CN114204608A - 一种综合能源系统的电源容量配置方法 - Google Patents

一种综合能源系统的电源容量配置方法 Download PDF

Info

Publication number
CN114204608A
CN114204608A CN202111255790.4A CN202111255790A CN114204608A CN 114204608 A CN114204608 A CN 114204608A CN 202111255790 A CN202111255790 A CN 202111255790A CN 114204608 A CN114204608 A CN 114204608A
Authority
CN
China
Prior art keywords
power
capacity
power supply
situation
photovoltaic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202111255790.4A
Other languages
English (en)
Other versions
CN114204608B (zh
Inventor
李冠赢
栾福明
吴瑊
李文雄
奚芸华
杨琨
高云逸
李程
刘帅伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thermal Power Generation Technology Research Institute of China Datang Corporation Science and Technology Research Institute Co Ltd
Original Assignee
Thermal Power Generation Technology Research Institute of China Datang Corporation Science and Technology Research Institute Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thermal Power Generation Technology Research Institute of China Datang Corporation Science and Technology Research Institute Co Ltd filed Critical Thermal Power Generation Technology Research Institute of China Datang Corporation Science and Technology Research Institute Co Ltd
Priority to CN202111255790.4A priority Critical patent/CN114204608B/zh
Publication of CN114204608A publication Critical patent/CN114204608A/zh
Application granted granted Critical
Publication of CN114204608B publication Critical patent/CN114204608B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • H02J3/48Controlling the sharing of the in-phase component
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/06Energy or water supply
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2203/00Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
    • H02J2203/20Simulating, e g planning, reliability check, modelling or computer assisted design [CAD]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/28The renewable source being wind energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/76Power conversion electric or electronic aspects
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/70Smart grids as climate change mitigation technology in the energy generation sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S50/00Market activities related to the operation of systems integrating technologies related to power network operation or related to communication or information technologies
    • Y04S50/16Energy services, e.g. dispersed generation or demand or load or energy savings aggregation

Landscapes

  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Economics (AREA)
  • Human Resources & Organizations (AREA)
  • Strategic Management (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Marketing (AREA)
  • General Business, Economics & Management (AREA)
  • Tourism & Hospitality (AREA)
  • General Health & Medical Sciences (AREA)
  • Primary Health Care (AREA)
  • Water Supply & Treatment (AREA)
  • Public Health (AREA)
  • Development Economics (AREA)
  • Game Theory and Decision Science (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Operations Research (AREA)
  • Quality & Reliability (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

本发明涉及一种综合能源系统的电源容量配置方法,按照稳定可调电源和风电光伏的可开发容量是否确定划分为四种情况:情况①,稳定可调电源和风电光伏的可开发容量都能确定;情况②,稳定可调电源的可开发容量能确定,风电光伏的可开发容量不能确定;情况③,风电光伏的可开发容量能确定,稳定可调电源的可开发容量不能确定;情况④,稳定可调电源和风电光伏的可开发容量都不能确定;以储能装机容量最小为目标,根据具体案例自动匹配其中一种情况进行计算,得到各种电源的装机容量。本发明全面考虑综合能源系统在规划阶段面临的诸多实际情况,在各类电源的规划容量确定或不确定的情况下,均能优化计算出配置容量,提高了配置方法的适用性。

