CN114187495A - An Image-Based Apparel Trend Prediction Method - Google Patents

An Image-Based Apparel Trend Prediction Method Download PDF

Info

Publication number
CN114187495A
CN114187495A CN202210127383.3A CN202210127383A CN114187495A CN 114187495 A CN114187495 A CN 114187495A CN 202210127383 A CN202210127383 A CN 202210127383A CN 114187495 A CN114187495 A CN 114187495A
Authority
CN
China
Prior art keywords
image
clothing
foreground
fashion trend
trend prediction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210127383.3A
Other languages
Chinese (zh)
Inventor
余锋
徐硕
姜明华
周昌龙
宋坤芳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan Textile University
Original Assignee
Wuhan Textile University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan Textile University filed Critical Wuhan Textile University
Priority to CN202210127383.3A priority Critical patent/CN114187495A/en
Publication of CN114187495A publication Critical patent/CN114187495A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/25Fusion techniques
    • G06F18/253Fusion techniques of extracted features
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/194Segmentation; Edge detection involving foreground-background segmentation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20081Training; Learning

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Data Mining & Analysis (AREA)
  • Business, Economics & Management (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Evolutionary Computation (AREA)
  • Human Resources & Organizations (AREA)
  • General Engineering & Computer Science (AREA)
  • Strategic Management (AREA)
  • Economics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Game Theory and Decision Science (AREA)
  • Health & Medical Sciences (AREA)
  • Evolutionary Biology (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Marketing (AREA)
  • Operations Research (AREA)
  • Quality & Reliability (AREA)
  • Tourism & Hospitality (AREA)
  • General Business, Economics & Management (AREA)
  • Development Economics (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Computational Linguistics (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Computing Systems (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Image Analysis (AREA)

Abstract

The invention discloses a garment fashion trend prediction method based on images, which comprises garment image data acquisition, image foreground extraction, garment image feature extraction and garment fashion trend prediction. Firstly, collecting a clothing image data set, and preprocessing clothing image data; then obtaining a foreground image, and extracting clothing features based on a multi-convolution kernel deep neural network; and finally, a garment fashion trend prediction method based on deep learning is adopted, and the garment image characteristics are used as the input of the model to obtain the current garment fashion trend. The method can greatly reduce the calculation cost and the system complexity, promote the intellectualization of fashion trend prediction in the fashion field, and improve the effect and the quality of fashion prediction.

Description

一种基于图像的服装流行趋势预测方法An Image-Based Apparel Trend Prediction Method

技术领域technical field

本发明属于智能服装技术领域,更具体地,涉及一种基于图像的服装流行趋势预测方法。The invention belongs to the technical field of intelligent clothing, and more particularly, relates to an image-based clothing fashion trend prediction method.

背景技术Background technique

目前,在线上服装领域,通常会由设计师通过自己的学识经验来设计新的服饰,每次设计一款服饰要消耗大量的时间和精力,设计师也不可能面面俱到的设计出所需的每一种风格的服饰,未来各个地区所流行的服饰并不能被轻易的预测,通常还需要多个熟悉该地区的设计师参与。因此,在服装领域,对服装未来发展趋势的智能预测拥有潜在且巨大的应用场景。At present, in the field of online clothing, designers usually design new clothing through their own knowledge and experience. It takes a lot of time and energy to design a piece of clothing each time, and it is impossible for designers to design every piece of clothing required. For a style of clothing, the clothing that will be popular in various regions in the future cannot be easily predicted, and usually requires the participation of multiple designers who are familiar with the region. Therefore, in the field of clothing, the intelligent prediction of the future development trend of clothing has potential and huge application scenarios.

公开号为CN110705755A的中国专利公开了“一种基于深度学习的服装流行趋势预测方法与装置”,从电商服装网站采集历年的流行服装图片和信息,进行特征提取和整合,再根据模型结果输出服装流行度为topk的服装排名的方案,但是这种方案对于服装流行趋势预测不准确,还需进一步优化。The Chinese patent with publication number CN110705755A discloses "a method and device for predicting clothing trends based on deep learning", which collects pictures and information of popular clothing over the years from e-commerce clothing websites, performs feature extraction and integration, and then outputs according to the model results. The scheme of clothing rankings whose clothing popularity is topk, but this scheme is inaccurate for the prediction of clothing fashion trends and needs to be further optimized.

发明内容SUMMARY OF THE INVENTION

针对现有技术的以上缺陷或改进需求,本发明提供了一种基于图像的服装流行趋势预测方法,其目的在于通过收集当下各大网上服装购物网站的服装图片,通过深度学习方法预测服装流行趋势,可靠且具有实时性。In view of the above defects or improvement needs of the prior art, the present invention provides an image-based clothing fashion trend prediction method, the purpose of which is to predict the clothing fashion trend through a deep learning method by collecting clothing pictures from major online clothing shopping websites. , reliable and real-time.

为实现上述目的,按照本发明的一个方面,提供了一种基于图像的服装流行趋势预测方法,包括如下步骤:In order to achieve the above object, according to one aspect of the present invention, a method for predicting a fashion trend of clothing based on an image is provided, comprising the following steps:

步骤1,首先搜集服装图像数据集,并对服装图像数据进行预处理;Step 1, first collect the clothing image data set, and preprocess the clothing image data;

步骤2,使用基于图像多尺度分解的前景提取模型提取服装图像前景;Step 2, using the foreground extraction model based on image multi-scale decomposition to extract the foreground of the clothing image;

步骤3,基于多卷积核深度卷积神经网络的服装图像特征提取与融合,得到最终的服装图像特征图;Step 3, based on multi-convolution kernel deep convolutional neural network clothing image feature extraction and fusion, to obtain the final clothing image feature map;

步骤4,构建服装流行趋势预测模型,将最终的服装图像特征作为服装流行趋势预测模型的输入,得到当前服装流行趋势;Step 4, constructing a clothing fashion trend prediction model, and using the final clothing image feature as the input of the clothing fashion trend prediction model to obtain the current clothing fashion trend;

所述服装流行趋势预测模块包括:自适应加权池化层、全连接层和softmax层。The clothing fashion trend prediction module includes: an adaptive weighted pooling layer, a fully connected layer and a softmax layer.

进一步的,步骤1中,通过网络爬虫、手工采集方式搜集各大购物网站的服装图像,其中购物网站包括亚马逊-网上购物商城、天猫商城、淘宝网以及京东商城。Further, in step 1, the clothing images of major shopping websites are collected by means of web crawlers and manual collection, wherein the shopping websites include Amazon-Online Shopping Mall, Tmall Mall, Taobao.com and Jingdong Mall.

进一步的,服装图像数据预处理包括:通过双线性插值法调整图像大小,然后进行图像尺度归一化和图像标准化。Further, the preprocessing of the clothing image data includes: adjusting the image size through bilinear interpolation, and then performing image scale normalization and image normalization.

进一步的,步骤2的具体实现方式如下;Further, the specific implementation of step 2 is as follows;

Step21,运用全变分对图像进行多尺度分解得到一系列平滑图像;Step21, use total variation to decompose the image at multiple scales to obtain a series of smooth images;

Step22,将给定平滑图像前景颜色分布表示为高斯混合模型,并运用直方图形状分析方法优化高斯混合模型的高斯函数个数;Step22, express the foreground color distribution of the given smooth image as a Gaussian mixture model, and use the histogram shape analysis method to optimize the number of Gaussian functions of the Gaussian mixture model;

Step23,根据不同平滑图像的分割结果设计迭代终止条件,使得从平滑图像的分解尺度中提取前景。Step 23: Design iteration termination conditions according to the segmentation results of different smooth images, so that the foreground is extracted from the decomposition scale of the smooth images.

