CN114192799A - 一种激光选区熔化成形Inconel718复合材料及其制备方法 - Google Patents

一种激光选区熔化成形Inconel718复合材料及其制备方法 Download PDF

Info

Publication number
CN114192799A
CN114192799A CN202111487982.8A CN202111487982A CN114192799A CN 114192799 A CN114192799 A CN 114192799A CN 202111487982 A CN202111487982 A CN 202111487982A CN 114192799 A CN114192799 A CN 114192799A
Authority
CN
China
Prior art keywords
inconel718
powder
selective laser
composite material
tib
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111487982.8A
Other languages
English (en)
Inventor
唐倩
赵明强
宋军
冯琪翔
金鹏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chongqing University
Original Assignee
Chongqing University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chongqing University filed Critical Chongqing University
Priority to CN202111487982.8A priority Critical patent/CN114192799A/zh
Publication of CN114192799A publication Critical patent/CN114192799A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y40/00Auxiliary operations or equipment, e.g. for material handling
    • B33Y40/10Pre-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • B33Y70/10Composites of different types of material, e.g. mixtures of ceramics and polymers or mixtures of metals and biomaterials
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/05Mixtures of metal powder with non-metallic powder
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/0047Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents
    • C22C32/0073Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents only borides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/055Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 20% but less than 30%
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Ceramic Engineering (AREA)
  • Civil Engineering (AREA)
  • Composite Materials (AREA)
  • Structural Engineering (AREA)
  • Ceramic Products (AREA)

Abstract

本发明公开了一种激光选区熔化成形Inconel718复合材料,所述复合材料原料包括:Inconel718粉末96‑99wt%,其余为TiB2粉末加至100%;提高激光选区熔化成形Inconel718材料的强度和硬度等力学性能。

Description

一种激光选区熔化成形Inconel718复合材料及其制备方法
技术领域
本发明涉及高温合金领域,具体涉及一种激光选区熔化成形Inconel718复合材料及其制备方法。
背景技术
高温合金是能在600℃以上的高温下长期工作的一类金属材料;并具有较高的高温强度,良好的抗氧化和抗腐蚀性能,良好的疲劳性能、断裂韧性等综合性能。是广泛应用于航空、航天、石油、化工、舰船的一种重要材料。按照基体元素,又可以分为铁基、镍基、钴基等,其中镍基高温合金占有十分重要的地位,被广泛用来制造航空发动机、燃气轮机的最热端部件。Inconel718具有良好的综合性能,尤其是在650℃温度以下,其力学性能具有很好的稳定性是航空发动机上应用最为广泛的镍基高温合金,很多零部件如涡轮盘、叶片等都采用Inconel718制成。激光选区熔化技术是金属材料增材制造的一种,是以激光为能量源,按照三维CAD切片模型中规划好的路径在金属粉末床层进行逐层扫描,扫描过的金属粉末通过熔化、凝固从而达到冶金结合的效果,最终获得模型所设计的金属零件的一种技术。以往很多的Inconel718合金的激光选区熔化制造结果表明,机械性能并没有被牺牲,甚至可以超过铸造或锻造零件的性能。而且,一般航空航天中的零件通常具有复杂的几何性能,所以利用激光选区熔化成形Inconel718应用广泛。金属基复合材料(MMCs)是以金属及其合金为基体,与一种或几种金属或非金属增强相人工结合成的复合材料。其增强材料大多为无机非金属,如陶瓷、碳、石墨及硼等。
发明内容
有鉴于此,本发明的目的在于提供一种激光选区熔化成形Inconel718材料及其制备方法,提高激光选区熔化成形Inconel718材料的强度和硬度等力学性能。
本发明的激光选区熔化成形Inconel718复合材料,所述复合材料原料包括:Inconel718粉末95-99wt%,其余为TiB2粉末加至100%;
进一步,所述复合材料原料包括:Inconel718粉末98wt%、TiB2粉末2wt%;
进一步,所述TiB2粉末为亚微米粉末;
进一步,所述TiB2粉末平均粒径为550-650nm,纯度为99.9%;
进一步,所述TiB2粉末平均粒径为600nm;
进一步,所述Inconel718粉末平均粒径为38.936um。
本发明公开一种激光选区熔化成形Inconel718复合材料的制备方法,包括以下步骤:将Inconel718粉末和TiB2粉末混合均匀后采用激光选区熔化技术制得Inconel718复合材料;
进一步,将Inconel718粉末和TiB2粉末在1000-1500rpm的转速下均匀混合。
本发明的有益效果是:本发明公开的激光选区熔化成形Inconel718材料及其制备方法,提高激光选区熔化成形Inconel718材料的强度和硬度等力学性能。
附图说明
下面结合附图和实施例对本发明作进一步描述:
图1所示为室温下拉伸试验应力应变曲线。
图2所示为高温(650℃)下的拉伸试验应力应变曲线。
图3是硬度测试过程示意图。
具体实施方式
实施例一
选用2wt%的TiB2亚微米粉末(平均粒径600nm,纯度99.9%)和98wt%的Inconel718粉末(平均粒径38.936um),通过高速(1200rpm)混合均匀,称为Inconel718-2wt%TiB2复合材料。然后通过现有方法的激光选区熔化技术成形方块件和拉伸件,按照国标,通过机加工把拉伸件加工成标准拉伸试样,分别在室温和高温(650℃)测试材料的拉伸性能。激光按给定路径扫描铺粉器预先铺放的一层金属粉末(厚度为20~100mm),该层金属粉末熔敷于前一层之上形成冶金结合。左侧成形缸下降一个步长(一层厚度),同时右侧料缸T上升一个步长,刮板将金属粉材推向成形区。均匀铺层。预热后激光再次扫描熔敷,逐层堆积,周而复始,直至完成整个构件的3D打印成型。预热后激光再次扫描熔敷,逐层堆积,周而复始,直至完成整个构件的3D打印成型。
选用Inconel718粉末(平均粒径38.936um),称为Pure-Inconel 718。然后采用最优加工参数,通过激光选区熔化技术成形方块件和拉伸件,然后按照国标,通过机加工把拉伸件加工成标准拉伸试样,分别在室温和高温(650℃)测试材料的拉伸性能。
每组拉伸试验采用两根重复件,来检验拉伸数据的重复性,取两次测试的结果的平均值作为最终结果。
如图1所示为室温下的拉伸试验应力应变曲线,可以看出重复性很好。Pure-Inconel 718的屈服强度为592.93MPa,抗拉强度为908.18MPa,延伸率为28.98%。Inconel-2wt%TiB2复合材料的屈服强度为723.71MPa,抗拉强度为1008.72MPa,延伸率为6.29%。对比试验结果,添加2wt%的TiB2亚微米粉末使激光选区熔化成形的Inconel 718材料屈服强度提高了22.06%,抗拉强度提高了11.07%。
如图2所示为高温(650℃)下的拉伸试验应力应变曲线,可以看出重复性很好。由于高温(650℃)下没有加引伸计测量变形,没有准确的屈服强度和延伸率结果,所以不对屈服强度和延伸率做比较。Pure-Inconel718的抗拉强度为819.2MPa。Inconel-2wt%TiB2复合材料的抗拉强度为963.58MPa。对比试验结果,添加2wt%的TiB2亚微米粉末使激光选区熔化成形的Inconel718材料在高温(650℃)下抗拉强度提高了17.62%。
如图3,Pure-Inconel718和Inconel718-2wt%TiB2方块件按照常规金相程序进行横截面的研磨、抛光。然后在硬度测试仪上面测试方块件的硬度,载荷施加在方块件经过标准金相程序研磨、抛光过的侧面,施加载荷选用200g,保荷时间10s。沿着方块构建方向等间距测量20个点,取20个点的平均值作为最终测量结果。结果表明Inconel-2wt%TiB2的硬度结果为361.21HV,Pure-Inconel718的硬度结果为302.47HV,硬度提高了19.42%。
实施例二
本实施例的激光选区熔化成形Inconel718复合材料,所述复合材料原料包括:Inconel718粉末95wt%,其余为TiB2粉末加至100%;所述TiB2粉末为亚微米粉末;所述TiB2粉末平均粒径为550nm,纯度为99.9%。将上述原材料通过高速(1000rpm)混合均匀,称为Inconel718-5wt%TiB2复合材料。然后通过现有方法的激光选区熔化技术成形方块件和拉伸件。
实施例三
本实施例的激光选区熔化成形Inconel718复合材料,所述复合材料原料包括:Inconel718粉末99wt%,其余为TiB2粉末加至100%;所述TiB2粉末为亚微米粉末;所述TiB2粉末平均粒径为650nm,纯度为99.9%。将上述原材料通过高速(1500rpm)混合均匀,称为Inconel718-1wt%TiB2复合材料。然后通过现有方法的激光选区熔化技术成形方块件和拉伸件。
实施例四
本实施例的激光选区熔化成形Inconel718复合材料,所述复合材料原料包括:Inconel718粉末97wt%,其余为TiB2粉末加至100%;所述TiB2粉末为亚微米粉末;所述TiB2粉末平均粒径为600nm,纯度为99.9%。将上述原材料通过高速(1200rpm)混合均匀,称为Inconel718-3wt%TiB2复合材料。然后通过现有方法的激光选区熔化技术成形方块件和拉伸件。
实施例五
本实施例的激光选区熔化成形Inconel718复合材料,所述复合材料原料包括:Inconel718粉末98wt%,其余为TiB2粉末加至100%;所述TiB2粉末为亚微米粉末;所述TiB2粉末平均粒径为620nm,纯度为99.9%。将上述原材料通过高速(1400rpm)混合均匀,称为Inconel718-2wt%TiB2复合材料。然后通过现有方法的激光选区熔化技术成形方块件和拉伸件。
实施例六
本实施例的激光选区熔化成形Inconel718复合材料,所述复合材料原料包括:Inconel718粉末98wt%,其余为TiB2粉末加至100%;所述TiB2粉末为亚微米粉末;所述TiB2粉末平均粒径为580nm,纯度为99.9%。将上述原材料通过高速(1100rpm)混合均匀,称为Inconel718-2wt%TiB2复合材料。然后通过现有方法的激光选区熔化技术成形方块件和拉伸件。
上述实施例2-6所得产品效果与实施例一的产品效果无太大差异。实施例一的效果为最佳。
最后说明的是,以上实施例仅用以说明本发明的技术方案而非限制,尽管参照较佳实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的宗旨和范围,其均应涵盖在本发明的权利要求范围当中。

Claims (8)

1.一种激光选区熔化成形Inconel718复合材料,其特征在于:所述复合材料原料包括:Inconel718粉末95-99wt%,其余为TiB2粉末加至100%。
2.根据权利要求1所述的激光选区熔化成形Inconel718复合材料,其特征在于:所述复合材料原料包括:Inconel718粉末98wt%、TiB2粉末2wt%。
3.根据权利要求1所述的激光选区熔化成形Inconel718复合材料,其特征在于:所述TiB2粉末为亚微米粉末。
4.根据权利要求3所述的激光选区熔化成形Inconel718复合材料,其特征在于:所述TiB2粉末平均粒径为550-650nm,纯度为99.9%。
5.根据权利要求4所述的激光选区熔化成形Inconel718复合材料,其特征在于:所述TiB2粉末平均粒径为600nm。
6.根据权利要求5所述的激光选区熔化成形Inconel718复合材料,其特征在于:所述Inconel718粉末平均粒径为38.936um。
7.根据权利1所述的激光选区熔化成形Inconel718复合材料的制备方法,其特征在于:包括以下步骤:将Inconel718粉末和TiB2粉末混合均匀后采用激光选区熔化技术制得Inconel718复合材料。
8.根据权利要求7所述的激光选区熔化成形Inconel718复合材料的制备方法,其特征在于:将Inconel718粉末和TiB2粉末在1000-1500rpm的转速下均匀混合。
CN202111487982.8A 2021-12-07 2021-12-07 一种激光选区熔化成形Inconel718复合材料及其制备方法 Pending CN114192799A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111487982.8A CN114192799A (zh) 2021-12-07 2021-12-07 一种激光选区熔化成形Inconel718复合材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111487982.8A CN114192799A (zh) 2021-12-07 2021-12-07 一种激光选区熔化成形Inconel718复合材料及其制备方法

Publications (1)

Publication Number Publication Date
CN114192799A true CN114192799A (zh) 2022-03-18

Family

ID=80651197

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111487982.8A Pending CN114192799A (zh) 2021-12-07 2021-12-07 一种激光选区熔化成形Inconel718复合材料及其制备方法

Country Status (1)

