CN114200837B - A hierarchical sliding mode control method that interferes with unknown spherical robots - Google Patents
A hierarchical sliding mode control method that interferes with unknown spherical robots Download PDFInfo
- Publication number
- CN114200837B CN114200837B CN202111488340.XA CN202111488340A CN114200837B CN 114200837 B CN114200837 B CN 114200837B CN 202111488340 A CN202111488340 A CN 202111488340A CN 114200837 B CN114200837 B CN 114200837B
- Authority
- CN
- China
- Prior art keywords
- unknown
- spherical
- sliding mode
- spherical shell
- neural network
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000000034 method Methods 0.000 title claims abstract description 17
- 238000013528 artificial neural network Methods 0.000 claims abstract description 58
- 230000003044 adaptive effect Effects 0.000 claims abstract description 25
- 238000013178 mathematical model Methods 0.000 claims abstract description 18
- 238000013461 design Methods 0.000 claims description 16
- 239000013598 vector Substances 0.000 claims description 10
- 230000001133 acceleration Effects 0.000 claims description 9
- 230000008859 change Effects 0.000 claims description 6
- 230000005484 gravity Effects 0.000 claims description 6
- 239000011159 matrix material Substances 0.000 claims description 5
- 238000010586 diagram Methods 0.000 description 3
- 238000005293 physical law Methods 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 238000004088 simulation Methods 0.000 description 2
- 230000006978 adaptation Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B13/00—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
- G05B13/02—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
- G05B13/04—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
- G05B13/042—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators in which a parameter or coefficient is automatically adjusted to optimise the performance
Landscapes
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Artificial Intelligence (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Evolutionary Computation (AREA)
- Medical Informatics (AREA)
- Software Systems (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Feedback Control In General (AREA)
Abstract
本发明提供了一种干扰未知球形机器人系统的分层滑模控制方法,能够采用自适应神经网络理论对球形机器人系统进行运动控制,从而实现对干扰未知球形机器人系统精确控制。本发明的技术方案包括以下步骤:针对被控球形机器人系统建立含未知项的球形机器人系统的数学模型,未知项为未知干扰。基于神经网络对球形机器人系统的数学模型中的未知项进行逼近,并基于控制误差信息对神经网络权重参数进行自适应估计。基于自适应神经网络逼近的未知项及定义的滑模面,设计带有干扰补偿的滑模控制器。利用滑模控制器对干扰未知球形机器人的进行控制。
The invention provides a hierarchical sliding mode control method for a spherical robot system with unknown interference, which can use adaptive neural network theory to perform motion control on the spherical robot system, thereby achieving precise control of the spherical robot system with unknown interference. The technical solution of the present invention includes the following steps: establishing a mathematical model of the spherical robot system containing unknown items for the controlled spherical robot system, and the unknown items are unknown interferences. The unknown items in the mathematical model of the spherical robot system are approximated based on the neural network, and the weight parameters of the neural network are adaptively estimated based on the control error information. Based on the unknown items approximated by the adaptive neural network and the defined sliding mode surface, a sliding mode controller with interference compensation is designed. A sliding mode controller is used to control the spherical robot with unknown interference.
Description
技术领域Technical field
本发明涉及机器人运动控制技术领域,具体涉及一种干扰未知球形机器人的分层滑模控制方法。The invention relates to the technical field of robot motion control, and in particular to a hierarchical sliding mode control method that interferes with an unknown spherical robot.
背景技术Background technique
针对球形机器人的运动控制,现有研究多以假设球形机器人沿直线运动为前提,忽略了球形机器人沿直线运动的前提。对于保持球形机器人直线运动的控制,可以采用结构简单,响应速度快的滑模控制,通过设计由控制误差构成的滑模面,实时测量采集球形机器人的姿态进行状态反馈。对于控制对象动力学模型中未知干扰部分,非线性干扰观测器设计形式复杂,依赖模型,设计参数较多,因此可以设计神经网络逼近器对其进行估计。Regarding the motion control of spherical robots, most existing research assumes that the spherical robot moves along a straight line, ignoring the premise that the spherical robot moves along a straight line. For the control of maintaining the linear motion of the spherical robot, sliding mode control with simple structure and fast response speed can be used. By designing the sliding mode surface composed of control errors, the attitude of the spherical robot can be measured and collected in real time for state feedback. For the unknown interference part in the dynamic model of the control object, the design form of the nonlinear interference observer is complex, model-dependent, and has many design parameters. Therefore, a neural network approximator can be designed to estimate it.
尤其近几年,对球形机器人的运动控制方法研究取得巨大进步,但是目前尚未发现应用自适应神经网络理论估计干扰部分以保持球形机器人进行运动控制的研究成果。Especially in recent years, great progress has been made in the research on motion control methods of spherical robots. However, there have been no research results that apply adaptive neural network theory to estimate the interference part to maintain motion control of spherical robots.
发明内容Contents of the invention
有鉴于此,本发明提供了一种干扰未知球形机器人系统的分层滑模控制方法,能够采用自适应神经网络理论对球形机器人系统进行运动控制,从而实现对干扰未知球形机器人系统精确控制。In view of this, the present invention provides a hierarchical sliding mode control method for a spherical robot system with unknown interference, which can use adaptive neural network theory to control the motion of the spherical robot system, thereby achieving precise control of the spherical robot system with unknown interference.
为达到上述目的,本发明的技术方案包括以下步骤:In order to achieve the above objects, the technical solution of the present invention includes the following steps:
步骤一、针对被控球形机器人系统建立含未知项的球形机器人系统的数学模型,未知项为未知干扰。Step 1: Establish a mathematical model of the spherical robot system containing unknown items for the controlled spherical robot system. The unknown items are unknown interference.
步骤二、基于神经网络对球形机器人系统的数学模型中的未知项进行逼近,并基于控制误差信息对神经网络权重参数进行自适应估计。Step 2: Approximate the unknown items in the mathematical model of the spherical robot system based on the neural network, and adaptively estimate the weight parameters of the neural network based on the control error information.
步骤三、基于自适应神经网络逼近的未知项及定义的滑模面,设计带有干扰补偿的滑模控制器。Step 3: Design a sliding mode controller with interference compensation based on the unknown items approximated by the adaptive neural network and the defined sliding mode surface.
步骤四、利用滑模控制器对干扰未知球形机器人的进行控制。Step 4: Use the sliding mode controller to control the interference unknown spherical robot.
进一步地,步骤一中,针对被控球形机器人系统建立含未知干扰的球形机器人系统的数学模型,具体如下:Further, in step one, a mathematical model of the spherical robot system containing unknown interference is established for the controlled spherical robot system, as follows:
其中M11,M12,M21,M22分别为球形机器人系统的惯性矩阵的元素;V11和V21为球形机器人的重力力矩向量中的元素;Φ为球壳的转角,为球壳的转角的角加速度,ζ为球壳内摆的转角,/>为球壳内摆的转角的角加速度;τy为球形机器人的电机输入扭矩;Among them, M 11 , M 12 , M 21 and M 22 are the elements of the inertia matrix of the spherical robot system respectively; V 11 and V 21 are the elements of the gravity moment vector of the spherical robot; Φ is the rotation angle of the spherical shell, is the angular acceleration of the rotation angle of the spherical shell, ζ is the rotation angle of the internal pendulum of the spherical shell,/> is the angular acceleration of the internal pendulum angle of the spherical shell; τ y is the motor input torque of the spherical robot;
设置四个状态变量x1,x2,x3,x4,令x1=φ,x3=ζ/>则将球形机器人系统的数学模型即公式(1)转化为系统状态空间表达式:Set four state variables x 1 , x 2 , x 3 , x 4 , let x 1 =φ, x 3 =ζ/> Then the mathematical model of the spherical robot system, that is, formula (1), is transformed into a system state space expression:
其中球形机器人系统包含球壳子系统和球壳内摆子系统,f1为球壳子系统中包含系统状态变量的时变函数;β1为球壳子系统中控制输入的时变系数;b1为球壳子系统中未知项的时变系数;f2球壳内摆子系统中包含系统状态变量的时变函数;β2为球壳内摆子系统中控制输入的时变系数;b2球壳子系统中未知项的时变系数;Δy为球形机器人系统的数学模型的未知项;The spherical robot system includes a spherical shell subsystem and a spherical shell pendulum subsystem. f 1 is the time-varying function of the system state variables in the spherical shell subsystem; β 1 is the time-varying coefficient of the control input in the spherical shell subsystem; b 1 is the time-varying coefficient of the unknown item in the spherical shell subsystem; f 2 is the time-varying function of the system state variables included in the spherical shell pendulum subsystem; β 2 is the time-varying coefficient of the control input in the spherical shell pendulum subsystem; b 2. The time-varying coefficient of the unknown item in the spherical shell subsystem; Δ y is the unknown item of the mathematical model of the spherical robot system;
其中球壳子系统中未知项为d1=b1Δy,球壳内摆子系统中未知项为d2=b2Δy,则系统状态空间表达式(2)描述为Among them, the unknown item in the spherical shell subsystem is d 1 =b 1 Δ y , and the unknown item in the spherical shell pendulum subsystem is d 2 =b 2 Δ y . Then the system state space expression (2) is described as
较佳地,M11,M12,M21,M22分别为球形机器人系统的惯性矩阵的元素,具体地:Preferably, M 11 , M 12 , M 21 , M 22 are elements of the inertia matrix of the spherical robot system, specifically:
其中Ms为球壳的质量,mp为球内摆的质量,Rs为球壳的半径,l为球内摆的长度,g为重力加速度。Among them, M s is the mass of the spherical shell, m p is the mass of the ball's inner pendulum, R s is the radius of the spherical shell, l is the length of the ball's inner pendulum, and g is the acceleration of gravity.
进一步地,基于神经网络对球形机器人系统的数学模型中的未知项进行逼近,并基于控制误差信息对神经网络权重参数进行自适应估计,具体为:Furthermore, the unknown terms in the mathematical model of the spherical robot system are approximated based on the neural network, and the weight parameters of the neural network are adaptively estimated based on the control error information, specifically as follows:
球形机器人系统的数学模型中的未知项包括球壳子系统中未知项d1,球壳内摆子系统中未知项d2:The unknown items in the mathematical model of the spherical robot system include the unknown item d 1 in the spherical shell subsystem and the unknown item d 2 in the pendulum subsystem of the spherical shell:
其中W1,W2为设置的两个神经网络权重,h1(X)=[hi]T和h2(X)=[hj]T分别为径向基函数,hi,hj为径向基函数的元素,X为状态向量,由四个状态变量组成状态向量X=[x1,x2,x3,x4]T;ε1、ε2为逼近误差,则球壳子系统中未知项d1,球壳内摆子系统中未知项d2的估计值分别为和/>表示如下:Among them, W 1 and W 2 are the two neural network weights set, h 1 (X) = [h i ] T and h 2 (X) = [h j ] T are the radial basis functions respectively, h i , h j is the element of the radial basis function , X is the state vector , which is composed of four state variables. The state vector The estimated values of the unknown term d 1 in the subsystem and the unknown term d 2 in the spherical shell pendulum subsystem are respectively and/> Expressed as follows:
则系统状态空间表达式(2)中的未知项估计值为则系统跟踪误差为Then the estimated value of the unknown item in the system state space expression (2) is Then the system tracking error is
其中,e1为球壳的位置跟踪误差、e3为球壳内摆位置跟踪误差、x1d为球壳的期望位置,x3d球壳内摆期望位置;Among them, e 1 is the position tracking error of the spherical shell, e 3 is the position tracking error of the inner swing of the spherical shell, x 1d is the expected position of the spherical shell, and x 3d is the expected position of the inner swing of the spherical shell;
先定义系统滑模面,包括第一滑模面S1和第二滑模面S2:First define the system sliding mode surface, including the first sliding mode surface S 1 and the second sliding mode surface S 2 :
其中,ei(i=1,3)表示跟踪误差,c1为e1的系数,c2为e2的系数;Among them, e i (i=1,3) represents the tracking error, c 1 is the coefficient of e 1 , and c 2 is the coefficient of e 2 ;
则联合滑模面为Then the joint sliding mode surface is
Sy=aS1+bS2 (8)S y =aS 1 +bS 2 (8)
a,b分别为第一滑模面S1和第二滑模面S2的权重系数;a, b are the weight coefficients of the first sliding mode surface S 1 and the second sliding mode surface S 2 respectively;
神经网络权重参数的自适应律为The adaptive law of neural network weight parameters is
其中为神经网络权重估计值的变化率;/>为神经网络权重估计值的变化率;γ1为系数;γ2为系数;in is the rate of change of the neural network weight estimate;/> is the rate of change of the neural network weight estimate; γ 1 is the coefficient; γ 2 is the coefficient;
对于含未知项的球形机器人系统的系统状态空间表达式(2),如果采用联合滑模面(8)中的神经网络权重自适应律(9)及公式(5)中的神经网络逼近形式,则得到逼近的未知项即 For the system state space expression (2) of the spherical robot system containing unknown terms, if the neural network weight adaptation law (9) in the joint sliding mode surface (8) and the neural network approximation form in formula (5) are used, Then the approximate unknown term is obtained, which is
进一步地,通过 为Si的一阶导数,得等效控制器为further, through is the first derivative of S i , the equivalent controller is
其中τy1第一等效控制器;τy2第二等效控制器;为球壳的期望角速度;/>为球壳内摆的期望角速度;Among them, τ y1 is the first equivalent controller; τ y2 is the second equivalent controller; is the expected angular velocity of the spherical shell;/> is the expected angular velocity of the internal pendulum of the spherical shell;
则最终滑模控制器设计为Then the final sliding mode controller is designed as
τy=(aβ1+bβ2)-1(aβ1τy1+bβ2τy2-k1sign(Sy)-k2Sy) (11)τ y =(aβ 1 +bβ 2 ) -1 (aβ 1 τ y1 +bβ 2 τ y2 -k 1 sign(S y )-k 2 S y ) (11)
其中k1为针对联合滑模面符号函数预设的误差系数;k2为针对联合滑模面预设的误差系数。Among them, k 1 is the error coefficient preset for the joint sliding mode surface sign function; k 2 is the error coefficient preset for the joint sliding mode surface.
有益效果:Beneficial effects:
1、本发明提供的一种干扰未知球形机器人系统的分层滑模控制方法,基于自适应神经网络的滑模控制方法,应用神经网络干扰逼近器,介绍保持球形机器人沿直线运动的控制器设计方法。首先针对干扰未知的球形机器人系统模型,应用神经网络逼近未知部分;建立基于控制误差的自适应权重更新律;根据逼近的干扰和球形机器人的系统模型设计带有干扰补偿的滑模控制器,使球形机器人能快速稳定地执行期望运动。1. The present invention provides a hierarchical sliding mode control method that interferes with an unknown spherical robot system. The sliding mode control method is based on an adaptive neural network. It applies a neural network interference approximator and introduces the controller design to keep the spherical robot moving along a straight line. method. First, for the spherical robot system model with unknown interference, a neural network is applied to approximate the unknown part; an adaptive weight update law based on control error is established; a sliding mode controller with interference compensation is designed based on the approximate interference and the system model of the spherical robot, so that Spherical robots can perform desired movements quickly and stably.
2、本发明所使用自适应神经网络逼近球形机器人的干扰未知项,对含物理模型未知的球形机器人系统,能够实现精确建模。能够用辨识系统对球形机器人部分期望信号进行分析和求解电机控制输出。2. The adaptive neural network used in the present invention approximates the interference unknown items of the spherical robot, and can achieve accurate modeling of the spherical robot system with unknown physical models. The identification system can be used to analyze part of the expected signals of the spherical robot and solve the motor control output.
3、本发明所提出的滑模控制方法,能够使单输入情况下保证球形机器人多个状态稳定,即在仅仅有单个电机输入时,球壳和球内摆的转角位置都可收敛至期望位置。3. The sliding mode control method proposed by the present invention can ensure the stability of multiple states of the spherical robot under a single input condition, that is, when there is only a single motor input, the angular positions of the spherical shell and the inner pendulum of the ball can converge to the desired position. .
附图说明Description of the drawings
图1为球形机器人系统结构示意图;Figure 1 is a schematic structural diagram of the spherical robot system;
图2为控制器设计结构示意图;Figure 2 is a schematic diagram of the controller design structure;
图3为本发明提供的一种基于自适应神经网络的干扰未知球形机器人保直线运动滑模控制器设计方法流程图。Figure 3 is a flow chart of a design method of a sliding mode controller for maintaining linear motion of a spherical robot with unknown interference based on an adaptive neural network provided by the present invention.
具体实施方式Detailed ways
下面结合附图并举实施例,对本发明进行详细描述。The present invention will be described in detail below with reference to the accompanying drawings and examples.
实施例1:Example 1:
图1所示为球形机器人系统结构图,本发明提供了一种基于自适应神经网络的干扰未知球形机器人保直线运动滑模控制器设计方法,包括以下步骤:Figure 1 shows the structure diagram of a spherical robot system. The present invention provides a design method of a sliding mode controller for linear motion of a spherical robot with unknown interference based on an adaptive neural network, which includes the following steps:
步骤一、对被控球形机器人系统进行分析,主要对机器人进行受力分析,根据其机械结构和物理定律建立含未知干扰的球形机器人系统的数学模型。建立该模型的目的是为了更好理解球形机器人系统的特性,进而设计球形机器人系统干扰逼近器和滑模控制器。Step 1: Analyze the controlled spherical robot system, mainly analyze the force of the robot, and establish a mathematical model of the spherical robot system with unknown interference based on its mechanical structure and physical laws. The purpose of establishing this model is to better understand the characteristics of the spherical robot system and then design the interference approximator and sliding mode controller of the spherical robot system.
按照球形机器人受力情况,根据其结构和物理定律,建立含未知干扰的球形机器人系统的数学模型,具体如下:According to the stress situation of the spherical robot, according to its structure and physical laws, a mathematical model of the spherical robot system with unknown interference is established, as follows:
其中M11,M12,M21,M22为球形机器人系统惯性矩阵的元素Where M 11 , M 12 , M 21 , M 22 are the elements of the inertia matrix of the spherical robot system
M12=M21=mpRslcos(ζ)M 12 =M 21 =m p R s lcos(ζ)
M22=mpl2 M 22 = m p l 2
V21=mpglsin(ζ)V 21 =m p glsin(ζ)
V11,V21为球形机器人的重力力矩向量的元素Ms,mp分别为球壳和球内摆的质量,Rs,l分别为球壳的半径和球壳内摆的长度,Φ,分别为球壳转角和转速,球壳转角的角加速度,ζ,/>分别为球壳内摆的转角和转速/>为球壳内摆转角的角加速度,Δy为球形机器人建模不确定项。τy为球形机器人的电机输入扭矩;g重力加速度。V 11 and V 21 are the elements of the gravity moment vector of the spherical robot. M s and m p are the masses of the spherical shell and the inner pendulum of the ball respectively. R s and l are respectively the radius of the spherical shell and the length of the inner pendulum of the spherical shell, Φ, are the spherical shell rotation angle and rotation speed respectively, and the angular acceleration of the spherical shell rotation angle, ζ,/> are the rotation angle and rotation speed of the internal pendulum of the spherical shell/> is the angular acceleration of the swing angle in the spherical shell, and Δ y is the uncertainty term in the modeling of the spherical robot. τ y is the motor input torque of the spherical robot; g is the gravity acceleration.
令四个状态变量x1=φ,x3=ζ,/>则将球形机器人模型(1)转化为系统状态空间表达式:Let the four state variables x 1 =φ, x 3 =ζ,/> Then convert the spherical robot model (1) into a system state space expression:
f1为球壳子系统中包含系统状态变量的时变函数;β1为球壳子系统中控制输入的时变系数;b1为球壳子系统中未知项的时变系数;f2球壳内摆子系统中包含系统状态变量的时变函数;β2为球壳内摆子系统中控制输入的时变系数;b2球壳子系统中未知项的时变系数f 1 is the time-varying function of the system state variable in the spherical shell subsystem; β 1 is the time-varying coefficient of the control input in the spherical shell subsystem; b 1 is the time-varying coefficient of the unknown item in the spherical shell subsystem; f 2 sphere The pendulum subsystem inside the shell contains the time-varying function of the system state variables; β 2 is the time-varying coefficient of the control input in the pendulum subsystem inside the spherical shell; b 2 is the time-varying coefficient of the unknown item in the spherical shell subsystem
令球壳子系统中未知项为d1=b1Δy,球壳内摆子系统中未知项为d2=b2Δy,则系统可描述为Let the unknown item in the spherical shell subsystem be d 1 = b 1 Δ y , and the unknown item in the spherical shell pendulum subsystem be d 2 = b 2 Δ y , then the system can be described as
从而简化控制器设计方法。This simplifies the controller design method.
步骤二、球形机器人系统模型干扰未知,基于神经网络对系统未知项进行逼近,并基于控制误差信息对神经网络权重参数进行自适应估计。Step 2: The interference of the spherical robot system model is unknown. The unknown items of the system are approximated based on the neural network, and the weight parameters of the neural network are adaptively estimated based on the control error information.
用神经网络逼近系统(3)中的含未知项,可以得到Using neural network to approximate the unknown items in system (3), we can get
其中W1和W2为神经网络权值,具体权值可以根据实际情况进行设置,本发明的一个实施例中可以设置W1=W2=[0.1,0.1,0.1,0.1,0.1]T);h1(X)=[hi]T、h2(X)=[hj]T为径向基函数,hi,hj为径向基函数的元素;其中元素其中cj和bj为径向基函数的参数,分别表示径向基函数的均值和均方差,其数值根据实际情况进行设置,例如本发明的一个实施例中cj=0.5*[-2,-1,0,1,2],bj=3,X为状态向量,由四个状态变量组成状态向量x;ε1、ε2为逼近误差,其数值根据实际情况进行设定,例如本发明的一个实施例中设置ε1=0.01,ε2=0.001。Among them, W 1 and W 2 are the neural network weights. The specific weights can be set according to the actual situation. In one embodiment of the present invention, W 1 =W 2 =[0.1,0.1,0.1,0.1,0.1] T ) ; h 1 (X) = [h i ] T , h 2 (X) = [h j ] T is the radial basis function, h i , h j are the elements of the radial basis function; where the elements where c j and b j are parameters of the radial basis function, representing the mean and mean square error of the radial basis function respectively. Their values are set according to the actual situation. For example, in one embodiment of the present invention, c j =0.5*[-2 ,-1,0,1,2] , b j =3 , In one embodiment of the present invention, ε 1 =0.01 and ε 2 =0.001 are set.
则未知项估计值表示如下:Then the estimated value of the unknown item is expressed as follows:
则系统(2)中的未知项估计值为则系统跟踪误差为Then the estimated value of the unknown item in system (2) is Then the system tracking error is
其中,e1为球壳的位置跟踪误差、e3为球壳内摆位置跟踪误差、x1d为球壳的期望位置,其数值人为给定,可根据实际情况进行设定,例如本发明的一个实施例中设置x1d=0,此时球形机器人沿直线运动;x3d为球壳内摆期望位置,x3d与的大小相关,具体地同时,为设计神经网络权重参数自适应律,首先定义系统滑模面:第一滑模面S1,第二滑模面S2,Among them, e 1 is the position tracking error of the spherical shell, e 3 is the inward swing position tracking error of the spherical shell, and x 1d is the desired position of the spherical shell. Their values are artificially given and can be set according to the actual situation. For example, the present invention In one embodiment, x 1d = 0 is set. At this time, the spherical robot moves along a straight line; x 3d is the desired position of the spherical shell's internal swing. related to the size, specifically At the same time, in order to design the adaptive law of the weight parameters of the neural network, the system sliding mode surface is first defined: the first sliding mode surface S 1 , the second sliding mode surface S 2 ,
其中,ei(i=1,3)表示跟踪误差,c1为e1的系数,c2为e2的系数,其数值根据实际情况进行设定,例如本发明的一个实施例中设置c1=0.1c2=0.1。Among them, e i (i=1,3) represents the tracking error, c 1 is the coefficient of e 1 , c 2 is the coefficient of e 2 , and its value is set according to the actual situation. For example, in one embodiment of the present invention, c is set 1 =0.1c 2 =0.1.
则联合滑模面为Then the joint sliding mode surface is
Sy=aS1+bS2 (8)S y =aS 1 +bS 2 (8)
a,b分别为第一滑模面S1和第二滑模面S2的权重系数,其数值根据实际情况进行设定,例如本发明的一个实施例中设置a=1,b=2。a and b are the weight coefficients of the first sliding mode surface S 1 and the second sliding mode surface S 2 respectively, and their values are set according to the actual situation. For example, in one embodiment of the present invention, a=1 and b=2 are set.
神经网络权重参数的自适应律可设计为The adaptive law of neural network weight parameters can be designed as
为神经网络权重估计值的变化率;/>为神经网络权重估计值的变化率;γ1为系数,γ2为系数,其数值根据实际情况进行设定,例如本发明的一个实施例中设置γ1=1γ2=0.5。 is the rate of change of the neural network weight estimate;/> is the rate of change of the neural network weight estimate; γ 1 is a coefficient, γ 2 is a coefficient, and their values are set according to the actual situation. For example, in one embodiment of the present invention, γ 1 =1 γ 2 =0.5 is set.
对于含未知项的球形机器人系统(2),如果采用(8)中的神经网络权重自适应律及(5)中的神经网络逼近形式,则未知项Δy可以被近似精确逼近。For the spherical robot system (2) containing unknown items, if the neural network weight adaptive law in (8) and the neural network approximation form in (5) are adopted, the unknown item Δ y can be approximately accurately approximated.
步骤三、基于自适应神经网络逼近未知项及定义的滑模面,设计带有干扰补偿的滑模控制器。Step 3: Design a sliding mode controller with interference compensation based on the adaptive neural network to approximate the unknown items and the defined sliding mode surface.
通过得等效控制器pass Get equivalent controller
τy1第一等效控制器;τy2第二等效控制器;为球壳的期望角速度;/>为球壳内摆的期望角速度;τ y1 first equivalent controller; τ y2 second equivalent controller; is the expected angular velocity of the spherical shell;/> is the expected angular velocity of the internal pendulum of the spherical shell;
则最终滑模控制器设计为Then the final sliding mode controller is designed as
τy=(aβ1+bβ2)-1(aβ1τy1+bβ2τy2-k1sign(Sy)-k2Sy) (11)τ y =(aβ 1 +bβ 2 ) -1 (aβ 1 τ y1 +bβ 2 τ y2 -k 1 sign(S y )-k 2 S y ) (11)
k1为针对联合滑模面符号函数预设的误差系数如k1=0.5;k2为针对联合滑模面预设的误差系数如k2=2;k 1 is the error coefficient preset for the sign function of the joint sliding mode surface, such as k 1 =0.5; k 2 is the error coefficient preset for the joint sliding mode surface, such as k 2 =2;
对于含未知项的球形机器人系统(2),如果神经网络输入向量h1,h2应用自适应律(9),近而可求得滑模控制器(11),对含未知项的球形机器人系统进行控制,保证球形机器人朝设定方向运动,例如设定x1d为0时,球形机器人可沿直线运动,由此实现本发明的目的。图2为根据以上步骤构建的控制器设计结构。For the spherical robot system (2) containing unknown items, if the neural network input vectors h 1 and h 2 apply the adaptive law (9), the sliding mode controller (11) can be obtained in a short time. For the spherical robot system containing unknown items The system controls to ensure that the spherical robot moves in the set direction. For example, when x 1d is set to 0, the spherical robot can move along a straight line, thus achieving the purpose of the present invention. Figure 2 shows the controller design structure constructed based on the above steps.
实施例2:Example 2:
步骤一、按照球形机器人受力情况,根据其结构和物理定律,建立含未知干扰的球形机器人系统的数学模型,具体如下:Step 1. According to the force situation of the spherical robot, according to its structure and physical laws, establish a mathematical model of the spherical robot system with unknown interference, as follows:
其中,x1=φ,分别为球壳转角和转速,x3=ζ,/>分别为球壳内摆的转角和转速,Δy为球形机器人建模不确定项。令d1=b1Δx,d2=b2Δx,则系统可描述为Among them, x 1 =φ, are the spherical shell rotation angle and rotation speed respectively, x 3 =ζ,/> are the rotation angle and rotation speed of the internal pendulum of the spherical shell respectively, and Δ y is the uncertainty term of the spherical robot modeling. Let d 1 =b 1 Δ x , d 2 =b 2 Δ x , then the system can be described as
从而简化控制器设计方法。This simplifies the controller design method.
步骤二、假设球形机器人系统模型干扰未知,基于神经网络对系统未知项进行逼近,并基于控制误差信息对神经网络权重参数进行自适应估计。Step 2: Assume that the interference of the spherical robot system model is unknown, approximate the unknown items of the system based on the neural network, and adaptively estimate the weight parameters of the neural network based on the control error information.
用神经网络逼近系统(13)中的含未知项,可以得到Using neural network to approximate the unknown items in system (13), we can get
其中W1,W2为神经网络权重,则未知项估计值表示如下:Among them, W 1 and W 2 are the neural network weights, and the estimated value of the unknown item is expressed as follows:
则系统(12)中的未知项估计值为则系统跟踪误差为Then the estimated value of the unknown item in system (12) is Then the system tracking error is
其中,当为保证球形机器人沿直线运动时,x1d=0,同时,为设计神经网络重参数自适应律,首先定义系统滑模面:Among them, when ensuring that the spherical robot moves along a straight line, x 1d = 0, At the same time, in order to design the adaptive law of neural network heavy parameters, the system sliding mode surface is first defined:
其中,ei(i=1,3)表示跟踪误差,则联合滑模面为Among them, e i (i=1,3) represents the tracking error, and the joint sliding mode surface is
Sy=aS1+bS2 (18)S y =aS 1 +bS 2 (18)
神经网络权重参数的自适应律可设计为The adaptive law of neural network weight parameters can be designed as
对于含未知项的球形机器人系统(2),如果采用(8)中的神经网络权重自适应律及(5)中的神经网络逼近形式,则未知项Δy可以被近似精确逼近。For the spherical robot system (2) containing unknown items, if the neural network weight adaptive law in (8) and the neural network approximation form in (5) are adopted, the unknown item Δ y can be approximately accurately approximated.
步骤三、基于自适应神经网络逼近未知项及定义的滑模面,设计带有干扰补偿的滑模控制器。Step 3: Design a sliding mode controller with interference compensation based on the adaptive neural network to approximate the unknown items and the defined sliding mode surface.
通过得等效控制器pass Get equivalent controller
则最终滑模控制器设计为Then the final sliding mode controller is designed as
τy=(aβ1+bβ2)-1(aβ1τy1+bβ2τy2-k1sign(Sy)-k2Sy) (21)τ y =(aβ 1 +bβ 2 ) -1 (aβ 1 τ y1 +bβ 2 τ y2 -k 1 sign(S y )-k 2 S y ) (21)
对于含未知项的球形机器人系统(12),如果神经网络输入向量h1,h2应用自适应律(19),近而可求得滑模控制器(21),对含未知项的球形机器人系统进行控制,保证球形机器人沿直线运动,由此实现本发明的目的。For the spherical robot system (12) containing unknown items, if the neural network input vectors h 1 and h 2 apply the adaptive law (19), the sliding mode controller (21) can be obtained in a short time. For the spherical robot system containing unknown items The system controls to ensure that the spherical robot moves along a straight line, thereby achieving the purpose of the present invention.
仿真结果Simulation results
对上述处理结果进行仿真。假设球形机器人动力学模型为:Simulate the above processing results. Assume that the spherical robot dynamics model is:
其中in
在仿真分析中,假设球形机器人模型中只有Δy未知。首先应用神经网络逼近含未知干扰项,然后用自适应律,实时更新神经网络权重参数,神经网络输入向量设置为h1=h2=[x1,x2,x3,x4]T,系统状态初值设置为x1(0)=0,x2(0)=0,x3(0)=0,x4(0)=0。其它参数适当调整,可估计得近似未知Δy被估未知项可收敛到其真值。In the simulation analysis, it is assumed that only Δy is unknown in the spherical robot model. First, the neural network is applied to approximate unknown interference terms, and then the adaptive law is used to update the neural network weight parameters in real time. The neural network input vector is set to h 1 =h 2 =[x 1 ,x 2 ,x 3 ,x 4 ] T , The initial value of the system state is set to x 1 (0) = 0, x 2 (0) = 0, x 3 (0) = 0, x 4 (0) = 0. By adjusting other parameters appropriately, the approximate unknown Δ y can be estimated and the estimated unknown term can converge to its true value.
综上所述,以上仅为本发明的较佳实施例而已,并非用于限定本发明的保护范围。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。To sum up, the above are only preferred embodiments of the present invention and are not intended to limit the scope of the present invention. Any modifications, equivalent substitutions, improvements, etc. made within the spirit and principles of the present invention shall be included in the protection scope of the present invention.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111488340.XA CN114200837B (en) | 2021-12-08 | 2021-12-08 | A hierarchical sliding mode control method that interferes with unknown spherical robots |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111488340.XA CN114200837B (en) | 2021-12-08 | 2021-12-08 | A hierarchical sliding mode control method that interferes with unknown spherical robots |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114200837A CN114200837A (en) | 2022-03-18 |
CN114200837B true CN114200837B (en) | 2023-10-10 |
Family
ID=80651055
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111488340.XA Expired - Fee Related CN114200837B (en) | 2021-12-08 | 2021-12-08 | A hierarchical sliding mode control method that interferes with unknown spherical robots |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114200837B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN119283066A (en) * | 2024-12-09 | 2025-01-10 | 逻腾(杭州)科技有限公司 | An online identification method for spherical robot system based on Koopman operator |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5268834A (en) * | 1991-06-24 | 1993-12-07 | Massachusetts Institute Of Technology | Stable adaptive neural network controller |
CN107544256A (en) * | 2017-10-17 | 2018-01-05 | 西北工业大学 | Underwater robot sliding-mode control based on adaptive Backstepping |
CN107584474A (en) * | 2017-07-19 | 2018-01-16 | 合肥工业大学 | A kind of spherical joint Dual-Arm Robot Coordinate Motion method based on geometric projection |
CN107607101A (en) * | 2017-11-05 | 2018-01-19 | 西北工业大学 | MEMS gyro sliding-mode control based on interference observer |
CN109946975A (en) * | 2019-04-12 | 2019-06-28 | 北京理工大学 | A Reinforcement Learning Optimal Tracking Control Method for Unknown Servo System |
CN110597069A (en) * | 2019-10-17 | 2019-12-20 | 哈尔滨工程大学 | A Control Method for Adaptive Regional Dynamic Positioning of Underwater Robot Based on RBF Neural Network |
CN110687918A (en) * | 2019-10-17 | 2020-01-14 | 哈尔滨工程大学 | A Trajectory Tracking Control Method for Underwater Robots Based on Regressive Neural Network Online Approximation |
CN112207834A (en) * | 2020-12-10 | 2021-01-12 | 北京科技大学 | Robot joint system control method and system based on disturbance observer |
CN112223276A (en) * | 2020-09-01 | 2021-01-15 | 上海大学 | Multi-joint robot control method based on adaptive neural network sliding mode control |
-
2021
- 2021-12-08 CN CN202111488340.XA patent/CN114200837B/en not_active Expired - Fee Related
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5268834A (en) * | 1991-06-24 | 1993-12-07 | Massachusetts Institute Of Technology | Stable adaptive neural network controller |
CN107584474A (en) * | 2017-07-19 | 2018-01-16 | 合肥工业大学 | A kind of spherical joint Dual-Arm Robot Coordinate Motion method based on geometric projection |
CN107544256A (en) * | 2017-10-17 | 2018-01-05 | 西北工业大学 | Underwater robot sliding-mode control based on adaptive Backstepping |
CN107607101A (en) * | 2017-11-05 | 2018-01-19 | 西北工业大学 | MEMS gyro sliding-mode control based on interference observer |
CN109946975A (en) * | 2019-04-12 | 2019-06-28 | 北京理工大学 | A Reinforcement Learning Optimal Tracking Control Method for Unknown Servo System |
CN110597069A (en) * | 2019-10-17 | 2019-12-20 | 哈尔滨工程大学 | A Control Method for Adaptive Regional Dynamic Positioning of Underwater Robot Based on RBF Neural Network |
CN110687918A (en) * | 2019-10-17 | 2020-01-14 | 哈尔滨工程大学 | A Trajectory Tracking Control Method for Underwater Robots Based on Regressive Neural Network Online Approximation |
CN112223276A (en) * | 2020-09-01 | 2021-01-15 | 上海大学 | Multi-joint robot control method based on adaptive neural network sliding mode control |
CN112207834A (en) * | 2020-12-10 | 2021-01-12 | 北京科技大学 | Robot joint system control method and system based on disturbance observer |
Non-Patent Citations (1)
Title |
---|
一种摆式球形机器人水中俯仰运动的稳定控制方法;李艳生;《振动与冲击》;20180730;第37卷(第13期);第149-156页 * |
Also Published As
Publication number | Publication date |
---|---|
CN114200837A (en) | 2022-03-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107662208B (en) | A finite-time adaptive backstepping control method for flexible joint manipulators based on neural network | |
CN107263481B (en) | A kind of class brain learning control method of multi-freedom robot | |
CN104723340B (en) | Based on the impedance adjustment connecting and damping the flexible joint mechanical arm configured | |
CN106406085B (en) | Based on the space manipulator Trajectory Tracking Control method across Scale Model | |
Shaoqiang et al. | Modeling and simulation of robot based on Matlab/SimMechanics | |
CN116460860B (en) | A model-based offline reinforcement learning control method for robots | |
CN107045557A (en) | The reconfigurable manipulator non-singular terminal sliding formwork power position control method of constraint oriented | |
CN103331756A (en) | Mechanical arm motion control method | |
CN109514564A (en) | A kind of compound quadratic form multi-joint mechanical arm method for optimally controlling | |
CN110427043A (en) | Pose Control device design method based on operation flying robot's centre-of gravity shift | |
CN106773684A (en) | Based on the flexible mechanical arm composite control method that intelligence learning is evaluated | |
CN113985732A (en) | Adaptive neural network control method and device for aircraft system | |
CN114750137A (en) | RBF network-based upper limb exoskeleton robot motion control method | |
CN114200837B (en) | A hierarchical sliding mode control method that interferes with unknown spherical robots | |
CN116834014A (en) | Intelligent cooperative control method and system for capturing non-cooperative targets by space dobby robot | |
Bobrow et al. | The Cubli: modeling and nonlinear attitude control utilizing quaternions | |
CN114578697B (en) | A multi-constraint adaptive control method for a motor-driven manipulator | |
CN113568312B (en) | Trajectory Tracking Method of Single-chain Manipulator Under Disturbance | |
Nguyen et al. | Neural network-based adaptive tracking control for a nonholonomic wheeledmobile robot with unknown wheel slips, model uncertainties, and unknownbounded disturbances | |
CN116985110A (en) | Method and device for controlling foot type robot and foot type robot | |
Hong et al. | Optimizing Reinforcement Learning Control Model in Furuta Pendulum and Transferring it to Real-World | |
Zhou et al. | An improved cerebellar model articulation controller based on the compound algorithms of credit assignment and optimized smoothness for a three-axis inertially stabilized platform | |
Guo et al. | LPV Modeling and Robust Sampled-Data $ H_ {\infty} $ Control of a Tailless Flapping Wing Microaerial Vehicle With Parameter Uncertainties | |
Kuchwa-Dube et al. | Altitude and attitude tracking of a quadrotor-based aerial manipulator using super twisting sliding mode control | |
CN113370205B (en) | Baxter mechanical arm track tracking control method based on machine learning |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20231010 |