进一步的,Step22中运用直方图形状分析方法优化高斯混合模型的具体实现方式如下;Further, the specific implementation of optimizing the Gaussian mixture model using the histogram shape analysis method in Step 22 is as follows;

第 m个区域的高斯分布表示如下,The Gaussian distribution of the mth region is expressed as follows,

Figure 471571DEST_PATH_IMAGE001
Figure 471571DEST_PATH_IMAGE001

式中,G表示高斯函数,μ m 和∑m分别是该区域颜色分布的均值向量和协方差矩阵,u(i)表示平滑图像u中的第i个像素,计算时取像素值;det为数学函数,用于求一个方阵的行列式;In the formula, G represents the Gaussian function, μ m and ∑ m are the mean vector and covariance matrix of the color distribution in the region, respectively, u ( i ) represents the ith pixel in the smooth image u , and the pixel value is taken during calculation; det is Mathematical function for finding the determinant of a square matrix;

利用直方图的每个波峰表示图像区域亮度分布,用中值滤波进行平滑处理,平滑 后的直方图为

Figure 200624DEST_PATH_IMAGE002
,直方图中共有256个值,分别用
Figure 249351DEST_PATH_IMAGE003
表示,利用直方图波谷将图像分为N个区域,结合分割曲线计算出前景F 和背景B中区域个数,像素u(i)属于前景或背景的可能性为: Each peak of the histogram is used to represent the brightness distribution of the image area, and the median filter is used for smoothing. The smoothed histogram is
Figure 200624DEST_PATH_IMAGE002
, there are 256 values in the histogram, respectively
Figure 249351DEST_PATH_IMAGE003
means that the image is divided into N regions by using the histogram trough, and the number of regions in the foreground F and the background B is calculated by combining the segmentation curves. The possibility that the pixel u ( i ) belongs to the foreground or background is:

Figure 463688DEST_PATH_IMAGE004
Figure 463688DEST_PATH_IMAGE004

式中,

Figure 92116DEST_PATH_IMAGE005
表示分割结果,其中,x n =1表示前景,x n =0表示 背景,L F L B 分别表示像素是u(i)前景和背景的可能性,ω F ω B 分别表示前景和背景的参 数,n F 表示前景像素个数,n B 表示背景像素个数;优化后高斯混合模型表示为: In the formula,
Figure 92116DEST_PATH_IMAGE005
represents the segmentation result, where x n =1 represents the foreground, x n =0 represents the background, LF and LB represent the possibility that the pixel is u ( i ) foreground and background, respectively, ω F and ω B represent the foreground and background, respectively The parameters of , n F represents the number of foreground pixels, n B represents the number of background pixels; the optimized Gaussian mixture model is expressed as:

Figure 206834DEST_PATH_IMAGE006
Figure 206834DEST_PATH_IMAGE006

其中,U(x,w,u)为参数wx对平滑图像u的分割结果评价;w表示前、背景颜色分布参数。Among them, U ( x, w, u ) is the evaluation of the segmentation result of the smooth image u by x under the parameter w ; w represents the front and background color distribution parameters.

进一步的,Step23中结合CrabCut和平滑图像的颜色分布模型,将前景提取转换为分割和分解尺度的联合优化,前景提取的能量泛函x*为:Further, in Step 23, combining CrabCut and the color distribution model of the smooth image, the foreground extraction is converted into a joint optimization of segmentation and decomposition scale. The energy functional x* of foreground extraction is:

Figure 832987DEST_PATH_IMAGE007
Figure 832987DEST_PATH_IMAGE007

式中,αβ表示权重;第一项M(u,u 0 )是图像多尺度分解,u 0 表示原始图像,u为平滑图像;第二项为平滑图像的前景提取,S(x,w,u)表示为:In the formula, α and β represent weights; the first term M ( u, u 0 ) is the multi-scale decomposition of the image, u 0 represents the original image, and u is the smooth image; the second term is the foreground extraction of the smooth image, S ( x, w,u ) is expressed as:

Figure 531690DEST_PATH_IMAGE008
Figure 531690DEST_PATH_IMAGE008

式中,U(x,w,u)为参数wx对平滑图像u的分割结果评价;w表示前、背景颜色分布 参数,

Figure 963809DEST_PATH_IMAGE005
表示分割结果,其中,x n =1表示前景,x n =0表示背景;V(x, u)定义为将分割曲线放置在前景边界上的惩罚,如下式: In the formula, U ( x, w, u ) is the evaluation of the segmentation result of the smooth image u by x under the parameter w ; w represents the front and background color distribution parameters,
Figure 963809DEST_PATH_IMAGE005
represents the segmentation result, where x n =1 represents the foreground and x n =0 represents the background; V ( x, u ) is defined as the penalty for placing the segmentation curve on the foreground boundary, as follows:

Figure 667454DEST_PATH_IMAGE009
Figure 667454DEST_PATH_IMAGE009

式中,A i 是第i个像素的相邻像素集,jA i 中的像素;dis(∙)表示像素对的欧几里得距离;[∙]是指示函数;γβ表示权重;u(∙)表示平滑图像。In the formula, A i is the adjacent pixel set of the ith pixel, j is the pixel in A i ; dis (∙) represents the Euclidean distance of the pixel pair; [∙] is the indicator function; γ and β represent the weight ; u(∙) denotes a smooth image.

进一步的,所述多卷积核深度卷积神经网络包括多卷积核特征提取模块和多卷积核特征融合模块,具体实现方式如下;Further, the multi-convolution kernel deep convolutional neural network includes a multi-convolution kernel feature extraction module and a multi-convolution kernel feature fusion module, and the specific implementation is as follows;

(31)使用多卷积核特征提取模块提取服装图像特征,包括款式、色系和风格;(31) Use the multi-convolution kernel feature extraction module to extract clothing image features, including style, color and style;

首先,对输入的图像进行两次卷积操作和激活函数操作,对图像特征进行提取,生成维度为224×224×64的服装图像特征图,并在此基础上对提取到的特征图像进行最大池化操作,将特征图维度转换至112×112×64;然后,进行卷积操作和激活函数操作,并对经过相应操作后提取到的特征图进行最大池化操作,生成维度为56×56×128的特征图,作为多卷积核融合模块的输入;First, perform two convolution operations and activation function operations on the input image, extract the image features, and generate a clothing image feature map with a dimension of 224 × 224 × 64. The pooling operation converts the dimension of the feature map to 112×112×64; then, perform the convolution operation and the activation function operation, and perform the maximum pooling operation on the feature map extracted after the corresponding operation, and the generated dimension is 56×56 The feature map of ×128 is used as the input of the multi-convolution kernel fusion module;

(32)使用多卷积核特征融合模块对提取的特征进行融合,得到最终的服装图像特征图(32) Use the multi-convolution kernel feature fusion module to fuse the extracted features to obtain the final clothing image feature map

多卷积核特征融合模块包括:模块内特征信息融合和模块间特征信息融合;The multi-convolution kernel feature fusion module includes: intra-module feature information fusion and inter-module feature information fusion;

其中,模块内特征信息融合包括三个分支,三个分支分别使用尺寸为3×3和5×5以及7×7的卷积核对多卷积核特征提取模块输出的特征进行进一步的特征提取,三个分支使用并联方式对特征进行提取,模块间特征信息融合通过对模块内特征信息融合中的三个分支进行聚合后分别进行3×3的卷积操作然后输入到模块内特征信息融合部分再次进行聚合服装特征信息,最后再通过1×1卷积操作对提取到的特征信息进行融合并与输入特征信息再次聚合,达到将所提取的特征信息进行融合的目的,上述卷积操作中,除1×1卷积操作外,其他卷积操作后面都连接Relu激活函数。Among them, the feature information fusion in the module includes three branches, and the three branches use convolution kernels with sizes of 3×3, 5×5 and 7×7 to further extract the features output by the multi-convolution kernel feature extraction module. The three branches are used to extract features in parallel, and the feature information fusion between modules is performed by aggregating the three branches in the feature information fusion within the module, and then performing a 3 × 3 convolution operation, and then inputting it to the feature information fusion part of the module again. Aggregate clothing feature information, and finally fuse the extracted feature information through a 1×1 convolution operation and aggregate it again with the input feature information to achieve the purpose of fusing the extracted feature information. In the above convolution operation, except Except for the 1×1 convolution operation, other convolution operations are followed by the Relu activation function.

进一步的,自适应加权池化层的具体处理过程包括;Further, the specific processing process of the adaptive weighted pooling layer includes;

输入:待池化的特征图、池化窗口大小n,损失函数J、学习率βInput: feature map to be pooled, pooling window size n , loss function J , learning rate β ;

Step41:对于每个池化层,根据该层的池化窗口大小选择重要性参数的个数,对于有n个特征值α i 的池化窗口随机初始化n个重要性参数k i i=1,2,...,nStep41: For each pooling layer, select the number of importance parameters according to the size of the pooling window of the layer, and randomly initialize n importance parameters k i for the pooling window with n eigenvalues α i , i =1 ,2,..., n ;

Step42:将每个池化窗口中的特征值按从大到小进行排序得到

Figure 526825DEST_PATH_IMAGE010
; Step42: Sort the eigenvalues in each pooling window in descending order to get
Figure 526825DEST_PATH_IMAGE010
;

Step43:将初始化的重要性参数进行softmax 归一化得到权重参数;Step43: Perform softmax normalization on the initialized importance parameters to obtain weight parameters;

Figure 467753DEST_PATH_IMAGE011
Figure 467753DEST_PATH_IMAGE011

Step44:将权重参数与每个池化窗口中对应的特征值相乘后累加得到池化结果:Step44: Multiply the weight parameter with the corresponding eigenvalue in each pooling window and accumulate to obtain the pooling result:

Figure 703563DEST_PATH_IMAGE012
Figure 703563DEST_PATH_IMAGE012

Step45:初始化的后的权重参数w i ,在训练的过程中会随着反向传播的进行通过梯度下降不断迭代优化,直至收敛:Step45: The initialized weight parameter w i will be iteratively optimized through gradient descent with the progress of backpropagation during the training process until convergence:

Figure 527293DEST_PATH_IMAGE013
Figure 527293DEST_PATH_IMAGE013

其中,α i 为特征值,k i 为池化窗口随机初始化参数,w i 为权重参数,z为权重参数与每个池化窗口中对应的特征值相乘后累加得到池化结果,表示偏微分。Among them, α i is the eigenvalue, ki is the random initialization parameter of the pooling window, wi is the weight parameter, z is the weight parameter multiplied by the corresponding eigenvalue in each pooling window, and then accumulated to obtain the pooling result, represents partial differential.

进一步的,整个服装流行趋势预测模型的损失函数和自适应加权池化层中的损失函数J相同,采用交叉熵损失函数:Further, the loss function of the entire clothing fashion trend prediction model is the same as the loss function J in the adaptive weighted pooling layer, and the cross entropy loss function is used:

Figure 557566DEST_PATH_IMAGE014
Figure 557566DEST_PATH_IMAGE014

其中,x表示输入模型的服装图像特征图,pq分别代表服装分类的分类真实值和服装分类预测值。Among them, x represents the clothing image feature map of the input model, and p and q represent the true value of the clothing classification and the predicted value of the clothing classification, respectively.

进一步的,softmax层的处理过程如下;Further, the processing process of the softmax layer is as follows;

Figure 965283DEST_PATH_IMAGE015
Figure 965283DEST_PATH_IMAGE015

其中,Z i 为第i个结点的输出值,C为输出结点的个数,即最终分类结果的类别个数。Among them, Z i is the output value of the ith node, and C is the number of output nodes, that is, the number of categories of the final classification result.

按照本发明的另一个方面,提供了一种基于图像的服装流行趋势预测系统,包括如下模块:According to another aspect of the present invention, an image-based clothing fashion trend prediction system is provided, comprising the following modules:

服装图像数据采集模块,用于搜集服装图像数据集,并对服装图像数据进行预处理;The clothing image data collection module is used to collect clothing image data sets and preprocess the clothing image data;

图像前景提取模块,用于使用基于图像多尺度分解的前景提取模型提取服装图像前景;The image foreground extraction module is used to extract the clothing image foreground using a foreground extraction model based on image multi-scale decomposition;

服装图像特征提取模块,用于基于多卷积核深度卷积神经网络的服装图像特征提取与融合,得到最终的服装图像特征图;The clothing image feature extraction module is used for the clothing image feature extraction and fusion based on the multi-convolution kernel deep convolutional neural network to obtain the final clothing image feature map;

服装流行趋势预测模块,用于构建服装流行趋势预测模型,将最终的服装图像特征作为服装流行趋势预测模型的输入,得到当前服装流行趋势;The clothing fashion trend prediction module is used to construct a clothing fashion trend prediction model, and the final clothing image feature is used as the input of the clothing fashion trend prediction model to obtain the current clothing fashion trend;

所述服装流行趋势预测模型包括:自适应加权池化层、全连接层和softmax层。The clothing fashion trend prediction model includes: an adaptive weighted pooling layer, a fully connected layer and a softmax layer.

总体而言,通过本发明所构思的以上技术方案与现有技术相比,能够取得下列有益效果:In general, compared with the prior art, the above technical solutions conceived by the present invention can achieve the following beneficial effects:

(1)本发明提供的一种基于图像的服装流行趋势预测方法,利用服装图像预测服装流行趋势,包括服装款式、色系和风格,通过深度学习方法预测服装流行趋势,可靠且具有实时性;(1) An image-based clothing fashion trend prediction method provided by the present invention uses clothing images to predict clothing fashion trends, including clothing styles, colors and styles, and predicts clothing fashion trends through a deep learning method, which is reliable and real-time;

(2)本发明提供的一种基于图像的服装流行趋势预测方法,相比于现有技术,本发明可极大减少计算成本和降低系统复杂性,提高了流行预测的效果和质量。(2) An image-based clothing fashion trend prediction method provided by the present invention, compared with the prior art, the present invention can greatly reduce the calculation cost and system complexity, and improve the effect and quality of fashion prediction.

附图说明Description of drawings

图1是本发明实施例提供的一种基于图像的服装流行趋势预测系统流程示意图;1 is a schematic flowchart of an image-based clothing fashion trend prediction system provided by an embodiment of the present invention;

图2是本发明实施例提供的多卷积核深度卷积神经网络结构图。FIG. 2 is a structural diagram of a deep convolutional neural network with multiple convolution kernels provided by an embodiment of the present invention.

具体实施方式Detailed ways

为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。In order to make the objectives, technical solutions and advantages of the present invention clearer, the present invention will be further described in detail below with reference to the accompanying drawings and embodiments. It should be understood that the specific embodiments described herein are only used to explain the present invention, but not to limit the present invention. In addition, the technical features involved in the various embodiments of the present invention described below can be combined with each other as long as they do not conflict with each other.

图1所示,是实施例提供的一种基于图像的服装流行趋势预测系统流程示意图,包括服装图像数据采集模块、图像前景提取模块、服装图像特征提取模块以及服装流行趋势预测模块4个部分,各个模块的具体处理过程如下:As shown in Fig. 1, it is a kind of schematic flow chart of the clothing fashion trend prediction system based on image provided by the embodiment, including clothing image data collection module, image foreground extraction module, clothing image feature extraction module and clothing fashion trend prediction module 4 parts, The specific processing process of each module is as follows:

服装图像数据采集模块,用于搜集服装图像数据集,并对服装图像数据进行预处理;The clothing image data collection module is used to collect clothing image data sets and preprocess the clothing image data;

图像前景提取模块,用于使用基于图像多尺度分解的前景提取模型提取服装图像前景;The image foreground extraction module is used to extract the clothing image foreground using a foreground extraction model based on image multi-scale decomposition;

服装图像特征提取模块,用于基于多卷积核深度卷积神经网络的服装图像特征提取与融合,得到最终的服装图像特征图;The clothing image feature extraction module is used for the clothing image feature extraction and fusion based on the multi-convolution kernel deep convolutional neural network to obtain the final clothing image feature map;

服装流行趋势预测模块,用于构建服装流行趋势预测模型,将最终的服装图像特征作为服装流行趋势预测模型的输入,得到当前服装流行趋势;The clothing fashion trend prediction module is used to construct a clothing fashion trend prediction model, and the final clothing image feature is used as the input of the clothing fashion trend prediction model to obtain the current clothing fashion trend;

所述服装流行趋势预测模型包括:自适应加权池化层、全连接层和softmax层。The clothing fashion trend prediction model includes: an adaptive weighted pooling layer, a fully connected layer and a softmax layer.

与系统对应,本发明还提供的一种基于图像的服装流行趋势预测方法,包括如下步骤:Corresponding to the system, the present invention also provides an image-based clothing fashion trend prediction method, comprising the following steps:

(1)首先搜集服装图像数据集,并对服装图像数据进行预处理;(1) First collect the clothing image data set, and preprocess the clothing image data;

本实施例中通过网络爬虫、手工采集方式搜集各大购物网站的服装图像,对服装图像进行图像尺度归一化和图像标准化,其中购物网站包括亚马逊-网上购物商城(amazon.com)、天猫商城(tmall.com)、淘宝网(taobao.com)以及京东商城(jd.com)。In this embodiment, the clothing images of major shopping websites are collected by means of web crawlers and manual collection, and image scale normalization and image standardization are performed on the clothing images, wherein the shopping websites include Amazon-online shopping mall (amazon.com), Tmall Mall (tmall.com), Taobao (taobao.com) and Jingdong Mall (jd.com).

其中,服装图像数据预处理包括:通过双线性插值法调整图像大小,然后进行图像尺度归一化和图像标准化。实施例中,图像大小为224×224×3。Among them, the preprocessing of clothing image data includes: adjusting the image size by bilinear interpolation, and then performing image scale normalization and image normalization. In an embodiment, the image size is 224×224×3.

(2)图像前景提取,用于获取前景图像;(2) Image foreground extraction, which is used to obtain foreground images;

使用基于图像多尺度分解的前景提取模型提取服装图像前景。The foreground of clothing images is extracted using a foreground extraction model based on image multi-scale decomposition.

Step21:运用全变分对图像进行多尺度分解得到一系列平滑图像,该分解保护了图像边缘并平滑了纹理,压缩了图像区域颜色的分布范围;Step21: Use total variation to decompose the image at multiple scales to obtain a series of smooth images. The decomposition protects the edge of the image, smoothes the texture, and compresses the color distribution range of the image area;

Step22:将给定平滑图像前景颜色分布表示为高斯混合模型,并运用直方图形状分析方法优化高斯混合模型的高斯函数个数;Step22: Express the foreground color distribution of the given smooth image as a Gaussian mixture model, and use the histogram shape analysis method to optimize the number of Gaussian functions of the Gaussian mixture model;

其中,对于每个平滑图像,采用直方图形状分析方法对其颜色分布进行准确建模。Among them, for each smooth image, the histogram shape analysis method is used to accurately model its color distribution.

其中,直方图形状分析方法优化高斯混合模型。假设平滑图像中每个区域颜色分布紧凑,区域颜色分布可表示为高斯函数,以第 m个区域为例:Among them, the histogram shape analysis method optimizes the Gaussian mixture model. Assuming that the color distribution of each region in the smooth image is compact, the regional color distribution can be expressed as a Gaussian function, taking the mth region as an example:

Figure 739204DEST_PATH_IMAGE016
Figure 739204DEST_PATH_IMAGE016

式中,G表示高斯函数,μ m 和∑m分别是该区域颜色分布的均值向量和协方差矩阵,u(i)表示平滑图像u中的第i个像素,计算时取像素值;det为数学函数,用于求一个方阵的行列式;In the formula, G represents the Gaussian function, μ m and ∑ m are the mean vector and covariance matrix of the color distribution in the region, respectively, u ( i ) represents the ith pixel in the smooth image u , and the pixel value is taken during calculation; det is Mathematical function for finding the determinant of a square matrix;

利用直方图的每个波峰表示图像区域亮度分布,用中值滤波进行平滑处理,平滑 后的直方图为

Figure 683020DEST_PATH_IMAGE002
,直方图中共有256个值,分别用
Figure 884194DEST_PATH_IMAGE003
表示,利用直方图波谷将图像分为N个区域,结合分割曲线计算出前景F 和背景B中区域个数,像素u(i)属于前景或背景的可能性为: Each peak of the histogram is used to represent the brightness distribution of the image area, and the median filter is used for smoothing. The smoothed histogram is
Figure 683020DEST_PATH_IMAGE002
, there are 256 values in the histogram, respectively
Figure 884194DEST_PATH_IMAGE003
means that the image is divided into N regions by using the histogram trough, and the number of regions in the foreground F and the background B is calculated by combining the segmentation curves. The possibility that the pixel u ( i ) belongs to the foreground or background is:

Figure 782136DEST_PATH_IMAGE017
Figure 782136DEST_PATH_IMAGE017

式中,

Figure 297431DEST_PATH_IMAGE005
表示分割结果,其中,x n =1表示前景,x n =0表示 背景,L F L B 分别表示像素是u(i)前景和背景的可能性,ω F ω B 分别表示前景和背景的参 数,n F 表示前景像素个数,n B 表示背景像素个数;优化后高斯混合模型表示为: In the formula,
Figure 297431DEST_PATH_IMAGE005
represents the segmentation result, where x n =1 represents the foreground, x n =0 represents the background, LF and LB represent the possibility that the pixel is u ( i ) foreground and background, respectively, ω F and ω B represent the foreground and background, respectively The parameters of , n F represents the number of foreground pixels, n B represents the number of background pixels; the optimized Gaussian mixture model is expressed as:

Figure 345022DEST_PATH_IMAGE018
Figure 345022DEST_PATH_IMAGE018

其中,U(x,w,u)为参数wx对平滑图像u的分割结果评价;w表示前、背景颜色分布参数。Among them, U ( x, w, u ) is the evaluation of the segmentation result of the smooth image u by x under the parameter w ; w represents the front and background color distribution parameters.

Step23:根据不同平滑图像的分割结果设计迭代终止条件,使得从平滑图像的分解尺度中提取前景。Step23: Design iteration termination conditions according to the segmentation results of different smooth images, so that the foreground is extracted from the decomposition scale of the smooth images.

其中,结合CrabCut和平滑图像的颜色分布模型,将前景提取转换为分割和分解尺 度的联合优化。一副具有N个像素的原始图像

Figure 467830DEST_PATH_IMAGE019
被初始矩形框划 分为背景区域B和带有少量背景像素的前景区域F,RGB分别表示红绿蓝,u R 表示红像素的集 合,u G 表示绿像素的集合,u B 表示蓝像素的集合,
Figure 866450DEST_PATH_IMAGE020
表示原始图像u 0 中所有像素的集合。其 前景提取的能量泛函x*为: Among them, the combination of CrabCut and the color distribution model of smooth images transforms foreground extraction into a joint optimization of segmentation and decomposition scales. an original image with N pixels
Figure 467830DEST_PATH_IMAGE019
It is divided into a background area B and a foreground area F with a small number of background pixels by the initial rectangular frame, RGB represents red, green and blue respectively, u R represents the set of red pixels, u G represents the set of green pixels, u B represents the set of blue pixels ,
Figure 866450DEST_PATH_IMAGE020
represents the set of all pixels in the original image u0 . Its foreground extracted energy functional x* is:

Figure 231441DEST_PATH_IMAGE007
Figure 231441DEST_PATH_IMAGE007

式中,αβ表示权重;第一项M(u,u 0 )是图像多尺度分解,u 0 表示原始图像,u为平滑图像;第二项为平滑图像的前景提取,S(x,w,u)表示为:In the formula, α and β represent weights; the first term M ( u, u 0 ) is the multi-scale decomposition of the image, u 0 represents the original image, and u is the smooth image; the second term is the foreground extraction of the smooth image, S ( x, w,u ) is expressed as:

Figure 336801DEST_PATH_IMAGE021
Figure 336801DEST_PATH_IMAGE021

式中,U(x,w,u)为参数wx对平滑图像u的分割结果评价;w表示前、背景颜色分布 参数,

Figure 630510DEST_PATH_IMAGE005
表示分割结果,其中,x n =1表示前景,x n =0表示背景;V(x, u)定义为将分割曲线放置在前景边界上的惩罚,如下式: In the formula, U ( x, w, u ) is the evaluation of the segmentation result of the smooth image u by x under the parameter w ; w represents the front and background color distribution parameters,
Figure 630510DEST_PATH_IMAGE005
represents the segmentation result, where x n =1 represents the foreground and x n =0 represents the background; V ( x, u ) is defined as the penalty for placing the segmentation curve on the foreground boundary, as follows:

Figure 985268DEST_PATH_IMAGE022
Figure 985268DEST_PATH_IMAGE022

式中,A i 是第i个像素的相邻像素集,jA i 中的像素;dis(∙)表示像素对的欧几里得距离;[∙]是指示函数;γβ表示权重;u(∙)表示平滑图像。In the formula, A i is the adjacent pixel set of the ith pixel, j is the pixel in A i ; dis (∙) represents the Euclidean distance of the pixel pair; [∙] is the indicator function; γ and β represent the weight ; u(∙) denotes a smooth image.

具体实施例中,γ取50,为确保上式的能量在低梯度时较大,而在高梯度时较小,

Figure 151020DEST_PATH_IMAGE023
,其中〈∙〉表示均值。 In a specific embodiment, γ is taken as 50, in order to ensure that the energy of the above formula is larger when the gradient is low, and small when the gradient is high,
Figure 151020DEST_PATH_IMAGE023
, where <∙> represents the mean.

(3)基于多卷积核深度卷积神经网络进行服装图像特征提取与融合,得到最终的服装图像特征图,所述多卷积核深度卷积神经网络包括多卷积核特征提取模块和多卷积核特征融合模块;(3) Extract and fuse clothing image features based on a multi-convolution kernel deep convolutional neural network to obtain the final clothing image feature map. The multi-convolution kernel deep convolutional neural network includes a multi-convolution kernel feature extraction module and a multi- Convolution kernel feature fusion module;

(31)使用多卷积核特征提取模块提取服装图像特征,包括款式、色系和风格。(31) Use a multi-convolution kernel feature extraction module to extract clothing image features, including style, color, and style.

具体实施例中,首先,对输入的图像进行两次卷积操作和激活函数操作,对图像特征进行提取,生成维度为224×224×64的服装图像特征图,并在此基础上对提取到的特征图像进行最大池化操作,将特征图维度转换至112×112×64。然后,进行卷积操作和激活函数操作,并对经过相应操作后提取到的特征图进行最大池化操作,生成维度为56×56×128的特征图,作为多卷积核融合模块的输入。In a specific embodiment, first, perform two convolution operations and activation function operations on the input image, extract the image features, and generate a clothing image feature map with a dimension of 224×224×64, and on this basis, extract the extracted image features. The feature image of the max pooling operation is performed to convert the feature map dimension to 112×112×64. Then, perform the convolution operation and activation function operation, and perform the maximum pooling operation on the feature map extracted after the corresponding operation to generate a feature map with a dimension of 56×56×128, which is used as the input of the multi-convolution kernel fusion module.

(32)使用多卷积核特征融合模块对提取的特征进行融合,得到最终的服装图像特征图。(32) Use the multi-convolution kernel feature fusion module to fuse the extracted features to obtain the final clothing image feature map.

如图2所示,是实施例提供的多卷积核特征融合模块网络结构图,其中,多卷积核特征融合模块包括:模块内特征信息融合和模块间特征信息融合。As shown in FIG. 2 , it is a network structure diagram of a multi-convolution kernel feature fusion module provided by an embodiment, wherein the multi-convolution kernel feature fusion module includes: intra-module feature information fusion and inter-module feature information fusion.

其中,模块内特征信息融合包括三个分支,三个分支分别使用尺寸为3×3和5×5以及7×7的卷积核对多卷积核特征提取模块输出的特征进行进一步的特征提取,三个分支使用并联方式对特征进行提取,模块间特征信息融合通过对模块内特征信息融合中的三个分支进行聚合后分别进行3×3的卷积操作然后输入到模块内特征信息融合部分再次进行聚合服装特征信息,最后再通过1×1卷积操作对提取到的特征信息进行融合并与输入特征信息再次聚合,达到将所提取的特征信息进行融合的目的,上述卷积操作中,除1×1卷积操作外,其他卷积操作后面都连接Relu激活函数。Among them, the feature information fusion in the module includes three branches, and the three branches use convolution kernels with sizes of 3×3, 5×5 and 7×7 to further extract the features output by the multi-convolution kernel feature extraction module. The three branches are used to extract features in parallel, and the feature information fusion between modules is performed by aggregating the three branches in the feature information fusion within the module, and then performing a 3 × 3 convolution operation, and then inputting it to the feature information fusion part of the module again. Aggregate clothing feature information, and finally fuse the extracted feature information through a 1×1 convolution operation and aggregate it again with the input feature information to achieve the purpose of fusing the extracted feature information. In the above convolution operation, except Except for the 1×1 convolution operation, other convolution operations are followed by the Relu activation function.

(4)构建服装流行趋势预测模型,将最终的服装图像特征作为服装流行趋势预测模型的输入,得到当前服装流行趋势。(4) Construct a clothing fashion trend prediction model, and use the final clothing image features as the input of the clothing fashion trend prediction model to obtain the current clothing fashion trend.

其中,所述服装流行趋势预测模块包括:自适应加权池化层、全连接层和softmax。Wherein, the clothing fashion trend prediction module includes: adaptive weighted pooling layer, fully connected layer and softmax.

其中,自适应加权池化层的处理过程具体包括:Among them, the processing process of the adaptive weighted pooling layer specifically includes:

输入:待池化的特征图、池化窗口大小n,损失函数J、学习率βInput: feature map to be pooled, pooling window size n , loss function J , learning rate β ;

Step41:对于每个池化层,根据该层的池化窗口大小选择重要性参数的个数,对于有n个特征值α i 的池化窗口随机初始化n个重要性参数k i i=1,2,...,nStep41: For each pooling layer, select the number of importance parameters according to the size of the pooling window of the layer, and randomly initialize n importance parameters k i for the pooling window with n eigenvalues α i , i =1 ,2,..., n ;

Step42:将每个池化窗口中的特征值按从大到小进行排序得到

Figure 173203DEST_PATH_IMAGE010
; Step42: Sort the eigenvalues in each pooling window in descending order to get
Figure 173203DEST_PATH_IMAGE010
;

Step43:将初始化的重要性参数进行softmax 归一化得到权重参数;Step43: Perform softmax normalization on the initialized importance parameters to obtain weight parameters;

Figure 637813DEST_PATH_IMAGE024
Figure 637813DEST_PATH_IMAGE024

Step44:将权重参数与每个池化窗口中对应的特征值相乘后累加得到池化结果:Step44: Multiply the weight parameter with the corresponding eigenvalue in each pooling window and accumulate to obtain the pooling result:

Figure 745447DEST_PATH_IMAGE025
Figure 745447DEST_PATH_IMAGE025

Step45:初始化的后的权重参数w i ,在训练的过程中会随着反向传播的进行通过梯度下降不断迭代优化,直至收敛:Step45: The initialized weight parameter w i will be iteratively optimized through gradient descent with the progress of backpropagation during the training process until convergence:

Figure 452240DEST_PATH_IMAGE013
Figure 452240DEST_PATH_IMAGE013

其中,α i 为特征值,k i 为池化窗口随机初始化参数,w i 为权重参数,z为权重参数与每个池化窗口中对应的特征值相乘后累加得到池化结果,表示偏微分。Among them, α i is the eigenvalue, ki is the random initialization parameter of the pooling window, wi is the weight parameter, z is the weight parameter multiplied by the corresponding eigenvalue in each pooling window, and then accumulated to obtain the pooling result, represents partial differential.

其中,整个服装流行趋势预测模型的损失函数和自适应加权池化层中的损失函数J相同,采用交叉熵损失函数:Among them, the loss function of the entire clothing fashion trend prediction model is the same as the loss function J in the adaptive weighted pooling layer, and the cross entropy loss function is used:

Figure 63350DEST_PATH_IMAGE026
Figure 63350DEST_PATH_IMAGE026

其中,x表示输入模型的服装图像特征图,pq分别代表服装分类的分类真实值和服装分类预测值。经过交叉熵损失函数计算后得到的数值不一定满足概率分布的条件和意义,所以需要最终经过softmax激活函数,将数据处理成为概率分布的形式,满足服装图像算法的多分类任务要求。Among them, x represents the clothing image feature map of the input model, and p and q represent the true value of the clothing classification and the predicted value of the clothing classification, respectively. The value obtained after the calculation of the cross entropy loss function does not necessarily meet the conditions and meaning of the probability distribution, so it is necessary to finally process the data into the form of a probability distribution through the softmax activation function to meet the multi-classification task requirements of the clothing image algorithm.

Figure 964441DEST_PATH_IMAGE015
Figure 964441DEST_PATH_IMAGE015

其中,Z i 为第i个结点的输出值,C为输出结点的个数,即最终分类结果的类别个数。Among them, Z i is the output value of the ith node, and C is the number of output nodes, that is, the number of categories of the final classification result.

本领域的技术人员容易理解,以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。Those skilled in the art can easily understand that the above are only preferred embodiments of the present invention, and are not intended to limit the present invention. Any modifications, equivalent replacements and improvements made within the spirit and principles of the present invention, etc., All should be included within the protection scope of the present invention.

Claims (10)

1.一种基于图像的服装流行趋势预测方法,其特征在于,包括如下步骤:1. an image-based clothing fashion trend forecasting method, is characterized in that, comprises the steps: 步骤1,首先搜集服装图像数据集,并对服装图像数据进行预处理;Step 1, first collect the clothing image data set, and preprocess the clothing image data; 步骤2,使用基于图像多尺度分解的前景提取模型提取服装图像前景;Step 2, using the foreground extraction model based on image multi-scale decomposition to extract the foreground of the clothing image; 步骤3,基于多卷积核深度卷积神经网络的服装图像特征提取与融合,得到最终的服装图像特征图;Step 3, based on multi-convolution kernel deep convolutional neural network clothing image feature extraction and fusion, to obtain the final clothing image feature map; 步骤4,构建服装流行趋势预测模型,将最终的服装图像特征作为服装流行趋势预测模型的输入,得到当前服装流行趋势;Step 4, constructing a clothing fashion trend prediction model, and using the final clothing image feature as the input of the clothing fashion trend prediction model to obtain the current clothing fashion trend; 所述服装流行趋势预测模块包括:自适应加权池化层、全连接层和softmax层。The clothing fashion trend prediction module includes: an adaptive weighted pooling layer, a fully connected layer and a softmax layer. 2.如权利要求1所述的一种基于图像的服装流行趋势预测方法,其特征在于:步骤1中,通过网络爬虫、手工采集方式搜集各大购物网站的服装图像,其中购物网站包括亚马逊-网上购物商城、天猫商城、淘宝网以及京东商城;2. a kind of image-based clothing fashion trend prediction method as claimed in claim 1 is characterized in that: in step 1, collect the clothing images of major shopping sites by web crawler, manual collection mode, wherein shopping sites include Amazon- Online shopping mall, Tmall mall, Taobao and JD.com; 服装图像数据预处理包括:通过双线性插值法调整图像大小,然后进行图像尺度归一化和图像标准化。The preprocessing of clothing image data includes: resizing the image by bilinear interpolation, and then performing image scale normalization and image normalization. 3.如权利要求1所述的一种基于图像的服装流行趋势预测方法,其特征在于:步骤2的具体实现方式如下;3. a kind of image-based clothing fashion trend prediction method as claimed in claim 1, is characterized in that: the concrete realization mode of step 2 is as follows; Step21,运用全变分对图像进行多尺度分解得到一系列平滑图像;Step21, use total variation to decompose the image at multiple scales to obtain a series of smooth images; Step22,将给定平滑图像前景颜色分布表示为高斯混合模型,并运用直方图形状分析方法优化高斯混合模型的高斯函数个数;Step22, express the foreground color distribution of the given smooth image as a Gaussian mixture model, and use the histogram shape analysis method to optimize the number of Gaussian functions of the Gaussian mixture model; Step23,根据不同平滑图像的分割结果设计迭代终止条件,使得从平滑图像的分解尺度中提取前景。Step 23: Design iteration termination conditions according to the segmentation results of different smooth images, so that the foreground is extracted from the decomposition scale of the smooth images. 4.如权利要求3所述的一种基于图像的服装流行趋势预测方法,其特征在于:Step22中运用直方图形状分析方法优化高斯混合模型的具体实现方式如下;4. a kind of image-based clothing fashion trend forecasting method as claimed in claim 3, is characterized in that: in Step22, the concrete realization mode that utilizes histogram shape analysis method to optimize Gaussian mixture model is as follows; 第 m个区域的高斯分布表示如下,The Gaussian distribution of the mth region is expressed as follows,
Figure 441246DEST_PATH_IMAGE001
Figure 441246DEST_PATH_IMAGE001
式中,G表示高斯函数,μ m 和∑m分别是该区域颜色分布的均值向量和协方差矩阵,u(i)表示平滑图像u中的第i个像素,计算时取像素值;det为数学函数,用于求一个方阵的行列式;In the formula, G represents the Gaussian function, μ m and ∑ m are the mean vector and covariance matrix of the color distribution in the region, respectively, u ( i ) represents the ith pixel in the smooth image u , and the pixel value is taken during calculation; det is Mathematical function for finding the determinant of a square matrix; 利用直方图的每个波峰表示图像区域亮度分布,用中值滤波进行平滑处理,平滑后的 直方图为
Figure 278752DEST_PATH_IMAGE002
,直方图中共有256个值,分别用
Figure 31813DEST_PATH_IMAGE003
表示,利用直方图波谷将图像分为N个区域,结合分割曲线计算出前景F和背景B中区域个 数,像素u(i)属于前景或背景的可能性为:
Each peak of the histogram is used to represent the brightness distribution of the image area, and the median filter is used for smoothing. The smoothed histogram is
Figure 278752DEST_PATH_IMAGE002
, there are 256 values in the histogram, respectively
Figure 31813DEST_PATH_IMAGE003
means that the image is divided into N regions by using the histogram trough, and the number of regions in the foreground F and the background B is calculated in combination with the segmentation curve. The possibility that the pixel u ( i ) belongs to the foreground or the background is:
Figure 271165DEST_PATH_IMAGE004
Figure 271165DEST_PATH_IMAGE004
式中,
Figure 815760DEST_PATH_IMAGE005
表示分割结果,其中,x n =1表示前景,x n =0表示背景,L F L B 分别表示像素是u(i)前景和背景的可能性,ω F ω B 分别表示前景和背景的参数,n F 表示前景像素个数,n B 表示背景像素个数;优化后高斯混合模型表示为:
In the formula,
Figure 815760DEST_PATH_IMAGE005
represents the segmentation result, where x n =1 represents the foreground, x n =0 represents the background, LF and LB represent the possibility that the pixel is u ( i ) foreground and background, respectively, ω F and ω B represent the foreground and background, respectively The parameters of , n F represents the number of foreground pixels, n B represents the number of background pixels; the optimized Gaussian mixture model is expressed as:
Figure 874983DEST_PATH_IMAGE006
Figure 874983DEST_PATH_IMAGE006
其中,U(x,w,u)为参数wx对平滑图像u的分割结果评价;w表示前、背景颜色分布参数。Among them, U ( x, w, u ) is the evaluation of the segmentation result of the smooth image u by x under the parameter w ; w represents the front and background color distribution parameters.
5.如权利要求4所述的一种基于图像的服装流行趋势预测方法,其特征在于:Step23中结合CrabCut和平滑图像的颜色分布模型,将前景提取转换为分割和分解尺度的联合优化,前景提取的能量泛函x*为:5. a kind of image-based clothing fashion trend forecasting method as claimed in claim 4 is characterized in that: in Step23, in conjunction with the color distribution model of CrabCut and smooth image, foreground extraction is converted into the joint optimization of segmentation and decomposition scale, foreground The extracted energy functional x* is:
Figure 979205DEST_PATH_IMAGE007
Figure 979205DEST_PATH_IMAGE007
式中,αβ表示权重;第一项M(u,u 0 )是图像多尺度分解,u 0 表示原始图像,u为平滑图像;第二项为平滑图像的前景提取,S(x,w,u)表示为:In the formula, α and β represent weights; the first term M ( u, u 0 ) is the multi-scale decomposition of the image, u 0 represents the original image, and u is the smooth image; the second term is the foreground extraction of the smooth image, S ( x, w,u ) is expressed as:
Figure 260014DEST_PATH_IMAGE008
Figure 260014DEST_PATH_IMAGE008
式中,U(x,w,u)为参数wx对平滑图像u的分割结果评价;w表示前、背景颜色分布参 数,
Figure 791489DEST_PATH_IMAGE005
表示分割结果,其中,x n =1表示前景,x n =0表示背景;V(x,u) 定义为将分割曲线放置在前景边界上的惩罚,如下式:
In the formula, U ( x, w, u ) is the evaluation of the segmentation result of the smooth image u by x under the parameter w ; w represents the front and background color distribution parameters,
Figure 791489DEST_PATH_IMAGE005
represents the segmentation result, where x n =1 represents the foreground and x n =0 represents the background; V ( x,u ) is defined as the penalty for placing the segmentation curve on the foreground boundary, as follows:
Figure 587276DEST_PATH_IMAGE009
Figure 587276DEST_PATH_IMAGE009
式中,A i 是第i个像素的相邻像素集,jA i 中的像素;dis(∙)表示像素对的欧几里得距离;[∙]是指示函数;γβ表示权重;u(∙)表示平滑图像。In the formula, A i is the adjacent pixel set of the ith pixel, j is the pixel in A i ; dis (∙) represents the Euclidean distance of the pixel pair; [∙] is the indicator function; γ and β represent the weight ; u(∙) denotes a smooth image.
6.如权利要求1所述的一种基于图像的服装流行趋势预测方法,其特征在于:所述多卷积核深度卷积神经网络包括多卷积核特征提取模块和多卷积核特征融合模块,具体实现方式如下;6. a kind of image-based clothing fashion trend prediction method as claimed in claim 1 is characterized in that: described multi-convolution kernel depth convolutional neural network comprises multi-convolution kernel feature extraction module and multi-convolution kernel feature fusion module, the specific implementation is as follows; (31)使用多卷积核特征提取模块提取服装图像特征,包括款式、色系和风格;(31) Use the multi-convolution kernel feature extraction module to extract clothing image features, including style, color and style; 首先,对输入的图像进行两次卷积操作和激活函数操作,对图像特征进行提取,生成维度为224×224×64的服装图像特征图,并在此基础上对提取到的特征图像进行最大池化操作,将特征图维度转换至112×112×64;然后,进行卷积操作和激活函数操作,并对经过相应操作后提取到的特征图进行最大池化操作,生成维度为56×56×128的特征图,作为多卷积核融合模块的输入;First, perform two convolution operations and activation function operations on the input image, extract the image features, and generate a clothing image feature map with a dimension of 224 × 224 × 64. The pooling operation converts the dimension of the feature map to 112×112×64; then, perform the convolution operation and the activation function operation, and perform the maximum pooling operation on the feature map extracted after the corresponding operation, and the generated dimension is 56×56 The feature map of ×128 is used as the input of the multi-convolution kernel fusion module; (32)使用多卷积核特征融合模块对提取的特征进行融合,得到最终的服装图像特征图(32) Use the multi-convolution kernel feature fusion module to fuse the extracted features to obtain the final clothing image feature map 多卷积核特征融合模块包括:模块内特征信息融合和模块间特征信息融合;The multi-convolution kernel feature fusion module includes: intra-module feature information fusion and inter-module feature information fusion; 其中,模块内特征信息融合包括三个分支,三个分支分别使用尺寸为3×3和5×5以及7×7的卷积核对多卷积核特征提取模块输出的特征进行进一步的特征提取,三个分支使用并联方式对特征进行提取,模块间特征信息融合通过对模块内特征信息融合中的三个分支进行聚合后分别进行3×3的卷积操作然后输入到模块内特征信息融合部分再次进行聚合服装特征信息,最后再通过1×1卷积操作对提取到的特征信息进行融合并与输入特征信息再次聚合,达到将所提取的特征信息进行融合的目的,上述卷积操作中,除1×1卷积操作外,其他卷积操作后面都连接Relu激活函数。Among them, the feature information fusion in the module includes three branches, and the three branches use convolution kernels with sizes of 3×3, 5×5 and 7×7 to further extract the features output by the multi-convolution kernel feature extraction module. The three branches are used to extract features in parallel, and the feature information fusion between modules is performed by aggregating the three branches in the feature information fusion within the module, and then performing a 3×3 convolution operation and then inputting it to the feature information fusion part of the module again. Aggregate clothing feature information, and finally fuse the extracted feature information through a 1×1 convolution operation and re-aggregate with the input feature information to achieve the purpose of fusing the extracted feature information. In the above convolution operation, in addition to Except for the 1×1 convolution operation, other convolution operations are followed by the Relu activation function. 7.如权利要求1所述的一种基于图像的服装流行趋势预测方法,其特征在于:自适应加权池化层的具体处理过程包括;7. a kind of image-based clothing fashion trend prediction method as claimed in claim 1 is characterized in that: the concrete processing process of adaptive weighted pooling layer comprises; 输入:待池化的特征图、池化窗口大小n,损失函数J、学习率βInput: feature map to be pooled, pooling window size n , loss function J , learning rate β ; Step41:对于每个池化层,根据该层的池化窗口大小选择重要性参数的个数,对于有n个特征值α i 的池化窗口随机初始化n个重要性参数k i i=1,2,...,nStep41: For each pooling layer, select the number of importance parameters according to the size of the pooling window of the layer, and randomly initialize n importance parameters k i for the pooling window with n eigenvalues α i , i =1 ,2,..., n ; Step42:将每个池化窗口中的特征值按从大到小进行排序得到
Figure 432872DEST_PATH_IMAGE010
Step42: Sort the eigenvalues in each pooling window in descending order to get
Figure 432872DEST_PATH_IMAGE010
;
Step43:将初始化的重要性参数进行softmax 归一化得到权重参数;Step43: Perform softmax normalization on the initialized importance parameters to obtain the weight parameters;
Figure 630504DEST_PATH_IMAGE011
Figure 630504DEST_PATH_IMAGE011
Step44:将权重参数与每个池化窗口中对应的特征值相乘后累加得到池化结果:Step44: Multiply the weight parameter with the corresponding eigenvalue in each pooling window and accumulate to obtain the pooling result:
Figure 536143DEST_PATH_IMAGE012
Figure 536143DEST_PATH_IMAGE012
Step45:初始化的后的权重参数w i ,在训练的过程中会随着反向传播的进行通过梯度下降不断迭代优化,直至收敛:Step45: The initialized weight parameter w i will be iteratively optimized through gradient descent with the progress of backpropagation during the training process until convergence:
Figure 618893DEST_PATH_IMAGE013
Figure 618893DEST_PATH_IMAGE013
其中,α i 为特征值,k i 为池化窗口随机初始化参数,w i 为权重参数,z为权重参数与每个池化窗口中对应的特征值相乘后累加得到池化结果,表示偏微分。Among them, α i is the eigenvalue, ki is the random initialization parameter of the pooling window, wi is the weight parameter, z is the weight parameter multiplied by the corresponding eigenvalue in each pooling window, and then accumulated to obtain the pooling result, represents partial differential.
8.如权利要求7所述的一种基于图像的服装流行趋势预测方法,其特征在于:整个服装流行趋势预测模型的损失函数和自适应加权池化层中的损失函数J相同,采用交叉熵损失函数:8. a kind of image-based clothing fashion trend prediction method as claimed in claim 7 is characterized in that: the loss function of the whole clothing fashion trend prediction model is identical with the loss function J in the adaptive weighted pooling layer, and cross entropy is adopted. Loss function:
Figure 268180DEST_PATH_IMAGE014
Figure 268180DEST_PATH_IMAGE014
其中,x表示输入模型的服装图像特征图,pq分别代表服装分类的分类真实值和服装分类预测值。Among them, x represents the clothing image feature map of the input model, and p and q represent the true value of the clothing classification and the predicted value of the clothing classification, respectively.
9.如权利要求1所述的一种基于图像的服装流行趋势预测方法,其特征在于:softmax层的处理过程如下;9. a kind of image-based clothing fashion trend prediction method as claimed in claim 1, is characterized in that: the processing procedure of softmax layer is as follows;
Figure 54739DEST_PATH_IMAGE015
Figure 54739DEST_PATH_IMAGE015
其中,Z i 为第i个结点的输出值,C为输出结点的个数,即最终分类结果的类别个数。Among them, Z i is the output value of the ith node, and C is the number of output nodes, that is, the number of categories of the final classification result.
10.一种基于图像的服装流行趋势预测系统,其特征在于,包括如下模块:10. An image-based clothing fashion trend prediction system, characterized in that it comprises the following modules: 服装图像数据采集模块,用于搜集服装图像数据集,并对服装图像数据进行预处理;The clothing image data collection module is used to collect clothing image data sets and preprocess the clothing image data; 图像前景提取模块,用于使用基于图像多尺度分解的前景提取模型提取服装图像前景;The image foreground extraction module is used to extract the clothing image foreground using a foreground extraction model based on image multi-scale decomposition; 服装图像特征提取模块,用于基于多卷积核深度卷积神经网络的服装图像特征提取与融合,得到最终的服装图像特征图;The clothing image feature extraction module is used for the clothing image feature extraction and fusion based on the multi-convolution kernel deep convolutional neural network to obtain the final clothing image feature map; 服装流行趋势预测模块,用于构建服装流行趋势预测模型,将最终的服装图像特征作为服装流行趋势预测模型的输入,得到当前服装流行趋势;The clothing fashion trend prediction module is used to construct a clothing fashion trend prediction model, and the final clothing image feature is used as the input of the clothing fashion trend prediction model to obtain the current clothing fashion trend; 所述服装流行趋势预测模型包括:自适应加权池化层、全连接层和softmax层。The clothing fashion trend prediction model includes: an adaptive weighted pooling layer, a fully connected layer and a softmax layer.
CN202210127383.3A 2022-02-11 2022-02-11 An Image-Based Apparel Trend Prediction Method Pending CN114187495A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210127383.3A CN114187495A (en) 2022-02-11 2022-02-11 An Image-Based Apparel Trend Prediction Method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210127383.3A CN114187495A (en) 2022-02-11 2022-02-11 An Image-Based Apparel Trend Prediction Method

Publications (1)

Publication Number Publication Date
CN114187495A true CN114187495A (en) 2022-03-15

Family

ID=80545831

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210127383.3A Pending CN114187495A (en) 2022-02-11 2022-02-11 An Image-Based Apparel Trend Prediction Method

Country Status (1)

Country Link
CN (1) CN114187495A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116188792A (en) * 2023-02-23 2023-05-30 四川大学 A quantitative analysis method and system for whole blood cell scattergram

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103718166A (en) * 2011-08-02 2014-04-09 索尼公司 Information processing apparatus, information processing method, and computer program product
CN108960499A (en) * 2018-06-27 2018-12-07 东华大学 A kind of Fashion trend predicting system merging vision and non-vision feature
CN110705755A (en) * 2019-09-07 2020-01-17 创新奇智(广州)科技有限公司 Garment fashion trend prediction method and device based on deep learning
CN112434210A (en) * 2020-12-14 2021-03-02 武汉纺织大学 Clothing fashion trend prediction system and method
CN112819510A (en) * 2021-01-21 2021-05-18 江阴逐日信息科技有限公司 Fashion trend prediction method, system and equipment based on clothing multi-attribute recognition
CN113159826A (en) * 2020-12-28 2021-07-23 武汉纺织大学 Garment fashion element prediction system and method based on deep learning

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103718166A (en) * 2011-08-02 2014-04-09 索尼公司 Information processing apparatus, information processing method, and computer program product
CN108960499A (en) * 2018-06-27 2018-12-07 东华大学 A kind of Fashion trend predicting system merging vision and non-vision feature
CN110705755A (en) * 2019-09-07 2020-01-17 创新奇智(广州)科技有限公司 Garment fashion trend prediction method and device based on deep learning
CN112434210A (en) * 2020-12-14 2021-03-02 武汉纺织大学 Clothing fashion trend prediction system and method
CN113159826A (en) * 2020-12-28 2021-07-23 武汉纺织大学 Garment fashion element prediction system and method based on deep learning
CN112819510A (en) * 2021-01-21 2021-05-18 江阴逐日信息科技有限公司 Fashion trend prediction method, system and equipment based on clothing multi-attribute recognition

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
王斌 等: ""基于图像多尺度分解的前景提取"", 《四川大学学报(自然科学版)》 *
赵长乐: ""基于卷积神经网络的服装图像分类与去噪研究"", 《万方数据》 *
龚柯: ""基于卷积神经网络的服装分类算法研究"", 《中国优秀硕士学位论文全文数据库 (工程科技Ⅰ辑)》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116188792A (en) * 2023-02-23 2023-05-30 四川大学 A quantitative analysis method and system for whole blood cell scattergram
CN116188792B (en) * 2023-02-23 2023-10-20 四川大学 Quantitative analysis method and system for whole blood cell scatter diagram

Similar Documents

Publication Publication Date Title
CN112766199B (en) Hyperspectral image classification method based on self-adaptive multi-scale feature extraction model
CN109614985B (en) Target detection method based on densely connected feature pyramid network
CN110110624B (en) Human body behavior recognition method based on DenseNet and frame difference method characteristic input
CN109145992B (en) Collaborative Generative Adversarial Networks and Space Spectrum Joint Method for Hyperspectral Image Classification
WO2021073418A1 (en) Face recognition method and apparatus, device, and storage medium
CN109558806A (en) The detection method and system of high score Remote Sensing Imagery Change
CN111931637A (en) Cross-modal pedestrian re-identification method and system based on double-current convolutional neural network
CN109766858A (en) Three-dimensional convolution neural network hyperspectral image classification method combined with bilateral filtering
CN112801015B (en) Multi-mode face recognition method based on attention mechanism
CN110837768B (en) An online detection and identification method for rare animal protection
CN106169081A (en) A kind of image classification based on different illumination and processing method
CN109684922A (en) A kind of recognition methods based on the multi-model of convolutional neural networks to finished product dish
CN110097029B (en) Identity authentication method based on high way network multi-view gait recognition
CN110427821A (en) A kind of method for detecting human face and system based on lightweight convolutional neural networks
CN110334584B (en) Gesture recognition method based on regional full convolution network
CN117876890B (en) A multi-source remote sensing image classification method based on multi-level feature fusion
CN113128308B (en) Pedestrian detection method, device, equipment and medium in port scene
CN111222545B (en) Image classification method based on linear programming incremental learning
CN111091129B (en) Image salient region extraction method based on manifold ordering of multiple color features
CN109002755A (en) Age estimation model building method and estimation method based on facial image
CN104751186A (en) Iris image quality classification method based on BP (back propagation) network and wavelet transformation
WO2023179099A1 (en) Image detection method and apparatus, and device and readable storage medium
CN114219824A (en) Visible light-infrared target tracking method and system based on deep network
CN114330516A (en) Small sample logo image classification based on multi-graph guided neural network model
CN113095218A (en) Hyperspectral image target detection algorithm

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20220315