Country Link
CN (1) CN114192799A (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106735273A (zh) * 2017-02-14 2017-05-31 上海材料研究所 一种选区激光熔化成形用Inconel718镍基合金粉末及其制备方法
CN109082550A (zh) * 2018-07-12 2018-12-25 上海交通大学 纳米陶瓷颗粒3d网状分布的镍基复合材料及其制备方法
CN111001808A (zh) * 2019-09-29 2020-04-14 南京中科煜宸激光技术有限公司 大尺寸In718高温合金构件复合增材制造方法
CN112695220A (zh) * 2020-11-30 2021-04-23 上海航天精密机械研究所 一种激光选区熔化成形纳米TiB2增强铝基复合材料制备方法
CN113061782A (zh) * 2021-03-16 2021-07-02 山东大学 一种gh3230镍基高温合金材料及其消除激光选区熔化成形微裂纹的方法与应用
CN113560604A (zh) * 2021-07-27 2021-10-29 山东大学 一种激光选区熔化镍基梯度纳米复合材料、制备方法及应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106735273A (zh) * 2017-02-14 2017-05-31 上海材料研究所 一种选区激光熔化成形用Inconel718镍基合金粉末及其制备方法
CN109082550A (zh) * 2018-07-12 2018-12-25 上海交通大学 纳米陶瓷颗粒3d网状分布的镍基复合材料及其制备方法
CN111001808A (zh) * 2019-09-29 2020-04-14 南京中科煜宸激光技术有限公司 大尺寸In718高温合金构件复合增材制造方法
CN112695220A (zh) * 2020-11-30 2021-04-23 上海航天精密机械研究所 一种激光选区熔化成形纳米TiB2增强铝基复合材料制备方法
CN113061782A (zh) * 2021-03-16 2021-07-02 山东大学 一种gh3230镍基高温合金材料及其消除激光选区熔化成形微裂纹的方法与应用
CN113560604A (zh) * 2021-07-27 2021-10-29 山东大学 一种激光选区熔化镍基梯度纳米复合材料、制备方法及应用

Similar Documents

Publication Publication Date Title
CN108588498B (zh) 一种镍基梯度材料及选区激光熔化法制备镍基梯度材料的方法
Popovich et al. Functionally graded Inconel 718 processed by additive manufacturing: Crystallographic texture, anisotropy of microstructure and mechanical properties
Mantle et al. Surface integrity and fatigue life of turned gamma titanium aluminide
CN105728725B (zh) 3d打印制备多元素过渡界面协同增强镍基复合材料的方法
Jin et al. Influence of cutting speed on surface integrity for powder metallurgy nickel-based superalloy FGH95
WO2013048670A1 (en) Titanium aluminide articles with improved surface finish and methods for their manufacture
Zan et al. Machining of long ceramic fibre reinforced metal matrix composites–How could temperature influence the cutting mechanisms?
CN114507833B (zh) 具有梯度层α相组织的TB8钛合金棒材及其制备方法
Yang et al. Effects of TiB2 content on the processability and mechanical performance of Hastelloy-X based composites fabricated by selective laser melting
CN113305285A (zh) 用于增材制造的镍基高温合金金属粉末
Sood et al. Directed energy deposition of Invar 36 alloy using cold wire pulsed gas tungsten arc welding: Effect of heat input on the microstructure and functional behaviour
Chen et al. Plastic deformation and residual stress in high speed turning of AD730™ nickel-based superalloy with PCBN and WC tools
Johnson et al. Fatigue behavior and failure mechanisms of direct laser deposited Inconel 718
Landes et al. Investigation of additive manufactured GRCop-42 alloy developed by directed energy deposition methods
CN114192799A (zh) 一种激光选区熔化成形Inconel718复合材料及其制备方法
Christy et al. Taguchi Optimization for the Production of Optimized Sustainable Novel Aluminium MMC Using Squeeze Stir Casting Process
Barile et al. A comprehensive study of mechanical and acoustic properties of selective laser melting material
Grandhi et al. Copper-nickel functionally magnetic gradient material fabricated via directed energy deposition
Purushotham et al. Action of chills on microstructure, mechanical properties of chilled ASTM A 494 M grade Nickel alloy reinforced with fused SiO2 metal matrix composite
CN110106420B (zh) 一种Co基高温合金及其制备方法和应用
Zhong et al. Microstructures, tensile properties, and fracture mechanisms of Inconel 718 formed by HDR-LMD with PREP and GA powders
Takeda et al. Mechanical responses of additively manufactured MoSiBTiC alloy under tensile and compressive loadings
Rich et al. The effect of hot isostatic pressing on crack initiation, fatigue, and mechanical properties of two cast aluminum alloys
Sivaraj et al. Optimization of thrust force during drilling operation for Al-SiC composites using Box-Behnken approach
Wang et al. The microstructure, hardness and friction and wear behavior of AM60B magnesium alloy by friction stir processing

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20220318