻阻值来获得更好的增益效果,提高信噪比。
(3)以运算放大器U1A为核心组成的电荷灵敏放大电路,运算放大器U1A选用ADI公司的AD8039,其噪声水平低至8𝑛𝑉√𝐻𝑧,压摆率为425𝑉/𝑢𝑠,性能参数表现优异,且支持+5V供电。
(4)相位补偿电容C16,同时与电阻R21组成低通滤波电路,抑制信号中的高频噪音,提高信噪比,截止频率可通过具体使用环境进行调节参数。
(5)电压放大电路,为反向电压放大电路与差分放大电路两步分开进行,放大倍数为两级增益之积,能使用较小的阻值实现高增益,较大的电阻存在不稳定性以及热噪声大的缺点。
差分放大器选用TI公司的THS4131,其噪声水平为1.3 𝑛𝑉√𝐻𝑧,压摆率为51𝑉/𝑢𝑠,同时其输出端的差分结构能够抑制耦合噪声。并且以差分形式进行输出,可适用更多外部接口。
电荷灵敏放大电路和反向电压放大电路均使用单电源+5V供电,+2.5V为信号的电压基准电压。
本说明书中未作详细描述的内容,属于本专业技术人员公知的现有技术。
本领域的技术人员容易理解,以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进,均应包含在本发明的保护范围之内。

Claims (6)

1.一种用于便携式低功耗核辐射探测器的前放电路,其特征在于:包括依次相连的低噪声处理电路、电荷灵敏放大电路、相位补偿电路、电压放大电路;
所述低噪声处理电路,利用场效应管的开断特性,场效应管位于隔直电容之后,用于开关控制电路的开断,同时对信号进行初级反向放大;
所述电荷灵敏放大电路,用于将场效应管处输出的电流脉冲信号转换成电压脉冲信号;
所述相位补偿电路,用于相位补偿;
所述电压放大电路包括反向电压放大电路和差分放大电路,用于放大信号至便于观测状态。
2.根据权利要求1所述的用于便携式低功耗核辐射探测器的前放电路,其特征在于:所述低噪声处理电路的场效应管采用3DJ7G,输入信号经隔直电容C7接场效应管的栅极,场效应管的栅极接电阻R19后接地,场效应管的漏极接上拉电阻R15,场效应管的源极接电阻R20接地,电阻R20并联电容C15,电阻R20为场效应管放大倍数反馈电阻。
3.根据权利要求1所述的用于便携式低功耗核辐射探测器的前放电路,其特征在于:所述电荷灵敏放大电路的运算放大器采用AD8039。
4.根据权利要求1所述的用于便携式低功耗核辐射探测器的前放电路,其特征在于:所述相位补偿电路的相位补偿电容C16连接在电荷灵敏处理之后,与电阻R21组成低通滤波电路,抑制信号中的高频噪音。
5.根据权利要求1所述的用于便携式低功耗核辐射探测器的前放电路,其特征在于:所述电荷灵敏放大电路和反向电压放大电路均使用单电源+5V供电,+2.5V为信号的电压基准电压。
6.根据权利要求1所述的用于便携式低功耗核辐射探测器的前放电路,其特征在于:所述差分放大电路的差分放大器采用THS4131。
CN202111385520.5A 2021-11-22 2021-11-22 一种用于便携式低功耗核辐射探测器的前放电路 Active CN114217343B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111385520.5A CN114217343B (zh) 2021-11-22 2021-11-22 一种用于便携式低功耗核辐射探测器的前放电路

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111385520.5A CN114217343B (zh) 2021-11-22 2021-11-22 一种用于便携式低功耗核辐射探测器的前放电路

Publications (2)

Publication Number Publication Date
CN114217343A true CN114217343A (zh) 2022-03-22
CN114217343B CN114217343B (zh) 2024-06-25

Family

ID=80697818

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111385520.5A Active CN114217343B (zh) 2021-11-22 2021-11-22 一种用于便携式低功耗核辐射探测器的前放电路

Country Status (1)

Country Link
CN (1) CN114217343B (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009049304A1 (de) * 2009-10-13 2011-04-28 Forschungszentrum Jülich GmbH Vorrichtung und Verfahren zum Konvertieren einer Ladung zu einer Pulslänge
CN102420577A (zh) * 2011-11-28 2012-04-18 北京大学 多路抗干扰低噪声电荷灵敏前置放大器
KR101973517B1 (ko) * 2018-01-29 2019-09-02 한국과학기술원 핵폭발 검출기용 신호처리회로
CN210534339U (zh) * 2019-08-02 2020-05-15 西安中核核仪器有限公司 基于Si-Pin晶体和塑料闪烁体探测器的γ辐射探测装置
CN112564634A (zh) * 2020-12-02 2021-03-26 重庆中易智芯科技有限责任公司 一种应用于辐射探测器的前端读出电路
CN112713865A (zh) * 2020-12-22 2021-04-27 武汉第二船舶设计研究所(中国船舶重工集团公司第七一九研究所) 一种多功能核测量用前置放大器
CN113189635A (zh) * 2021-04-26 2021-07-30 上海大学 单极性核辐射探测器及其前置放大电路

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009049304A1 (de) * 2009-10-13 2011-04-28 Forschungszentrum Jülich GmbH Vorrichtung und Verfahren zum Konvertieren einer Ladung zu einer Pulslänge
CN102420577A (zh) * 2011-11-28 2012-04-18 北京大学 多路抗干扰低噪声电荷灵敏前置放大器
KR101973517B1 (ko) * 2018-01-29 2019-09-02 한국과학기술원 핵폭발 검출기용 신호처리회로
CN210534339U (zh) * 2019-08-02 2020-05-15 西安中核核仪器有限公司 基于Si-Pin晶体和塑料闪烁体探测器的γ辐射探测装置
CN112564634A (zh) * 2020-12-02 2021-03-26 重庆中易智芯科技有限责任公司 一种应用于辐射探测器的前端读出电路
CN112713865A (zh) * 2020-12-22 2021-04-27 武汉第二船舶设计研究所(中国船舶重工集团公司第七一九研究所) 一种多功能核测量用前置放大器
CN113189635A (zh) * 2021-04-26 2021-07-30 上海大学 单极性核辐射探测器及其前置放大电路

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
苏杭;封常青;郑其斌;朱丹阳;金西;刘树彬;安琪;: "一种低噪声电荷灵敏前置放大器的研制", 核电子学与探测技术, no. 09, 20 September 2015 (2015-09-20) *

Also Published As

Publication number Publication date
CN114217343B (zh) 2024-06-25

Similar Documents

Publication Publication Date Title
US7554073B2 (en) High linearity CMOS ambient light sensor
CN102545793A (zh) 一种pA-μA量程的微弱电流放大器
CN108768380B (zh) 一种传感器的调理电路
CN111174810B (zh) 一种应用于惯性导航系统的高精度if转换模块
JP2006119141A (ja) ドリフトタイプ放射線検出器および検出装置の変換係数の率依存変化を補正するための方法と回路配置。
CN102075150B (zh) 一种数字胃肠机自动光圈的光电信号前置调理放大电路
CN114217343B (zh) 一种用于便携式低功耗核辐射探测器的前放电路
CN209132332U (zh) 一种高精度大动态脉冲功率测量装置
US6998913B2 (en) Method and apparatus for linear low-frequency feedback in monolithic low-noise charge amplifiers
US6054705A (en) Charge-integrating preamplifier for capacitive transducer
US20240073550A1 (en) Front-end electronic circuitry for an electromagnetic radiation sensor application
Gu et al. A charge amplifier with noise peaking suppression and gain drop compensation utilizing a Quasi-Miller RC network
CN111525899B (zh) 一种输入端漏电流补偿型的电荷灵敏前置放大器
CN214154473U (zh) 一种脉冲检测电路
CN212082483U (zh) 一种高精度氢气流量检测电路
Beikahmadi et al. A low-power continuous-reset CMOS charge-sensitive amplifier for the readout of solid-state radiation detectors
CN102394609A (zh) 一种窄脉冲电压放大器
Evariste et al. Design and simulation of Gaussian shaping amplifier made only with CMOS FET for FEE of particle detector
Zeng et al. Research and development of a high-performance differential-hybrid charge sensitive preamplifier
CN111277251A (zh) 自触发供电控制的低功耗前端读出电路
Wei et al. Front End Readout Circuit of a Novel Charge Sensitive Amplifier Based on Temperature Compensation
CN210157174U (zh) 功放器mos管功率放大器的温度采样信号的放大电路
CN217010822U (zh) 增益自适应信号放大电路结构、超声波计量模组
CN110752828B (zh) 一种用于天然气泄漏激光检测系统的多源噪声抑制电路
Liu et al. Circuit design of a novel front readout circuit for SiC neutron detector with leakage current compensation

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant