CN114210741B - 一种带钢表面粗糙度在线检测装置及方法 - Google Patents

一种带钢表面粗糙度在线检测装置及方法 Download PDF

Info

Publication number
CN114210741B
CN114210741B CN202111411707.8A CN202111411707A CN114210741B CN 114210741 B CN114210741 B CN 114210741B CN 202111411707 A CN202111411707 A CN 202111411707A CN 114210741 B CN114210741 B CN 114210741B
Authority
CN
China
Prior art keywords
image
strip steel
calculating
gray
surface roughness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111411707.8A
Other languages
English (en)
Other versions
CN114210741A (zh
Inventor
徐冬
邵美琪
李思仪
杨荃
王晓晨
何海楠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Science and Technology Beijing USTB
Original Assignee
University of Science and Technology Beijing USTB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Science and Technology Beijing USTB filed Critical University of Science and Technology Beijing USTB
Priority to CN202111411707.8A priority Critical patent/CN114210741B/zh
Publication of CN114210741A publication Critical patent/CN114210741A/zh
Application granted granted Critical
Publication of CN114210741B publication Critical patent/CN114210741B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B38/00Methods or devices for measuring, detecting or monitoring specially adapted for metal-rolling mills, e.g. position detection, inspection of the product
    • B21B38/02Methods or devices for measuring, detecting or monitoring specially adapted for metal-rolling mills, e.g. position detection, inspection of the product for measuring flatness or profile of strips
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/90Dynamic range modification of images or parts thereof
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0004Industrial image inspection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30108Industrial image inspection
    • G06T2207/30136Metal

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Quality & Reliability (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

本发明公开了一种带钢表面粗糙度在线检测装置及方法,方法包括:实时在线采集带钢运动时的激光图像;截取激光图像的中心部分的有效图像,对有效图像进行灰度处理和二值化处理,得到灰度图像和二值图像;利用灰度图像、二值图像计算出特征参数;利用特征参数通过单维参数模型计算出单维参数;利用单维参数通过粗糙度评价模型计算出带钢表面粗糙度。检测装置包括支撑及传动辊道、激光发生器和组合透镜,激光发生器发射的激光光束通过组合透镜后照射在带钢表面,高速工业面阵相机实时在线采集带钢运动时的激光图像并传输至服务器。实现带钢表面粗糙度实时在线检测,没有时间差,可以实时监测粗糙度异常的带钢,效率高。

Description

一种带钢表面粗糙度在线检测装置及方法
技术领域
本发明涉及带钢表面检测技术领域,特别是指一种带钢表面粗糙度在线检测装置及方法。
背景技术
冷轧钢板在近年来的应用越发广泛,成为制造业中的主要工业原料。需求的不断扩大造成了对其质量与精度的高要求。到目前为止,我国用于制造业中冷轧带钢的表面质量还有待提高,并不能满足实际的要求。高档冷轧产品表面质量缺陷大都是由钢板表面微观形貌引起的,钢板表面质量除了与轧制工艺有关,与轧辊表面微观形貌也有密不可分的关系。在所有表面形貌的表征参数中,粗糙度作为体现冷轧带钢表面质量的重要特性之一,不仅影响到带钢冲压时的变形行为和涂镀后的外观面貌,而且可以改变材料的耐蚀性。
目前,对于冷轧生产的带钢表面形貌的检测大都集中于取样后的显微镜检测,传统测量表面粗糙度的方式也都需要离线而且有时间差,并不能实时监测粗糙度异常的带钢,对于现场带钢的实时监测,效率低下,影响冷轧连续作业。
发明内容
本发明提供了一种带钢表面粗糙度在线检测装置及方法,现有的带钢检测具有以下问题,检测带钢表面粗糙度为离线检测,有时间差,不能实时监测粗糙度异常的带钢,效率低。
为解决上述技术问题,本发明的实施例提供如下方案:
本发明实施例提供一种带钢表面粗糙度在线检测方法,所述方法包括:
实时在线采集带钢运动时的激光图像;
截取所述激光图像的中心部分的有效图像,对有效图像进行灰度处理和二值化处理,得到灰度图像和二值图像;
利用所述灰度图像、所述二值图像计算出特征参数;
利用所述特征参数通过单维参数模型计算出单维参数;
利用所述单维参数通过粗糙度评价模型计算出带钢表面粗糙度。
优选地,所述粗糙度评价模型的公式为:
Sa=F(Z)
F(Z)=17560.77-1222.66Z+37.61Z2-0.43Z3-93961.65/Z
其中,Sa为带钢表面粗糙度,单位μm;Z为单维参数。
优选地,所述特征参数包括灰度图像中的平均亮暗像素之比、空隙率、四阶方差统计量、灰度图像中的平均光强值、纹理特征中的粗糙度、统计量对比度、统计量惯性、逆矩差、二值图像中的亮像素所占比例、灰度图像中的总亮暗像素之比。
优选地,对有效图像进行灰度处理和二值化处理包括:
截取有效图像并获取每个像素点三原色数值与透明度信息;
计算每个像素点的灰度值,将所述有效图像转化为灰度图像;
计算所述灰度图像的灰度阈值;
利用所述灰度阈值对所述灰度图进行二值化处理,获得所述二值图像。
优选地,所述单维参数模型的公式为:
Z=(0.16x1+0.02x2+0.01x3+20.79x4+1.71x5+0.07x6+999.78x7+0.22x8+0.42x9+0.01x10)/100000
其中,Z为单维参数,x1为灰度图像中的平均亮暗像素之比,x2为空隙率,x3为四阶方差统计量,x4为灰度图像中的平均光强值,x5为纹理特征中的粗糙度,x6为统计量对比度,x7为统计量惯性,x8为二值图像中的亮像素所占比例,x9为灰度图像中的总亮暗像素之比,x10为逆矩差。
优选地,利用所述灰度图像、所述二值图像计算出特征参数包括:
计算所述灰度图像中的平均亮暗像素之比;
计算特征参数空隙率;
计算高斯-马尔科夫随机场纹理特征中的四阶方差统计量;
计算灰度图像中平均光强值;
计算Tamura纹理特征中的粗糙度;
利用灰度共生矩阵法计算统计量对比度;
利用灰度梯度共生矩阵法计算统计量惯性以和逆矩差;
计算二值图像中亮像素所占比例;
计算灰度图像中总亮暗像素之比。
优选地,计算所述灰度图像的灰度阈值包括:
利用Otsu算法获取图像灰度阈值。
本发明实施例提供一种带钢表面粗糙度在线检测装置,所述带钢表面粗糙度在线检测装置得以应用在所述的带钢表面粗糙度在线检测方法中;
所述检测装置包括支撑及传动辊道,所述支撑及传动辊道带动带钢运动,在所述带钢的上方设置有激光发生器和组合透镜,所述激光发生器发射的激光光束通过所述组合透镜后照射在所述带钢表面,所述激光光束与所述带钢的法线方向呈角度,在所述带钢的法线方向依次设置有远心镜头和高速工业面阵相机,所述高速工业面阵相机实时在线采集带钢运动时的激光图像并传输至服务器。
优选地,所述激光光束与所述带钢的法线方向之间的角度范围为30°~60°。
本发明的上述方案至少包括以下有益效果:
上述方案中,带钢表面粗糙度在线检测方法将计算激光图像中的特征参数作为输入量,通过单维参数模型计算出单维参数,再将单维参数作为输入量过建立粗糙度评价模型计算出带钢表面粗糙度,实现带钢表面粗糙度实时在线检测,没有时间差,可以实时监测粗糙度异常的带钢,效率高,为带钢产品表面质量的提升奠定了基础;
带钢表面粗糙度在线检测装置可以实现带钢表面粗糙度实时在线检测,没有时间差,可以实时监测粗糙度异常的带钢,效率高,为带钢产品表面质量的提升奠定了基础。
附图说明
图1为本发明的带钢表面粗糙度在线检测方法的流程图一;
图2为本发明的带钢表面粗糙度在线检测方法的流程图二;
图3为本发明的带钢表面粗糙度在线检测方法的流程图三;
图4为利用本发明的带钢表面粗糙度在线检测方法的处理一张激光图像的灰度图和二值图;
图5为利用本发明的带钢表面粗糙度在线检测方法的处理另一张激光图像的灰度图和二值图;
图6为本发明的带钢表面粗糙度在线检测装置的示意图。
附图标记:
1、支撑及传动辊道;2、带钢;3、激光发生器;4、组合透镜;5、远心镜头;6、高速工业面阵相机;7、服务器。
具体实施方式
下面将参照附图更详细地描述本公开的示例性实施例。虽然附图中显示了本公开的示例性实施例,然而应当理解,可以以各种形式实现本公开而不应被这里阐述的实施例所限制。相反,提供这些实施例是为了能够更透彻地理解本公开,并且能够将本公开的范围完整的传达给本领域的技术人员。
实施例一
如图1所示的,本实施例一种带钢表面粗糙度在线检测方法,方法包括:
S110、实时在线采集带钢运动时的激光图像;
S120、截取激光图像的中心部分的有效图像,对有效图像进行灰度处理和二值化处理,得到灰度图像和二值图像;
S130、利用灰度图像、二值图像计算出特征参数;
S140、利用特征参数通过单维参数模型计算出单维参数;
S150、利用单维参数通过粗糙度评价模型计算出带钢表面粗糙度。
本实施例的带钢表面粗糙度在线检测方法将计算激光图像中的特征参数作为输入量,通过单维参数模型计算出单维参数,再将单维参数作为输入量过建立粗糙度评价模型计算出带钢表面粗糙度,实现带钢表面粗糙度实时在线检测,没有时间差,可以实时监测粗糙度异常的带钢,效率高,为带钢产品表面质量的提升奠定了基础。
具体地,如图2所示的,在步骤S120,对有效图像进行灰度处理和二值化处理包括:
S121、截取有效图像并获取每个像素点三原色数值与透明度信息;
S122、计算每个像素点的灰度值,将有效图像转化为灰度图像;
S123、计算灰度图像的灰度阈值;
S124、利用灰度阈值对灰度图进行二值化处理,获得二值图像。
具体地,在步骤S123中,计算灰度图像的灰度阈值包括:利用Otsu算法获取图像灰度阈值。
具体地,在步骤S130中,特征参数包括灰度图像中的平均亮暗像素之比、空隙率、四阶方差统计量、灰度图像中的平均光强值、纹理特征中的粗糙度、统计量对比度、统计量惯性、逆矩差、二值图像中的亮像素所占比例、灰度图像中的总亮暗像素之比。
具体地,如图3所示的,在步骤S130中,利用灰度图像、二值图像计算出特征参数包括:
S131、计算灰度图像中的平均亮暗像素之比;
S132、计算特征参数空隙率;
S133、计算高斯-马尔科夫随机场纹理特征中的四阶方差统计量;
S134、计算灰度图像中平均光强值;
S135、计算Tamura纹理特征中的粗糙度;
S136、利用灰度共生矩阵法计算统计量对比度;
S137、利用灰度梯度共生矩阵法计算统计量惯性以和逆矩差;
S138、计算二值图像中亮像素所占比例;
S139、计算灰度图像中总亮暗像素之比。
具体地,在步骤S140中,单维参数模型的公式为:
Z=(0.16x1+0.02x2+0.01x3+20.79x4+1.71x5+0.07x6+999.78x7+0.22x8+0.42x9+0.01x10)/100000
其中,Z为单维参数,x1为灰度图像中的平均亮暗像素之比,x2为空隙率,x3为四阶方差统计量,x4为灰度图像中的平均光强值,x5为纹理特征中的粗糙度,x6为统计量对比度,x7为统计量惯性,x8为二值图像中的亮像素所占比例,x9为灰度图像中的总亮暗像素之比,x10为逆矩差。
具体地,在步骤S150中,粗糙度评价模型的公式为:
优选地,粗糙度评价模型的公式为:
Sa=F(Z)
F(Z)=17560.77-1222.66Z+37.61Z2-0.43Z3-93961.65/Z
其中,Sa为带钢表面粗糙度,单位μm;Z为单维参数。
实施例二
如图1~图3所示的,本实施例一种带钢表面粗糙度在线检测方法,方法包括:
S110:实时在线采集带钢运动时的激光图像;
S120:截取中心部分有效图像并对图像进行平均值法灰度处理以及二值化处理;包括:
S121、截取有效图像并获取每个像素点三原色数值与透明度信息,截取后图像大小为1024*1024;
S122、获取每个像素点的灰度值:将每个像素点三原色的色值取平均值即为该像素点的灰度值,将彩色图像转换为灰度图像,计算公式如下:
Gray(i,j)=(R(i,j)+G(i,j)+B(i,j))/3
其中,Gray(i,j)是用平均法求得的灰度值,R(i,j)表示图像中红色分量亮度,G(i,j)表示图像中绿色分量亮度,B(i,j)表示图像中蓝色分量亮度;
S123、Otsu算法获取灰度阈值:选定某一灰度值为界将整个图像分为两部分,分别计算总灰度均值与各部分的灰度均值以及各部分像素数占总像素的比例,则使得类间方差达到最大值的灰度值就是Otsu算法自动获取的灰度阈值,计算公式如下:
g=ω0ω10-μ)2
其中,g表示类间方差;
Figure GDA0003739500210000061
Figure GDA0003739500210000062
N0+N1=1024*1024
μ=ω0011
g=ω00-μ)211-μ)2
其中,假设初始阈值为T,图像中像素的灰度值小于阈值T的像素个数记作N0,像素灰度大于阈值T的像素个数记作N1,ω0:背景像素点占整幅图像的比例,μ0:背景像素点的平均灰度,ω1:前景像素点占整幅图像的比例,μ1:前景像素点的平均灰度,μ:整幅图像的平均灰度;
S124、灰度图二值化处理:将每个点的像素值与计算得到的灰度阈值T进行较:当像素值小于阈值时,将该像素点的三原色值均设为0;当像素值大于等于阈值时,将该像素点的三原色值均设为255,计算公式如下:
Figure GDA0003739500210000071
其中,T为大津算法得出的阈值,f(x)为图像上像素点的灰度值;
在本实施例中,经上述处理后的2幅激光图像如图4图5所示;
S130、计算处理后图像中的特征参数;具体步骤为:
S131、计算灰度图像中平均亮暗像素之比BDaverage,计算公式如下:
Figure GDA0003739500210000072
其中,Baverage(单位为pixe1)和Daverage(单位为pixel)分别为二值化处理后图像亮像素和暗像素连通区域的平均面积,通过亮像素数和暗像素数分别除以相应的连通区域的个数进行计算;
S132、计算特征参数空隙率Λ,计算公式如下:
Figure GDA0003739500210000073
其中,n(M,r)定义为大小为r,质量为M的盒子数量,Q(M,r)为概率密度函数,通过将n(M,r)除以盒子总数得到;
S233、计算高斯-马尔科夫随机场纹理特征中的四阶方差统计量V,计算公式如下:
Figure GDA0003739500210000074
其中,θi是高斯-马尔科夫随机线性模型中特征向量参数,共有十个分量,m是各分量的平均值;
S134、计算灰度图像中平均光强值Intensity,计算过程如下:计算激光图像中像素的平均灰度值即为平均光强值Intensity;
S135、计算Tamura纹理特征中的粗糙度Fcn,计算如下:
计算图像中大小为4*4个像素点的活动窗口中像素的平均强度值A(x,y);
Figure GDA0003739500210000081
其中,g(i,j)是位于(i,j)处的像素的灰度值,对于每一个像素点分别计算水平和垂直方向上互不重叠的窗口之间的平均强度差Eh(x,y)和Ev(x,y);
Eh(x,y)=|A(x+2,y)-A(x-2,y)|
Ev(x,y)=|A(x,y+2)-A(x,y-2)|
式中,Eh(x,y)代表该像素点水平方向的差值,Ev(x,y)代表该像素点垂直方向差值。根据每个像素点,找到能使Eh(x,y)或Ev(x,y)达到最大的最佳尺寸Sbest,通过计算整幅图像中Sbest的平均值得到特征参数粗糙度Fcn
Figure GDA0003739500210000082
S136、利用灰度共生矩阵法计算统计量对比度con,计算过程如下:
灰度共生矩阵的一个元素代表了一种灰度组合沿竖直方向出现的次数,用P(a,b)(a,b=0,1,2...,L-1)表示,其中L表示图像的灰度级,a,b分别表示像素的灰度。如元素P(1,0)代表了图像上位置关系为竖直方向的两个像素灰度分别为1和0的情况出现的次数。其中L表示图像的灰度级,a,b分别表示像素的灰度。
Figure GDA0003739500210000083
统计量对比度的计算公式如下:
Figure GDA0003739500210000084
其中,
Figure GDA0003739500210000091
是将各个元素P(a,b)除以各元素之和得到的;
S137、:利用灰度梯度共生矩阵法计算统计量惯性T1以及逆矩差T2,计算如下:
设定一幅图像为f(x,y),定义归一化的灰度图像为:
Figure GDA0003739500210000092
式中:f(x,y)为原图像在(x,y)处的灰度值;F(x,y)为变换后的图像在(x,y)处的变化值;INT为取整变换,Nf为变换后最大灰度值;fmax为变换前的f(x,y)的最大灰度值;
归一化的梯度图像为:
Figure GDA0003739500210000093
式中:g(x,y)为原图像在(x,y)处的灰度值;G(x,y)为变换后的图像在(x,y)处的梯度值;Ng为变换后最大灰度值;gmax为变换前的g(x,y)的最大灰度值;G(x,y)=j,F(x,y)=i,i=1,2...,Nf,j=1,2...,Ng,满足上式的像素点对数,该个数为共生矩阵H(i,j)的值;P(i,j)为灰度值为i,梯度值为j的共生矩阵的H(i,j)概率,统计量惯性的计算公式如下:
Figure GDA0003739500210000094
统计量逆矩差的计算公式如下:
Figure GDA0003739500210000095
S138、计算二值图像中亮像素所占比例AS,计算公式如下:
Figure GDA0003739500210000096
其中,AT(单位为个)是二值图像中像素点显示为1的个数;
S139、:计算灰度图像中总亮暗像素之比BD,计算公式如下:
BD=Bar/Dar
其中,Bar(单位为pixel)是亮相素数除以总面积,总面积定义为二值图像的像素数之和,Dar(单位为pixel)是暗相素数除以总面积,总面积定义为二值图像的像素数之和。
在本实施例中,在步骤S130中,对应图像的计算结果如表1所示:
表1特征参数计算结果
Figure GDA0003739500210000101
S140、根据图像特征参数,计算单维参数Z的方法如下:
Z=(0.16x1+0.02x2+0.01x3+20.79x4+1.71x5+0.07x6+999.78x7+0.22x8+0.42x9+0.01x10)/100000
其中,Z是单维参数,x1到x10是步骤3中计算出的特征参数的值,x1是BDaverage,x2是LAC,x3是V,x4是Intensity,x5是Fcn,x6是con,x7是T1,x8是AS,x9是BD,x10是T2
在步骤S140中,对应图像的计算结果如表2所示:
表2单维参数Z计算结果
图4 图5
Z 22.70 25.56
S150、根据特征参数Z,通过粗糙度评价模型F(Z)计算带钢表面粗糙度的方法如下:
Sa=F(Z)=17560.77-1222.66Z+37.61Z2-0.43Z3-93961.65/Z
其中,Sa是带钢表面粗糙度,单位是μm,Z是根据激光图像特征参数计算出的单维参数。
在本实施案例中,对应图像计算结果如下:图4中Z=22.70,对应的Sa=6.13μm;图5中Z=25.56,对应的Sa=8.04μm,实施例中的带钢表面经过激光共聚焦离线检测其表面粗糙度为Sa=6.30μm和Sa=7.80μm,本发明提出的检测方法误差分别为2.77%和3.08%,检测精度高,效率高。
实施例三
如图4所示的,本实施例提供了一种带钢表面粗糙度在线检测装置,带钢表面粗糙度在线检测装置得以应用带钢表面粗糙度在线检测方法中;
检测装置包括支撑及传动辊道1,支撑及传动辊道1带动带钢2运动,在带钢2的上方设置有激光发生器3和组合透镜4,激光发生器3发射的激光光束通过组合透镜4后照射在带钢2表面,激光光束与带钢2的法线方向呈角度,在带钢2的法线方向依次设置有远心镜头5和高速工业面阵相机6,高速工业面阵相机6实时在线采集带钢2运动时的激光图像并传输至服务器7。
具体地,激光光束与带钢2的法线方向之间的角度范围为30°~60°。组合透镜4调整激光光束的直径与强度。激光图像经千兆网线传输至服务器7。
本实施例的带钢表面粗糙度在线检测装置可以实现带钢2表面粗糙度实时在线检测,没有时间差,可以实时监测粗糙度异常的带钢2,效率高,为带钢2产品表面质量的提升奠定了基础。
以上所述是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明所述原理的前提下,还可以作出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (8)

1.一种带钢表面粗糙度在线检测方法,其特征在于,所述方法包括:
实时在线采集带钢运动时的激光图像;
截取所述激光图像的中心部分的有效图像,对有效图像进行灰度处理和二值化处理,得到灰度图像和二值图像;
利用所述灰度图像、所述二值图像计算出特征参数;
利用所述特征参数通过单维参数模型计算出单维参数;
利用所述单维参数通过粗糙度评价模型计算出带钢表面粗糙度;
所述粗糙度评价模型的公式为:
Sa=F(Z)
F(Z)=17560.77-1222.66Z+37.61Z2-0.43Z3-93961.65/Z
其中,Sa为带钢表面粗糙度,单位μm;Z为单维参数。
2.根据权利要求1所述的带钢表面粗糙度在线检测方法,其特征在于,所述特征参数包括灰度图像中的平均亮暗像素之比、空隙率、四阶方差统计量、灰度图像中的平均光强值、纹理特征中的粗糙度、统计量对比度、统计量惯性、逆矩差、二值图像中的亮像素所占比例、灰度图像中的总亮暗像素之比。
3.根据权利要求1所述的带钢表面粗糙度在线检测方法,其特征在于,对有效图像进行灰度处理和二值化处理包括:
截取有效图像并获取每个像素点三原色数值与透明度信息;
计算每个像素点的灰度值,将所述有效图像转化为灰度图像;
计算所述灰度图像的灰度阈值;
利用所述灰度阈值对所述灰度图进行二值化处理,获得所述二值图像。
4.根据权利要求2所述的带钢表面粗糙度在线检测方法,其特征在于,所述单维参数模型的公式为:
Z=(0.16x1+0.02x2+0.01x3+20.79x4+1.71x5+0.07x6+999.78x7+0.22x8+0.42x9+0.01x10)/100000
其中,Z为单维参数,x1为灰度图像中的平均亮暗像素之比,x2为空隙率,x3为四阶方差统计量,x4为灰度图像中的平均光强值,x5为纹理特征中的粗糙度,x6为统计量对比度,x7为统计量惯性,x8为二值图像中的亮像素所占比例,x9为灰度图像中的总亮暗像素之比,x10为逆矩差。
5.根据权利要求2所述的带钢表面粗糙度在线检测方法,其特征在于,利用所述灰度图像、所述二值图像计算出特征参数包括:
计算所述灰度图像中的平均亮暗像素之比;
计算特征参数空隙率;
计算高斯-马尔科夫随机场纹理特征中的四阶方差统计量;
计算灰度图像中平均光强值;
计算Tamura纹理特征中的粗糙度;
利用灰度共生矩阵法计算统计量对比度;
利用灰度梯度共生矩阵法计算统计量惯性以和逆矩差;
计算二值图像中亮像素所占比例;
计算灰度图像中总亮暗像素之比。
6.根据权利要求3所述的带钢表面粗糙度在线检测方法,其特征在于,计算所述灰度图像的灰度阈值包括:
利用Otsu算法获取图像灰度阈值。
7.一种带钢表面粗糙度在线检测装置,其特征在于,所述带钢表面粗糙度在线检测装置得以应用在如权利要求1~6任意一项所述的带钢表面粗糙度在线检测方法中;
所述检测装置包括支撑及传动辊道,所述支撑及传动辊道带动带钢运动,在所述带钢的上方设置有激光发生器和组合透镜,所述激光发生器发射的激光光束通过所述组合透镜后照射在所述带钢表面,所述激光光束与所述带钢的法线方向呈角度,在所述带钢的法线方向依次设置有远心镜头和高速工业面阵相机,所述高速工业面阵相机实时在线采集带钢运动时的激光图像并传输至服务器。
8.根据权利要求7所述的带钢表面粗糙度在线检测装置,其特征在于,所述激光光束与所述带钢的法线方向之间的角度范围为30°~60°。
CN202111411707.8A 2021-11-23 2021-11-23 一种带钢表面粗糙度在线检测装置及方法 Active CN114210741B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111411707.8A CN114210741B (zh) 2021-11-23 2021-11-23 一种带钢表面粗糙度在线检测装置及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111411707.8A CN114210741B (zh) 2021-11-23 2021-11-23 一种带钢表面粗糙度在线检测装置及方法

Publications (2)

Publication Number Publication Date
CN114210741A CN114210741A (zh) 2022-03-22
CN114210741B true CN114210741B (zh) 2022-08-26

Family

ID=80698609

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111411707.8A Active CN114210741B (zh) 2021-11-23 2021-11-23 一种带钢表面粗糙度在线检测装置及方法

Country Status (1)

Country Link
CN (1) CN114210741B (zh)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101561262B (zh) * 2009-05-31 2010-09-01 东南大学 一种不确定环境下表面粗糙度在线测量方法
CN101634551B (zh) * 2009-08-18 2011-04-13 清华大学深圳研究生院 一种检测表面粗糙度的方法及其系统
CN103759676A (zh) * 2014-01-06 2014-04-30 南京信息工程大学 一种工件表面粗糙度非接触式的检测方法
CN204730813U (zh) * 2015-05-07 2015-10-28 浙江理工大学 一种基于对称双线激光角度可控的中厚钢板形貌检测系统
GB201705406D0 (en) * 2017-04-04 2017-05-17 Rolls Royce Plc Determining surface roughness
US10522322B2 (en) * 2017-04-13 2019-12-31 Fractilia, Llc System and method for generating and analyzing roughness measurements
CN109030503A (zh) * 2018-07-11 2018-12-18 无锡赛默斐视科技有限公司 带钢在线表面缺陷检测系统及其检测方法

Also Published As

Publication number Publication date
CN114210741A (zh) 2022-03-22

Similar Documents

Publication Publication Date Title
Liu et al. Steel surface defect detection using a new Haar–Weibull-variance model in unsupervised manner
US9582872B2 (en) Optical film defect detection method and system thereof
KR20190028794A (ko) GPU 기반 TFT-LCD Mura 결함 탐지 방법
CN104198498B (zh) 基于自适应正交小波变换的布匹疵点检测方法及装置
US11636584B2 (en) Real-time traceability method of width of defect based on divide-and-conquer
CN104458755A (zh) 一种基于机器视觉的多类型材质表面缺陷检测方法
CN109409290B (zh) 一种温度表检定读数自动识别系统及方法
CN112651968A (zh) 一种基于深度信息的木板形变与凹坑检测方法
CN108416766A (zh) 双侧入光式导光板缺陷视觉检测方法
CN106780455A (zh) 一种基于滑动的局部邻域窗口的产品表面检测方法
CN113628189A (zh) 一种基于图像识别的快速带钢划痕缺陷检测方法
CN106937109B (zh) 低成本判断摄像头分辨率水平的方法
CN111504381A (zh) 一种端子排产品在线检测设备及其检测方法
CN114119591A (zh) 一种显示屏画面质量检测方法
CN116071363A (zh) 一种自动化型钢智能生产监测系统
CN114235837A (zh) 基于机器视觉的led封装表面缺陷检测方法、装置、介质及设备
CN113781585A (zh) 一种增材制造零件表面缺陷在线检测方法及系统
CN114210741B (zh) 一种带钢表面粗糙度在线检测装置及方法
CN116883412B (zh) 一种石墨烯远红外电热设备故障检测方法
CN114155226A (zh) 一种微小缺陷边缘计算方法
CN109934231A (zh) 基于多方向灰度共生矩阵的棒材端面字符图像识别方法
CN112710670A (zh) 一种太阳能电池涂层检测装置及控制方法
CN115272331B (zh) 基于图像处理的瓦楞纸质量检测方法
JP2005164565A (ja) 低解像度および高解像度映像におけるフラットパネル用光関連板要素の欠陥検出方法
CN114693652B (zh) 基于高斯混合模型的织物缺陷检测方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant