CN114186472B - Design method of multi-input multi-output urban solid waste incineration process model - Google Patents
Design method of multi-input multi-output urban solid waste incineration process model Download PDFInfo
- Publication number
- CN114186472B CN114186472B CN202110998327.2A CN202110998327A CN114186472B CN 114186472 B CN114186472 B CN 114186472B CN 202110998327 A CN202110998327 A CN 202110998327A CN 114186472 B CN114186472 B CN 114186472B
- Authority
- CN
- China
- Prior art keywords
- layer
- input
- data
- output
- solid waste
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 68
- 230000008569 process Effects 0.000 title claims abstract description 60
- 238000004056 waste incineration Methods 0.000 title claims abstract description 53
- 239000010813 municipal solid waste Substances 0.000 title claims abstract description 48
- 238000013461 design Methods 0.000 title claims abstract description 12
- 238000012549 training Methods 0.000 claims abstract description 44
- 230000009467 reduction Effects 0.000 claims abstract description 8
- 238000007781 pre-processing Methods 0.000 claims abstract description 7
- 238000010586 diagram Methods 0.000 claims description 27
- 230000006870 function Effects 0.000 claims description 24
- 238000004364 calculation method Methods 0.000 claims description 21
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 20
- 229910052760 oxygen Inorganic materials 0.000 claims description 20
- 239000001301 oxygen Substances 0.000 claims description 20
- 238000013528 artificial neural network Methods 0.000 claims description 17
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 claims description 16
- 239000003546 flue gas Substances 0.000 claims description 16
- 238000002485 combustion reaction Methods 0.000 claims description 12
- 210000002569 neuron Anatomy 0.000 claims description 12
- 230000002159 abnormal effect Effects 0.000 claims description 9
- 238000001035 drying Methods 0.000 claims description 6
- 230000008030 elimination Effects 0.000 claims description 6
- 238000003379 elimination reaction Methods 0.000 claims description 6
- 238000009826 distribution Methods 0.000 claims description 3
- 238000010606 normalization Methods 0.000 claims description 3
- 238000012360 testing method Methods 0.000 abstract description 36
- 238000005457 optimization Methods 0.000 abstract description 6
- 238000002474 experimental method Methods 0.000 abstract description 2
- 230000000694 effects Effects 0.000 description 21
- 230000007246 mechanism Effects 0.000 description 14
- 239000002910 solid waste Substances 0.000 description 10
- 238000004519 manufacturing process Methods 0.000 description 5
- 238000004458 analytical method Methods 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 239000000779 smoke Substances 0.000 description 4
- 230000008859 change Effects 0.000 description 3
- 230000008878 coupling Effects 0.000 description 3
- 238000010168 coupling process Methods 0.000 description 3
- 238000005859 coupling reaction Methods 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 230000003044 adaptive effect Effects 0.000 description 1
- 238000013473 artificial intelligence Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000010949 in-process test method Methods 0.000 description 1
- 238000010801 machine learning Methods 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000013178 mathematical model Methods 0.000 description 1
- 238000005065 mining Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 230000001932 seasonal effect Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/20—Design optimisation, verification or simulation
- G06F30/27—Design optimisation, verification or simulation using machine learning, e.g. artificial intelligence, neural networks, support vector machines [SVM] or training a model
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Evolutionary Computation (AREA)
- General Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- Software Systems (AREA)
- Artificial Intelligence (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biophysics (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Computer Hardware Design (AREA)
- Health & Medical Sciences (AREA)
- Medical Informatics (AREA)
- Biomedical Technology (AREA)
- Geometry (AREA)
- Computational Linguistics (AREA)
- Data Mining & Analysis (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Computing Systems (AREA)
- Mathematical Physics (AREA)
- Incineration Of Waste (AREA)
Abstract
Description
技术领域Technical Field
本发明针对城市固废焚烧过程内部机理复杂、难以建立被控对象模型的问题,设计了 一种基于Takagi-Sugeno型模糊神经网络的多输入多输出被控对象模型,该模型由工况识别模块、数据预处理模块、特征约简模块、被控对象模型训练模块与被控对象模型测试模 块组成,解决了城市固废焚烧过程内部机理难以分析,多变量耦合性强、内部规则难以挖 掘的问题,为研究城市固废焚烧过程的优化控制奠定了模型基础。Aiming at the problem that the internal mechanism of the municipal solid waste incineration process is complex and it is difficult to establish a controlled object model, the present invention designs a multi-input and multi-output controlled object model based on the Takagi-Sugeno type fuzzy neural network. The model consists of a working condition identification module, a data preprocessing module, a feature reduction module, a controlled object model training module and a controlled object model testing module. It solves the problems that the internal mechanism of the municipal solid waste incineration process is difficult to analyze, the multi-variable coupling is strong, and the internal rules are difficult to mine, and lays a model foundation for studying the optimization control of the municipal solid waste incineration process.