Description

一种综合能源系统的电源容量配置方法
技术领域
本发明涉及电源侧或用户侧综合能源系统规划技术领域,尤其涉及一种综合能源系统的电源容量配置方法。
背景技术
新能源(尤指风电、光伏)发电的间歇性、波动性以及风电的反调峰性十分明显,给电网的稳定、安全运行造成了重大威胁。在国家倡导“风光水火储一体化”和“源网荷储一体化”能源开发形式的背景下,充分挖掘和利用水电、火电、储能等的调节能力,为电力系统注入更多的调峰和调频容量,合理配置调节电源与风电、光伏的容量配比,可有效降低新能源发电的不利影响,对促进清洁能源电力的进一步开发与消纳,优化能源结构,构建以新能源为主体的新型电力系统具有积极意义。
现有技术一般通过评估风光资源量,进一步确定风光可开发容量。但是获取风光资源数据较困难、不直接,最直接的方式是以实时出力为计算基础。
现有技术一般在总容量确定的情况下,进一步确定风光装机容量配比,使能源基地的出力曲线最大程度地贴合负荷需求曲线。但是在规划阶段,有时候总容量是不确定的,需要在一定范围内优化;有时候是结合在役火电机组扩建新能源机组,组成综合能源基地,通过火电厂的送出线路同步送出新能源电力,这种情况要考虑火电机组的调节能力和线路容量。
发明内容
本发明的目的是提供一种综合能源系统的电源容量配置方法,全面考虑综合能源系统在规划阶段面临的诸多实际情况,在各类电源的规划容量确定或不确定的情况下,均能优化计算出配置容量,提高配置方法的适用性。
本发明提供了一种综合能源系统的电源容量配置方法,按照稳定可调电源和风电光伏的可开发容量是否确定划分为四种情况:
情况①,稳定可调电源和风电光伏的可开发容量都能确定;
情况②,稳定可调电源的可开发容量能确定,风电光伏的可开发容量不能确定;
情况③,风电光伏的可开发容量能确定,稳定可调电源的可开发容量不能确定;
情况④,稳定可调电源和风电光伏的可开发容量都不能确定;
以储能装机容量最小为目标,根据具体案例自动匹配其中一种情况进行计算,得到各种电源的装机容量:
四种情况计算方法中所涉及的参数如下:
风电实时出力模拟值:
Figure BDA0003323800880000021
光伏实时出力模拟值:
Figure BDA0003323800880000022
用电负荷实时功率需求:Lt
数据的时间间隔:Δt,单位:分钟;
风电最小可开发容量
Figure BDA0003323800880000023
风电最大可开发容量
Figure BDA0003323800880000024
光伏最小可开发容量
Figure BDA0003323800880000025
光伏最大可开发容量
Figure BDA0003323800880000026
稳定可调电源最小可开发容量
Figure BDA0003323800880000027
稳定可调电源最大可开发容量
Figure BDA0003323800880000028
风电导入数据对应风电场站的额定功率
Figure BDA0003323800880000029
光伏导入数据对应光伏场站的额定功率
Figure BDA00033238008800000210
稳定可调电源的升降速率限制β3
储能电站的升降速率限制β4
风电场站平均可利用系数α1
光伏场站平均可利用系数α2
储能电站充放电范围SOC;
储能电站电量平衡周期τ;
稳定可调电源最低负荷率限制θ3
风电配置系数k1,精确到小数点后两位,情况①③无边界条件;情况②④,有边界条件:
Figure BDA0003323800880000031
光伏配置系数k2,精确到小数点后两位,情况①③无边界条件;情况②④,有边界条件:
Figure BDA0003323800880000032
风电装机功率
Figure BDA0003323800880000033
精确到个位,情况①③时,为已知参数;
光伏装机功率
Figure BDA0003323800880000034
精确到个位,情况①③时,为已知参数;
电源总出力与用电负荷的时序功率偏差
Figure BDA0003323800880000035
稳定可调电源装机功率
Figure BDA0003323800880000036
精确到个位,情况①②时,为已知参数;情况①②时,无边界条件;情况③④时,有边界条件:
Figure BDA0003323800880000037
稳定可调电源实时功率
Figure BDA0003323800880000038
精确到小数点后两位;情况①②时,边界条件:
Figure BDA0003323800880000039
情况③④时,边界条件:
Figure BDA00033238008800000310
Figure BDA00033238008800000311
储能电站实时功率
Figure BDA00033238008800000312
精确到小数点后两位,
Figure BDA00033238008800000313
表示储能电站发出电能;
Figure BDA00033238008800000314
表示储能电站吸收电能;边界条件:
Figure BDA00033238008800000315
Figure BDA00033238008800000316
储能电站剩余能量
Figure BDA00033238008800000317
储能电站装机能量
Figure BDA00033238008800000318
储能电站装机功率
Figure BDA00033238008800000319
所述情况①计算方法如下:
稳定可调电源和风光电源的装机容量
Figure BDA00033238008800000320
都可以确定下来,即
Figure BDA00033238008800000321
则,
Figure BDA00033238008800000322
Figure BDA00033238008800000323
Figure BDA00033238008800000324
Figure BDA00033238008800000325
Figure BDA00033238008800000326
Figure BDA0003323800880000041
Figure BDA0003323800880000042
所述情况②计算方法如下:
稳定可调电源的装机容量
Figure BDA0003323800880000043
可以确定,风光电源的装机容量
Figure BDA0003323800880000044
不可确定,即
Figure BDA0003323800880000045
则,
Figure BDA0003323800880000046
存在一个最大值
Figure BDA0003323800880000047
算法迭代k1和k2,使
Figure BDA0003323800880000048
收敛,达到最小;
计算出k1和k2
Figure BDA0003323800880000049
Figure BDA00033238008800000410
Figure BDA00033238008800000411
Figure BDA00033238008800000412
Figure BDA00033238008800000413
Figure BDA00033238008800000414
Figure BDA00033238008800000415
所述情况③计算方法如下:
风光电源的装机容量
Figure BDA00033238008800000416
可以确定下来,稳定可调电源的装机容量
Figure BDA00033238008800000417
不可确定,即
Figure BDA00033238008800000418
则,
Figure BDA00033238008800000419
Figure BDA00033238008800000420
Figure BDA00033238008800000421
Figure BDA00033238008800000422
如果,
Figure BDA00033238008800000423
Figure BDA00033238008800000424
则,
Figure BDA00033238008800000425
则,情况③转变为情况①,按照情况①重新计算;
如果
Figure BDA00033238008800000426
则,
Figure BDA0003323800880000051
则,情况③转变为情况①,按照情况①重新计算;
如果
Figure BDA0003323800880000052
则,
Figure BDA0003323800880000053
则,情况③转变为情况①,按照情况①重新计算;
所述情况④计算方法如下:
稳定可调电源和风光电源的装机容量
Figure BDA0003323800880000054
都不可以确定下来,即
Figure BDA0003323800880000055
则,
Figure BDA0003323800880000056
存在一个最大值
Figure BDA0003323800880000057
算法迭代k1和k2,使
Figure BDA0003323800880000058
收敛,达到最小;
计算出k1和k2
Figure BDA0003323800880000059
Figure BDA00033238008800000510
Figure BDA00033238008800000511
Figure BDA00033238008800000512
如果,
Figure BDA00033238008800000513
Figure BDA00033238008800000514
则,
Figure BDA00033238008800000515
则,情况④转变为情况②,按照情况②重新计算;
如果
Figure BDA00033238008800000516
则,
Figure BDA00033238008800000517
则,情况④转变为情况②,按照情况②重新计算;
如果
Figure BDA00033238008800000518
则,
Figure BDA00033238008800000519
则,情况④转变为情况②,按照情况②重新计算;
进一步地,所述综合能源系统为用户侧的户用型、园区型综合能源系统,所发出的电能就地消纳或接入配电网,或电源侧或电网侧的大型发电基地,所发出的电能接入大电网,在本区域消纳或外送其他区域消纳。
进一步地,所述风电实时出力模拟值
Figure BDA0003323800880000061
光伏实时出力模拟值
Figure BDA0003323800880000062
为任意方式得到的能代表规划地风电、光伏出力特性的数据;所述用电负荷实时功率需求Lt为任意方式得到的能代表受电端负荷特性的数据。
进一步地,所述稳定可调电源包括火力发电、水力发电、核电中的一种或多种,其中,火力发电包括燃煤发电、燃气发电、生物质发电、垃圾发电;所述储能包括机械储能、电化学储能、化学储能、电磁储能、热储能中的一种或多种。
借由上述方案,通过综合能源系统的电源容量配置方法,全面考虑综合能源系统在规划阶段面临的诸多实际情况,在各类电源的规划容量确定或不确定的情况下,均能优化计算出配置容量,提高了配置方法的适用性。
上述说明仅是本发明技术方案的概述,为了能够更清楚了解本发明的技术手段,并可依照说明书的内容予以实施,以下以本发明的较佳实施例并配合附图详细说明如后。
附图说明
图1是本发明综合能源系统的电源容量配置方法的流程图;
图2是本发明电源容量配置方法情况划分规则示意图;
图3是本发明情况①和情况③的电源配置方法流程图;
图4是本发明情况②和情况④的电源配置方法流程图;
图5是本发明一实施例中边界条件①所对应的情况①除储能外其他电源的总出力及用电负荷;
图6是本发明一实施例中边界条件②所对应的情况②除储能外其他电源的总出力及用电负荷;
图7是本发明一实施例中边界条件③所对应的情况③除储能外其他电源的总出力及用电负荷;
图8是本发明一实施例中边界条件④所对应的情况④除储能外其他电源的总出力及用电负荷。
具体实施方式
下面结合附图和实施例,对本发明的具体实施方式作进一步详细描述。以下实施例用于说明本发明,但不用来限制本发明的范围。
本实施例提供了一种通过综合能源系统的电源容量配置方法,按照稳定可调电源和风电光伏的可开发容量是否确定划分为四种情况,分别为情况①(稳定可调电源和风电光伏的可开发容量都能确定)、情况②(稳定可调电源的可开发容量能确定,风电光伏的可开发容量不能确定)、情况③(风电光伏的可开发容量能确定,稳定可调电源的可开发容量不能确定)以及情况④(稳定可调电源和风电光伏的可开发容量都不能确定),根据具体案例自动匹配其中一种情况进行计算。四种情况的优化计算方法互不相同,但彼此相关,根据具体设定的边界条件自动匹配相符合的一种情况进行计算;首先计算和优化风电与光伏的容量和配比,使新能源发电的出力曲线最大程度地匹配受端负荷特性,使新能源发电量占比达到最大化,其次计算和优化火电、水电、核电等调节电源的出力曲线,使电源基地的整体送电曲线进一步匹配受端负荷特性,最后计算储能的最佳装机容量,完全弥补电源出力与用电负荷之间的功率差,使电源基地的开发不给电力系统增加调峰压力。
导入数据如下:
风电实时出力模拟值:
Figure BDA0003323800880000071
光伏实时出力模拟值:
Figure BDA0003323800880000072
用电负荷实时功率需求:Lt
数据的时间间隔:Δt(单位:分钟)。
参数设置参表1。
表1
Figure BDA0003323800880000073
Figure BDA0003323800880000081
过程中或结尾需要计算出的参数参表2。
表2过程中或结尾需要计算出的参数
Figure BDA0003323800880000082
Figure BDA0003323800880000091
情况③在初步计算出稳定可调电源的装机功率后,要与稳定可调电源的可开发容量进行比较,按照比较结果为稳定可调电源的装机功率重新赋值,再将情况③转化为情况①进行最终计算。
情况④在初步计算出稳定可调电源的装机功率后,要与稳定可调电源的可开发容量进行比较,按照比较结果为稳定可调电源的装机功率重新赋值,再将情况④转化为情况②进行最终计算。
情况②和情况④的风电匹配系数和光伏匹配系数无法直接计算得到,需要迭代计算直到时序功率偏差收敛为止,得到最后一次的风电匹配系数和光伏匹配系数。
具体计算方法如下:
情况①
稳定可调电源和风光电源的装机容量
Figure BDA0003323800880000092
都可以确定下来,即
Figure BDA0003323800880000093
则,
Figure BDA0003323800880000094
Figure BDA0003323800880000095
Figure BDA0003323800880000096
Figure BDA0003323800880000097
Figure BDA0003323800880000098
Figure BDA0003323800880000099
Figure BDA00033238008800000910
情况②
稳定可调电源的装机容量
Figure BDA00033238008800000911
可以确定,风光电源的装机容量
Figure BDA00033238008800000912
不可确定,即
Figure BDA00033238008800000913
则,
Figure BDA0003323800880000101
存在一个最大值
Figure BDA0003323800880000102
算法迭代k1和k2,使
Figure BDA0003323800880000103
收敛,达到最小
计算出k1和k2
Figure BDA0003323800880000104
Figure BDA0003323800880000105
Figure BDA0003323800880000106
Figure BDA0003323800880000107
Figure BDA0003323800880000108
Figure BDA0003323800880000109
Figure BDA00033238008800001010
情况③
风光电源的装机容量
Figure BDA00033238008800001011
可以确定下来,稳定可调电源的装机容量
Figure BDA00033238008800001012
不可确定,即
Figure BDA00033238008800001013
则,
Figure BDA00033238008800001014
Figure BDA00033238008800001015
Figure BDA00033238008800001016
Figure BDA00033238008800001017
如果,
Figure BDA00033238008800001018
Figure BDA00033238008800001019
则,
Figure BDA00033238008800001020
则,情况③转变为情况①,按照情况①重新计算
如果
Figure BDA00033238008800001021
则,
Figure BDA00033238008800001022
则,情况③转变为情况①,按照情况①重新计算
如果
Figure BDA00033238008800001023
则,
Figure BDA00033238008800001024
则,情况③转变为情况①,按照情况①重新计算。
情况④
稳定可调电源和风光电源的装机容量
Figure BDA0003323800880000111
都不可以确定下来,即
Figure BDA0003323800880000112
Figure BDA0003323800880000113
则,
Figure BDA0003323800880000114
存在一个最大值
Figure BDA0003323800880000115
算法迭代k1和k2,使
Figure BDA0003323800880000116
收敛,达到最小;
计算出k1和k2
Figure BDA0003323800880000117
Figure BDA0003323800880000118
Figure BDA0003323800880000119
Figure BDA00033238008800001110
如果,
Figure BDA00033238008800001111
Figure BDA00033238008800001112
则,
Figure BDA00033238008800001113
则,情况④转变为情况②,按照情况②重新计算;
如果
Figure BDA00033238008800001114
则,
Figure BDA00033238008800001115
则,情况④转变为情况②,按照情况②重新计算;
如果
Figure BDA00033238008800001116
则,
Figure BDA00033238008800001117
则,情况④转变为情况②,按照情况②重新计算。
本发明所述的综合能源系统可以是用户侧的户用型、园区型等综合能源系统,所发出的电能就地消纳或接入配电网,也可以是电源侧或电网侧的大型发电基地,所发出的电能接入大电网,在本区域消纳或外送其他区域消纳。导入的风电、光伏数据可以是任意方式得到的能代表规划地风电、光伏出力特性的数据;导入的用电负荷数据可以是任意方式得到的能代表受电端负荷特性的数据。稳定可调电源包含但不限于火力发电、水力发电、核电等发电形式的一种或多种,其中火力发电包含但不限于燃煤发电、燃气发电、生物质发电、垃圾发电等;所述储能包含但不限于机械储能、电化学储能、化学储能、电磁储能、热储能等储能形式的一种或多种。
该综合能源系统的电源容量配置方法,全面考虑综合能源系统在规划阶段面临的诸多实际情况,在各类电源的规划容量确定或不确定的情况下,均能优化计算出配置容量,提高了配置方法的适用性。
下面以电源侧的大型发电基地为例进行说明:
首先需要导入风电、光伏和用电负荷的数据,风电、光伏数据可以是任意方式得到的能代表规划地风电、光伏出力特性的数据;用电负荷数据可以是任意方式得到的能代表受电端负荷特性的数据。在此,以2019年6月份某临近风电、光伏电站的运行数据和以江苏省用电负荷数据缩小100倍为导入数据(采样数据时间间隔30min)进行说明。
本实施例设置了四种边界条件,分别对应上述四种情况,来说明本发明的应用效果。如表3所示。
表3四种边界条件的数据
Figure BDA0003323800880000121
参图5至图8所示,曲线1是除储能外其他电源的总出力,曲线2是用电负荷,两者之差由储能补充。
边界条件①所对应的情况①,计算结果为:风电装机:500(MW);光伏装机:500(MW);稳定可调电源装机容量:1200(MW);储能电站装机容量:143(MW)/1353(MWh),参图5所示。
边界条件②所对应的情况②,计算结果为:风电装机:345(MW);光伏装机:442(MW);稳定可调电源装机容量:1000(MW);储能电站装机容量:343(MW)/6370(MWh),参图6所示。
边界条件③所对应的情况③,计算结果为:风电装机:0(MW);光伏装机:0(MW);稳定可调电源装机容量:1340(MW);储能电站装机容量:0(MW)/0(MWh),参图7所示,总出力(曲线1)与用电负荷(曲线2)重叠。
边界条件④所对应的情况④,计算结果为:风电装机:600(MW);光伏装机:600(MW);稳定可调电源装机容量:1200(MW);储能电站装机容量:144(MW)/1340(MWh),参图8所示。
以上所述仅是本发明的优选实施方式,并不用于限制本发明,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明技术原理的前提下,还可以做出若干改进和变型,这些改进和变型也应视为本发明的保护范围。

Claims (4)

1.一种综合能源系统的电源容量配置方法,其特征在于,按照稳定可调电源和风电光伏的可开发容量是否确定划分为四种情况:
情况①,稳定可调电源和风电光伏的可开发容量都能确定;
情况②,稳定可调电源的可开发容量能确定,风电光伏的可开发容量不能确定;
情况③,风电光伏的可开发容量能确定,稳定可调电源的可开发容量不能确定;
情况④,稳定可调电源和风电光伏的可开发容量都不能确定;
以储能装机容量最小为目标,根据具体案例自动匹配其中一种情况进行计算,得到各种电源的装机容量;
四种情况计算方法中所涉及的参数如下:
风电实时出力模拟值:
Figure FDA0003323800870000011
光伏实时出力模拟值:
Figure FDA0003323800870000012
用电负荷实时功率需求:Lt
数据的时间间隔:Δt,单位:分钟;
风电最小可开发容量
Figure FDA0003323800870000013
风电最大可开发容量
Figure FDA0003323800870000014
光伏最小可开发容量
Figure FDA0003323800870000015
光伏最大可开发容量
Figure FDA0003323800870000016
稳定可调电源最小可开发容量
Figure FDA0003323800870000017
稳定可调电源最大可开发容量
Figure FDA0003323800870000018
风电导入数据对应风电场站的额定功率
Figure FDA0003323800870000019
光伏导入数据对应光伏场站的额定功率
Figure FDA00033238008700000110
稳定可调电源的升降速率限制β3
储能电站的升降速率限制β4
风电场站平均可利用系数α1
光伏场站平均可利用系数α2
储能电站充放电范围SOC;
储能电站电量平衡周期τ;
稳定可调电源最低负荷率限制θ3
风电配置系数k1,精确到小数点后两位,情况①③无边界条件;情况②④,有边界条件:
Figure FDA0003323800870000021
光伏配置系数k2,精确到小数点后两位,情况①③无边界条件;情况②④,有边界条件:
Figure FDA0003323800870000022
风电装机功率
Figure FDA0003323800870000023
精确到个位,情况①③时,为已知参数;
光伏装机功率
Figure FDA0003323800870000024
精确到个位,情况①③时,为已知参数;
电源总出力与用电负荷的时序功率偏差
Figure FDA0003323800870000025
稳定可调电源装机功率
Figure FDA0003323800870000026
精确到个位,情况①②时,为已知参数;情况①②时,无边界条件;情况③④时,有边界条件:
Figure FDA0003323800870000027
稳定可调电源实时功率
Figure FDA0003323800870000028
精确到小数点后两位;情况①②时,边界条件:
Figure FDA0003323800870000029
Figure FDA00033238008700000210
情况③④时,边界条件:
Figure FDA00033238008700000211
储能电站实时功率
Figure FDA00033238008700000212
精确到小数点后两位,
Figure FDA00033238008700000213
表示储能电站发出电能;
Figure FDA00033238008700000214
表示储能电站吸收电能;边界条件:
Figure FDA00033238008700000215
Figure FDA00033238008700000216
储能电站剩余能量
Figure FDA00033238008700000217
储能电站装机能量
Figure FDA00033238008700000218
储能电站装机功率
Figure FDA00033238008700000219
所述情况①计算方法如下:
稳定可调电源和风光电源的装机容量
Figure FDA00033238008700000220
都可以确定下来,即
Figure FDA00033238008700000221
则,
Figure FDA00033238008700000222
Figure FDA00033238008700000223
Figure FDA00033238008700000224
Figure FDA0003323800870000031
Figure FDA0003323800870000032
Figure FDA0003323800870000033
Figure FDA0003323800870000034
所述情况②计算方法如下:
稳定可调电源的装机容量
Figure FDA0003323800870000035
可以确定,风光电源的装机容量
Figure FDA0003323800870000036
不可确定,即
Figure FDA0003323800870000037
则,
Figure FDA0003323800870000038
存在一个最大值
Figure FDA0003323800870000039
算法迭代k1和k2,使
Figure FDA00033238008700000310
收敛,达到最小;
计算出k1和k2
Figure FDA00033238008700000311
Figure FDA00033238008700000312
Figure FDA00033238008700000313
Figure FDA00033238008700000314
Figure FDA00033238008700000315
Figure FDA00033238008700000316
Figure FDA00033238008700000317
所述情况③计算方法如下:
风光电源的装机容量
Figure FDA00033238008700000318
可以确定下来,稳定可调电源的装机容量
Figure FDA00033238008700000319
不可确定,即
Figure FDA00033238008700000320
则,
Figure FDA00033238008700000321
Figure FDA00033238008700000322
Figure FDA00033238008700000323
Figure FDA00033238008700000324
如果,
Figure FDA00033238008700000325
Figure FDA00033238008700000326
则,
Figure FDA00033238008700000327
则,情况③转变为情况①,按照情况①重新计算;
如果
Figure FDA0003323800870000041
则,
Figure FDA0003323800870000042
则,情况③转变为情况①,按照情况①重新计算;
如果
Figure FDA0003323800870000043
则,
Figure FDA0003323800870000044
则,情况③转变为情况①,按照情况①重新计算;
所述情况④计算方法如下:
稳定可调电源和风光电源的装机容量
Figure FDA0003323800870000045
都不可以确定下来,即
Figure FDA0003323800870000046
则,
Figure FDA0003323800870000047
存在一个最大值
Figure FDA0003323800870000048
算法迭代k1和k2,使
Figure FDA0003323800870000049
收敛,达到最小;
计算出k1和k2
Figure FDA00033238008700000410
Figure FDA00033238008700000411
Figure FDA00033238008700000412
Figure FDA00033238008700000413
如果,
Figure FDA00033238008700000414
Figure FDA00033238008700000415
则,
Figure FDA00033238008700000416
则,情况④转变为情况②,按照情况②重新计算;
如果
Figure FDA00033238008700000417
则,
Figure FDA00033238008700000418
则,情况④转变为情况②,按照情况②重新计算;
如果
Figure FDA00033238008700000419
则,
Figure FDA00033238008700000420
则,情况④转变为情况②,按照情况②重新计算。
2.根据权利要求1所述的综合能源系统的电源容量配置方法,其特征在于,所述综合能源系统为用户侧的户用型、园区型综合能源系统,所发出的电能就地消纳或接入配电网,或电源侧或电网侧的大型发电基地,所发出的电能接入大电网,在本区域消纳或外送其他区域消纳。
3.根据权利要求1所述的综合能源系统的电源容量配置方法,其特征在于,所述风电实时出力模拟值
Figure FDA0003323800870000051
光伏实时出力模拟值
Figure FDA0003323800870000052
为任意方式得到的能代表规划地风电、光伏出力特性的数据;所述用电负荷实时功率需求Lt为任意方式得到的能代表受电端负荷特性的数据。
4.根据权利要求1所述的综合能源系统的电源容量配置方法,其特征在于,所述稳定可调电源包括火力发电、水力发电、核电中的一种或多种,其中,火力发电包括燃煤发电、燃气发电、生物质发电、垃圾发电;所述储能包括机械储能、电化学储能、化学储能、电磁储能、热储能中的一种或多种。
CN202111255790.4A 2021-10-27 2021-10-27 一种综合能源系统的电源容量配置方法 Active CN114204608B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111255790.4A CN114204608B (zh) 2021-10-27 2021-10-27 一种综合能源系统的电源容量配置方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111255790.4A CN114204608B (zh) 2021-10-27 2021-10-27 一种综合能源系统的电源容量配置方法

Publications (2)

Publication Number Publication Date
CN114204608A true CN114204608A (zh) 2022-03-18
CN114204608B CN114204608B (zh) 2024-10-15

Family

ID=80646386

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111255790.4A Active CN114204608B (zh) 2021-10-27 2021-10-27 一种综合能源系统的电源容量配置方法

Country Status (1)

Country Link
CN (1) CN114204608B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004048852A (ja) * 2002-07-09 2004-02-12 Osaka Gas Co Ltd 発電計画方法
WO2015105210A1 (ko) * 2014-01-09 2015-07-16 건국대학교 산학협력단 수요반응자원과 에너지저장장치를 포함하는 장기전원구성 포트폴리오 시스템
CN105205552A (zh) * 2015-09-11 2015-12-30 东南大学 一种独立新能源混合发电系统优化规划方法
CN109586286A (zh) * 2018-12-07 2019-04-05 国网辽宁省电力有限公司大连供电公司 一种基于机组组合的储能电站容量确定方法
CN112564183A (zh) * 2020-12-02 2021-03-26 中国电力工程顾问集团华北电力设计院有限公司 电网规划中风光火储的容量优化配置方法
CN112583003A (zh) * 2019-09-29 2021-03-30 华北电力大学(保定) 一种基于演化博弈理论的多能源电力系统电源规划方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004048852A (ja) * 2002-07-09 2004-02-12 Osaka Gas Co Ltd 発電計画方法
WO2015105210A1 (ko) * 2014-01-09 2015-07-16 건국대학교 산학협력단 수요반응자원과 에너지저장장치를 포함하는 장기전원구성 포트폴리오 시스템
CN105205552A (zh) * 2015-09-11 2015-12-30 东南大学 一种独立新能源混合发电系统优化规划方法
CN109586286A (zh) * 2018-12-07 2019-04-05 国网辽宁省电力有限公司大连供电公司 一种基于机组组合的储能电站容量确定方法
CN112583003A (zh) * 2019-09-29 2021-03-30 华北电力大学(保定) 一种基于演化博弈理论的多能源电力系统电源规划方法
CN112564183A (zh) * 2020-12-02 2021-03-26 中国电力工程顾问集团华北电力设计院有限公司 电网规划中风光火储的容量优化配置方法

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
ALNASER, SW (ALNASER, SAHBAN W.); OCHOA, LF (OCHOA, LUIS F.): "Optimal Sizing and Control of Energy Storage in Wind Power-Rich Distribution Networks", IEEE TRANSACTIONS ON POWER SYSTEMS, 1 May 2016 (2016-05-01), pages 2004 - 2013, XP011606640, DOI: 10.1109/TPWRS.2015.2465181 *
QINGYU XU; SHENSHEN LI; HOBBS, B.F.: "Generation and Storage Expansion Co-optimization with Consideration of Unit Commitment", 2018 IEEE INTERNATIONAL CONFERENCE ON PROBABILISTIC METHODS APPLIED TO POWER SYSTEMS (PMAPS). PROCEEDINGS, 13 September 2018 (2018-09-13), pages 6 *
WANG DESHUN, ZHAO YUMENG, TAO QIONG, XUE JINHUA, YE JELEI;: "Research on Planning and Configuration of Multi-objective Energy Storage System Solved by Improved Ant Colony Algorithm", 2018 CHINA INTERNATIONAL CONFERENCE ON ELECTRICITY DISTRIBUTION (CICED), 30 December 2018 (2018-12-30), pages 2279 - 12283 *
刘志刚,伍也凡,肖振锋,姚颖,何书耘,刘顺成,徐焘,侯慧;: "基于重力储能的风光储系统多目标容量优化规划", 全球能源互联网, no. 2021, 23 September 2021 (2021-09-23), pages 464 - 475 *
安源;常瑞莉;王颂凯;: "基于羊曲水电站的风-光-储互补系统容量优化配置", 电气应用, no. 10, 15 October 2020 (2020-10-15), pages 35 - 41 *
雷金勇,于力,郭晓斌,李鹏,李程,吴玉生;: "考虑电热气耦合的综合能源系统规划方法", 电力系统及其自动化学报, no. 2019, 31 October 2018 (2018-10-31), pages 19 - 24 *

Also Published As

Publication number Publication date
CN114204608B (zh) 2024-10-15

Similar Documents

Publication Publication Date Title
Pascual et al. Energy management for an electro-thermal renewable–based residential microgrid with energy balance forecasting and demand side management
Venu et al. Battery storage system sizing in distribution feeders with distributed photovoltaic systems
Xie et al. Sizing renewable generation and energy storage in stand-alone microgrids considering distributionally robust shortfall risk
CN103944175A (zh) 风光储联合发电系统出力特性优化方法
CN110661301B (zh) 一种水光蓄多能互补发电系统的容量配置优化方法
Belmili et al. A computer program development for sizing stand-alone Photovoltaic-Wind hybrid systems
Li et al. Optimized operation of hybrid system integrated with MHP, PV and PHS considering generation/load similarity
Korjani et al. A genetic algorithm approach for sizing integrated PV-BESS systems for prosumers
Zeng et al. Model predictive control for energy storage systems in a network with high penetration of renewable energy and limited export capacity
CN115099590B (zh) 计及光荷不确定性的主动配电网经济优化调度方法及系统
CN112366684A (zh) 一种海岛微电网系统
CN107359611B (zh) 考虑多种随机因素的配电网等值方法
CN110661250B (zh) 含风光储发输电系统的可靠性评估方法及系统
Saberi et al. Optimal sizing of hybrid PV and wind energy system with backup of redox flow battery to postpone grid expansion investments
Linlin et al. Research on multi-objective reactive power optimization of power grid with high proportion of new energy
Sathishkumar et al. Adaptive power management strategy-based optimization and estimation of a renewable energy storage system in stand-alone microgrid with machine learning and data monitoring
CN116207760A (zh) 源网荷储容量配置方法
Ru et al. Battery sizing for grid connected PV systems with fixed minimum charging/discharging time
CN113949107B (zh) 一种风光柴储混合多能源船舶能量管理方法
Yang et al. Collaborative optimization of wind-solar-storage configuration in county distribution network considering near-zero carbon emission
CN114204608A (zh) 一种综合能源系统的电源容量配置方法
Heo et al. Energy resource capacity optimization for zero-energy housing complex
Ma et al. Multi-Point Layout Planning of Multi-Energy Power Supplies Based on Time-series Production Simulation
Jiang et al. Optimal Planning of Energy Storage in Power Systems with High Proportion of Renewable Energy
Helguero et al. Provision of Reactive Power by Nanogrids as part of a Topological Power Plant in a Low Voltage Network

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant