CN114192799A - 一种激光选区熔化成形Inconel718复合材料及其制备方法 - Google Patents
一种激光选区熔化成形Inconel718复合材料及其制备方法 Download PDFInfo
- Publication number
- CN114192799A CN114192799A CN202111487982.8A CN202111487982A CN114192799A CN 114192799 A CN114192799 A CN 114192799A CN 202111487982 A CN202111487982 A CN 202111487982A CN 114192799 A CN114192799 A CN 114192799A
- Authority
- CN
- China
- Prior art keywords
- inconel718
- powder
- selective laser
- composite material
- tib
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910000816 inconels 718 Inorganic materials 0.000 title claims abstract description 56
- 239000002131 composite material Substances 0.000 title claims abstract description 35
- 238000002844 melting Methods 0.000 title claims abstract description 29
- 230000008018 melting Effects 0.000 title claims abstract description 29
- 238000002360 preparation method Methods 0.000 title claims description 8
- 239000000843 powder Substances 0.000 claims abstract description 64
- 229910033181 TiB2 Inorganic materials 0.000 claims abstract description 40
- 239000002994 raw material Substances 0.000 claims abstract description 13
- 239000000463 material Substances 0.000 claims abstract description 12
- 238000000034 method Methods 0.000 claims description 15
- 239000002245 particle Substances 0.000 claims description 14
- 238000005516 engineering process Methods 0.000 claims description 6
- 238000002156 mixing Methods 0.000 claims description 5
- 230000004927 fusion Effects 0.000 claims 5
- QYEXBYZXHDUPRC-UHFFFAOYSA-N B#[Ti]#B Chemical compound B#[Ti]#B QYEXBYZXHDUPRC-UHFFFAOYSA-N 0.000 description 7
- 239000002184 metal Substances 0.000 description 7
- 229910052751 metal Inorganic materials 0.000 description 7
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 6
- 229910045601 alloy Inorganic materials 0.000 description 6
- 239000000956 alloy Substances 0.000 description 6
- 238000009864 tensile test Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 3
- 229910052759 nickel Inorganic materials 0.000 description 3
- 238000010146 3D printing Methods 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 238000005253 cladding Methods 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 238000003754 machining Methods 0.000 description 2
- 239000007769 metal material Substances 0.000 description 2
- 239000011156 metal matrix composite Substances 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000003889 chemical engineering Methods 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 238000007542 hardness measurement Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052755 nonmetal Inorganic materials 0.000 description 1
- 150000002843 nonmetals Chemical class 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
- 239000012779 reinforcing material Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 229910000601 superalloy Inorganic materials 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F10/00—Additive manufacturing of workpieces or articles from metallic powder
- B22F10/20—Direct sintering or melting
- B22F10/28—Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y10/00—Processes of additive manufacturing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y40/00—Auxiliary operations or equipment, e.g. for material handling
- B33Y40/10—Pre-treatment
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y70/00—Materials specially adapted for additive manufacturing
- B33Y70/10—Composites of different types of material, e.g. mixtures of ceramics and polymers or mixtures of metals and biomaterials
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/04—Making non-ferrous alloys by powder metallurgy
- C22C1/05—Mixtures of metal powder with non-metallic powder
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C32/00—Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
- C22C32/0047—Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents
- C22C32/0073—Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents only borides
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C19/00—Alloys based on nickel or cobalt
- C22C19/03—Alloys based on nickel or cobalt based on nickel
- C22C19/05—Alloys based on nickel or cobalt based on nickel with chromium
- C22C19/051—Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
- C22C19/055—Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 20% but less than 30%
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/25—Process efficiency
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Ceramic Engineering (AREA)
- Civil Engineering (AREA)
- Composite Materials (AREA)
- Structural Engineering (AREA)
- Ceramic Products (AREA)
Abstract
本发明公开了一种激光选区熔化成形Inconel718复合材料,所述复合材料原料包括:Inconel718粉末96‑99wt%,其余为TiB2粉末加至100%;提高激光选区熔化成形Inconel718材料的强度和硬度等力学性能。
Description
技术领域
本发明涉及高温合金领域,具体涉及一种激光选区熔化成形Inconel718复合材料及其制备方法。
背景技术
高温合金是能在600℃以上的高温下长期工作的一类金属材料;并具有较高的高温强度,良好的抗氧化和抗腐蚀性能,良好的疲劳性能、断裂韧性等综合性能。是广泛应用于航空、航天、石油、化工、舰船的一种重要材料。按照基体元素,又可以分为铁基、镍基、钴基等,其中镍基高温合金占有十分重要的地位,被广泛用来制造航空发动机、燃气轮机的最热端部件。Inconel718具有良好的综合性能,尤其是在650℃温度以下,其力学性能具有很好的稳定性是航空发动机上应用最为广泛的镍基高温合金,很多零部件如涡轮盘、叶片等都采用Inconel718制成。激光选区熔化技术是金属材料增材制造的一种,是以激光为能量源,按照三维CAD切片模型中规划好的路径在金属粉末床层进行逐层扫描,扫描过的金属粉末通过熔化、凝固从而达到冶金结合的效果,最终获得模型所设计的金属零件的一种技术。以往很多的Inconel718合金的激光选区熔化制造结果表明,机械性能并没有被牺牲,甚至可以超过铸造或锻造零件的性能。而且,一般航空航天中的零件通常具有复杂的几何性能,所以利用激光选区熔化成形Inconel718应用广泛。金属基复合材料(MMCs)是以金属及其合金为基体,与一种或几种金属或非金属增强相人工结合成的复合材料。其增强材料大多为无机非金属,如陶瓷、碳、石墨及硼等。
发明内容
有鉴于此,本发明的目的在于提供一种激光选区熔化成形Inconel718材料及其制备方法,提高激光选区熔化成形Inconel718材料的强度和硬度等力学性能。
本发明的激光选区熔化成形Inconel718复合材料,所述复合材料原料包括:Inconel718粉末95-99wt%,其余为TiB2粉末加至100%;
进一步,所述复合材料原料包括:Inconel718粉末98wt%、TiB2粉末2wt%;
进一步,所述TiB2粉末为亚微米粉末;
进一步,所述TiB2粉末平均粒径为550-650nm,纯度为99.9%;
进一步,所述TiB2粉末平均粒径为600nm;
进一步,所述Inconel718粉末平均粒径为38.936um。
本发明公开一种激光选区熔化成形Inconel718复合材料的制备方法,包括以下步骤:将Inconel718粉末和TiB2粉末混合均匀后采用激光选区熔化技术制得Inconel718复合材料;
进一步,将Inconel718粉末和TiB2粉末在1000-1500rpm的转速下均匀混合。
本发明的有益效果是:本发明公开的激光选区熔化成形Inconel718材料及其制备方法,提高激光选区熔化成形Inconel718材料的强度和硬度等力学性能。
附图说明
下面结合附图和实施例对本发明作进一步描述:
图1所示为室温下拉伸试验应力应变曲线。
图2所示为高温(650℃)下的拉伸试验应力应变曲线。
图3是硬度测试过程示意图。
具体实施方式
实施例一
选用2wt%的TiB2亚微米粉末(平均粒径600nm,纯度99.9%)和98wt%的Inconel718粉末(平均粒径38.936um),通过高速(1200rpm)混合均匀,称为Inconel718-2wt%TiB2复合材料。然后通过现有方法的激光选区熔化技术成形方块件和拉伸件,按照国标,通过机加工把拉伸件加工成标准拉伸试样,分别在室温和高温(650℃)测试材料的拉伸性能。激光按给定路径扫描铺粉器预先铺放的一层金属粉末(厚度为20~100mm),该层金属粉末熔敷于前一层之上形成冶金结合。左侧成形缸下降一个步长(一层厚度),同时右侧料缸T上升一个步长,刮板将金属粉材推向成形区。均匀铺层。预热后激光再次扫描熔敷,逐层堆积,周而复始,直至完成整个构件的3D打印成型。预热后激光再次扫描熔敷,逐层堆积,周而复始,直至完成整个构件的3D打印成型。
选用Inconel718粉末(平均粒径38.936um),称为Pure-Inconel 718。然后采用最优加工参数,通过激光选区熔化技术成形方块件和拉伸件,然后按照国标,通过机加工把拉伸件加工成标准拉伸试样,分别在室温和高温(650℃)测试材料的拉伸性能。
每组拉伸试验采用两根重复件,来检验拉伸数据的重复性,取两次测试的结果的平均值作为最终结果。
如图1所示为室温下的拉伸试验应力应变曲线,可以看出重复性很好。Pure-Inconel 718的屈服强度为592.93MPa,抗拉强度为908.18MPa,延伸率为28.98%。Inconel-2wt%TiB2复合材料的屈服强度为723.71MPa,抗拉强度为1008.72MPa,延伸率为6.29%。对比试验结果,添加2wt%的TiB2亚微米粉末使激光选区熔化成形的Inconel 718材料屈服强度提高了22.06%,抗拉强度提高了11.07%。
如图2所示为高温(650℃)下的拉伸试验应力应变曲线,可以看出重复性很好。由于高温(650℃)下没有加引伸计测量变形,没有准确的屈服强度和延伸率结果,所以不对屈服强度和延伸率做比较。Pure-Inconel718的抗拉强度为819.2MPa。Inconel-2wt%TiB2复合材料的抗拉强度为963.58MPa。对比试验结果,添加2wt%的TiB2亚微米粉末使激光选区熔化成形的Inconel718材料在高温(650℃)下抗拉强度提高了17.62%。
如图3,Pure-Inconel718和Inconel718-2wt%TiB2方块件按照常规金相程序进行横截面的研磨、抛光。然后在硬度测试仪上面测试方块件的硬度,载荷施加在方块件经过标准金相程序研磨、抛光过的侧面,施加载荷选用200g,保荷时间10s。沿着方块构建方向等间距测量20个点,取20个点的平均值作为最终测量结果。结果表明Inconel-2wt%TiB2的硬度结果为361.21HV,Pure-Inconel718的硬度结果为302.47HV,硬度提高了19.42%。
实施例二
本实施例的激光选区熔化成形Inconel718复合材料,所述复合材料原料包括:Inconel718粉末95wt%,其余为TiB2粉末加至100%;所述TiB2粉末为亚微米粉末;所述TiB2粉末平均粒径为550nm,纯度为99.9%。将上述原材料通过高速(1000rpm)混合均匀,称为Inconel718-5wt%TiB2复合材料。然后通过现有方法的激光选区熔化技术成形方块件和拉伸件。
实施例三
本实施例的激光选区熔化成形Inconel718复合材料,所述复合材料原料包括:Inconel718粉末99wt%,其余为TiB2粉末加至100%;所述TiB2粉末为亚微米粉末;所述TiB2粉末平均粒径为650nm,纯度为99.9%。将上述原材料通过高速(1500rpm)混合均匀,称为Inconel718-1wt%TiB2复合材料。然后通过现有方法的激光选区熔化技术成形方块件和拉伸件。
实施例四
本实施例的激光选区熔化成形Inconel718复合材料,所述复合材料原料包括:Inconel718粉末97wt%,其余为TiB2粉末加至100%;所述TiB2粉末为亚微米粉末;所述TiB2粉末平均粒径为600nm,纯度为99.9%。将上述原材料通过高速(1200rpm)混合均匀,称为Inconel718-3wt%TiB2复合材料。然后通过现有方法的激光选区熔化技术成形方块件和拉伸件。
实施例五
本实施例的激光选区熔化成形Inconel718复合材料,所述复合材料原料包括:Inconel718粉末98wt%,其余为TiB2粉末加至100%;所述TiB2粉末为亚微米粉末;所述TiB2粉末平均粒径为620nm,纯度为99.9%。将上述原材料通过高速(1400rpm)混合均匀,称为Inconel718-2wt%TiB2复合材料。然后通过现有方法的激光选区熔化技术成形方块件和拉伸件。
实施例六
本实施例的激光选区熔化成形Inconel718复合材料,所述复合材料原料包括:Inconel718粉末98wt%,其余为TiB2粉末加至100%;所述TiB2粉末为亚微米粉末;所述TiB2粉末平均粒径为580nm,纯度为99.9%。将上述原材料通过高速(1100rpm)混合均匀,称为Inconel718-2wt%TiB2复合材料。然后通过现有方法的激光选区熔化技术成形方块件和拉伸件。
上述实施例2-6所得产品效果与实施例一的产品效果无太大差异。实施例一的效果为最佳。
最后说明的是,以上实施例仅用以说明本发明的技术方案而非限制,尽管参照较佳实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的宗旨和范围,其均应涵盖在本发明的权利要求范围当中。
Claims (8)
1.一种激光选区熔化成形Inconel718复合材料,其特征在于:所述复合材料原料包括:Inconel718粉末95-99wt%,其余为TiB2粉末加至100%。
2.根据权利要求1所述的激光选区熔化成形Inconel718复合材料,其特征在于:所述复合材料原料包括:Inconel718粉末98wt%、TiB2粉末2wt%。
3.根据权利要求1所述的激光选区熔化成形Inconel718复合材料,其特征在于:所述TiB2粉末为亚微米粉末。
4.根据权利要求3所述的激光选区熔化成形Inconel718复合材料,其特征在于:所述TiB2粉末平均粒径为550-650nm,纯度为99.9%。
5.根据权利要求4所述的激光选区熔化成形Inconel718复合材料,其特征在于:所述TiB2粉末平均粒径为600nm。
6.根据权利要求5所述的激光选区熔化成形Inconel718复合材料,其特征在于:所述Inconel718粉末平均粒径为38.936um。
7.根据权利1所述的激光选区熔化成形Inconel718复合材料的制备方法,其特征在于:包括以下步骤:将Inconel718粉末和TiB2粉末混合均匀后采用激光选区熔化技术制得Inconel718复合材料。
8.根据权利要求7所述的激光选区熔化成形Inconel718复合材料的制备方法,其特征在于:将Inconel718粉末和TiB2粉末在1000-1500rpm的转速下均匀混合。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111487982.8A CN114192799A (zh) | 2021-12-07 | 2021-12-07 | 一种激光选区熔化成形Inconel718复合材料及其制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111487982.8A CN114192799A (zh) | 2021-12-07 | 2021-12-07 | 一种激光选区熔化成形Inconel718复合材料及其制备方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN114192799A true CN114192799A (zh) | 2022-03-18 |
Family
ID=80651197
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111487982.8A Pending CN114192799A (zh) | 2021-12-07 | 2021-12-07 | 一种激光选区熔化成形Inconel718复合材料及其制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114192799A (zh) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106735273A (zh) * | 2017-02-14 | 2017-05-31 | 上海材料研究所 | 一种选区激光熔化成形用Inconel718镍基合金粉末及其制备方法 |
CN109082550A (zh) * | 2018-07-12 | 2018-12-25 | 上海交通大学 | 纳米陶瓷颗粒3d网状分布的镍基复合材料及其制备方法 |
CN111001808A (zh) * | 2019-09-29 | 2020-04-14 | 南京中科煜宸激光技术有限公司 | 大尺寸In718高温合金构件复合增材制造方法 |
CN112695220A (zh) * | 2020-11-30 | 2021-04-23 | 上海航天精密机械研究所 | 一种激光选区熔化成形纳米TiB2增强铝基复合材料制备方法 |
CN113061782A (zh) * | 2021-03-16 | 2021-07-02 | 山东大学 | 一种gh3230镍基高温合金材料及其消除激光选区熔化成形微裂纹的方法与应用 |
CN113560604A (zh) * | 2021-07-27 | 2021-10-29 | 山东大学 | 一种激光选区熔化镍基梯度纳米复合材料、制备方法及应用 |
-
2021
- 2021-12-07 CN CN202111487982.8A patent/CN114192799A/zh active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106735273A (zh) * | 2017-02-14 | 2017-05-31 | 上海材料研究所 | 一种选区激光熔化成形用Inconel718镍基合金粉末及其制备方法 |
CN109082550A (zh) * | 2018-07-12 | 2018-12-25 | 上海交通大学 | 纳米陶瓷颗粒3d网状分布的镍基复合材料及其制备方法 |
CN111001808A (zh) * | 2019-09-29 | 2020-04-14 | 南京中科煜宸激光技术有限公司 | 大尺寸In718高温合金构件复合增材制造方法 |
CN112695220A (zh) * | 2020-11-30 | 2021-04-23 | 上海航天精密机械研究所 | 一种激光选区熔化成形纳米TiB2增强铝基复合材料制备方法 |
CN113061782A (zh) * | 2021-03-16 | 2021-07-02 | 山东大学 | 一种gh3230镍基高温合金材料及其消除激光选区熔化成形微裂纹的方法与应用 |
CN113560604A (zh) * | 2021-07-27 | 2021-10-29 | 山东大学 | 一种激光选区熔化镍基梯度纳米复合材料、制备方法及应用 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108588498B (zh) | 一种镍基梯度材料及选区激光熔化法制备镍基梯度材料的方法 | |