背景技术Background Art
城市固废焚烧技术具有减量化、资源化、无害化等突出优势,已成为目前世界上处理 城市固体废弃物的主要技术手段之一。截至2016年,中国内地已运行的固废焚烧发电厂有303座,合计处理能力已达到3.04×105t/日,其中,使用机械炉排炉的固废焚烧发电厂有220座,占比超过72%,炉排炉已经成为中国城市固废焚烧所采用的主要焚烧炉型。基于炉排炉的城市固废焚烧是一个具有强非线性、强耦合、大时变等诸多不确定性特征的过程,复杂过程必然涉及众多控制领域的问题,需要依靠先进的控制技术才能稳定固废焚烧状态、提升运行效率,而建立精准的被控对象模型是实施控制技术的基础与必要准备。因此,本发明针对城市固废焚烧过程的对象模型设计研究具有重要的意义。The municipal solid waste incineration technology has outstanding advantages such as reduction, resource utilization and harmlessness, and has become one of the main technical means for treating municipal solid waste in the world. As of 2016, there were 303 solid waste incineration power plants in operation in mainland China, with a total processing capacity of 3.04×10 5 t/day. Among them, there were 220 solid waste incineration power plants using mechanical grate furnaces, accounting for more than 72%. The grate furnace has become the main type of incinerator used for municipal solid waste incineration in China. The municipal solid waste incineration based on the grate furnace is a process with many uncertain characteristics such as strong nonlinearity, strong coupling and large time variation. The complex process inevitably involves many control problems. It is necessary to rely on advanced control technology to stabilize the solid waste incineration state and improve the operation efficiency. The establishment of an accurate controlled object model is the basis and necessary preparation for the implementation of control technology. Therefore, the object model design research of the municipal solid waste incineration process in this invention is of great significance.
传统的被控对象模型通常是基于机理分析进行构建的,称之为机理模型,也称为“白 箱模型”。机理模型是依据于物料平衡方程、能量平衡方程、生物学定律、化学动力学等原理构建的,其通过推导操作变量、状态变量与被控变量之间的函数关系,从而建立相对精确的数学模型。机理模型具有直观反映系统内在规律与结构联系的能力,然而,与传统 复杂工业过程不同,城市固废焚烧过程中使用的原材料为固体废弃物,其从本质上就具有 复杂多变的特性。影响固体废弃物成分的因素诸多,包括季节气候,固废的分类程度,区 域内人民的生活水平、生活习惯及环保意识等。对于如城市固废焚烧的强非线性工业过程,基于机理分析构建的模型,不仅难以分析强非线性系统的性质与内部机理,且难以适用于 多工况下的固废焚烧过程。近年来,随着人工智能的兴起,基于数据驱动的机器学习方法 为城市固废焚烧过程的控制对象建模提供了解决思路。Traditional controlled object models are usually constructed based on mechanism analysis, which are called mechanism models, also known as "white box models". Mechanism models are constructed based on principles such as material balance equations, energy balance equations, biological laws, and chemical kinetics. They establish relatively accurate mathematical models by deriving functional relationships between operating variables, state variables, and controlled variables. Mechanism models have the ability to intuitively reflect the internal laws and structural connections of the system. However, unlike traditional complex industrial processes, the raw materials used in the process of municipal solid waste incineration are solid waste, which is inherently complex and changeable. There are many factors that affect the composition of solid waste, including seasonal climate, the degree of classification of solid waste, the living standards, living habits, and environmental awareness of the people in the region. For strongly nonlinear industrial processes such as municipal solid waste incineration, models constructed based on mechanism analysis are not only difficult to analyze the properties and internal mechanisms of strongly nonlinear systems, but also difficult to apply to solid waste incineration processes under multiple working conditions. In recent years, with the rise of artificial intelligence, data-driven machine learning methods have provided a solution for modeling the control objects of municipal solid waste incineration processes.