Popovich et al. | Functionally graded Inconel 718 processed by additive manufacturing: Crystallographic texture, anisotropy of microstructure and mechanical properties | |
Mantle et al. | Surface integrity and fatigue life of turned gamma titanium aluminide | |
CN105728725B (zh) | 3d打印制备多元素过渡界面协同增强镍基复合材料的方法 | |
Jin et al. | Influence of cutting speed on surface integrity for powder metallurgy nickel-based superalloy FGH95 | |
WO2013048670A1 (en) | Titanium aluminide articles with improved surface finish and methods for their manufacture | |
Zan et al. | Machining of long ceramic fibre reinforced metal matrix composites–How could temperature influence the cutting mechanisms? | |
CN114507833B (zh) | 具有梯度层α相组织的TB8钛合金棒材及其制备方法 | |
Yang et al. | Effects of TiB2 content on the processability and mechanical performance of Hastelloy-X based composites fabricated by selective laser melting | |
CN113305285A (zh) | 用于增材制造的镍基高温合金金属粉末 | |
Sood et al. | Directed energy deposition of Invar 36 alloy using cold wire pulsed gas tungsten arc welding: Effect of heat input on the microstructure and functional behaviour | |
Chen et al. | Plastic deformation and residual stress in high speed turning of AD730™ nickel-based superalloy with PCBN and WC tools | |
Johnson et al. | Fatigue behavior and failure mechanisms of direct laser deposited Inconel 718 | |
Landes et al. | Investigation of additive manufactured GRCop-42 alloy developed by directed energy deposition methods | |
CN114192799A (zh) | 一种激光选区熔化成形Inconel718复合材料及其制备方法 | |
Christy et al. | Taguchi Optimization for the Production of Optimized Sustainable Novel Aluminium MMC Using Squeeze Stir Casting Process | |
Barile et al. | A comprehensive study of mechanical and acoustic properties of selective laser melting material | |
Grandhi et al. | Copper-nickel functionally magnetic gradient material fabricated via directed energy deposition | |
Purushotham et al. | Action of chills on microstructure, mechanical properties of chilled ASTM A 494 M grade Nickel alloy reinforced with fused SiO2 metal matrix composite | |
CN110106420B (zh) | 一种Co基高温合金及其制备方法和应用 | |
Zhong et al. | Microstructures, tensile properties, and fracture mechanisms of Inconel 718 formed by HDR-LMD with PREP and GA powders | |
Takeda et al. | Mechanical responses of additively manufactured MoSiBTiC alloy under tensile and compressive loadings | |
Rich et al. | The effect of hot isostatic pressing on crack initiation, fatigue, and mechanical properties of two cast aluminum alloys | |
Sivaraj et al. | Optimization of thrust force during drilling operation for Al-SiC composites using Box-Behnken approach | |
Wang et al. | The microstructure, hardness and friction and wear behavior of AM60B magnesium alloy by friction stir processing |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20220318 |