数据驱动模型是通过挖掘系统输入输出数据的映射关系进行构建的,也称为黑箱模型。 人工神经网络因其良好的学习能力、计算能力和非线性逼近能力而广泛地应用于复杂工业 系统的过程分析中,将其用于内部机理未知的被控对象模型设计中,具有重要的应用价值。人工神经网络在工业过程的被控对象建模中已经得到了越来越多的应用,已成为时下的研 究热点。Data-driven models are constructed by mining the mapping relationship between system input and output data, also known as black box models. Artificial neural networks are widely used in process analysis of complex industrial systems due to their good learning ability, computing ability and nonlinear approximation ability. They have important application value in the design of controlled object models with unknown internal mechanisms. Artificial neural networks have been increasingly used in the modeling of controlled objects in industrial processes and have become a current research hotspot.
城市固废焚烧过程是一个典型的多输入多输出的工业过程,其固废热值难以确定,内 部机理反应复杂,多个操作量与被控量耦合严重,系统规则难以挖掘,具有典型的模糊特 性。针对城市固废焚烧这类复杂工业过程,模糊神经网络提供了良好的解决方案。模糊神经网络作为一种模糊的自适应方案,其兼具模糊系统的非线性处理与分析能力,又具有人 工神经网络的参数学习与动态优化能力,近年来已被广为研究,并成为了智能计算与神经 科学中的重要分支,是一种优于人工神经网络与模糊系统单独使用的技术。The municipal solid waste incineration process is a typical multi-input and multi-output industrial process. Its solid waste calorific value is difficult to determine, the internal mechanism reaction is complex, multiple operating variables are seriously coupled with the controlled variables, and the system rules are difficult to mine. It has typical fuzzy characteristics. Fuzzy neural networks provide a good solution for complex industrial processes such as municipal solid waste incineration. As a fuzzy adaptive solution, fuzzy neural networks have both the nonlinear processing and analysis capabilities of fuzzy systems and the parameter learning and dynamic optimization capabilities of artificial neural networks. In recent years, they have been widely studied and have become an important branch of intelligent computing and neuroscience. It is a technology that is superior to the use of artificial neural networks and fuzzy systems alone.
根据以上分析,本发明针对城市固废焚烧工艺过程特点,设计了一种基于Takagi-Sugeno型模糊神经网络的多输入多输出被控对象模型。首先,根据焚烧机理与专家经验对城市固废焚烧运行工况进行识别并进行数据预处理;接着,提取了能够反应系统状态的关键操作量与被控量;然后,构建了多个后件子网络,采用梯度下降算法对网络的局部参数与整体参数进行优化,保证了模型的收敛精度与输出的同步性;最后,通过北京市 某固废焚烧厂的过程数据验证了被控对象模型的有效性。According to the above analysis, the present invention designs a multi-input multi-output controlled object model based on Takagi-Sugeno type fuzzy neural network for the characteristics of the municipal solid waste incineration process. First, the operating conditions of municipal solid waste incineration are identified and data preprocessed according to the incineration mechanism and expert experience; then, the key operating quantities and controlled quantities that can reflect the system state are extracted; then, multiple post-part sub-networks are constructed, and the local and overall parameters of the network are optimized using the gradient descent algorithm to ensure the convergence accuracy of the model and the synchronization of the output; finally, the effectiveness of the controlled object model is verified through the process data of a solid waste incineration plant in Beijing.
发明内容Summary of the invention
本发明获得了一种基于Takagi-Sugeno型模糊神经网络的多输入多输出被控对象模型, 该模型由工况识别模块、数据预处理模块、特征约简模块、被控对象模型训练模块与被控 对象模型测试模块组成,实现了对关键被控变量的精准预测,解决了城市固废焚烧过程被 控对象模型难以建立的问题,为研究城市固废焚烧优化控制奠定了基础;The present invention obtains a multi-input multi-output controlled object model based on Takagi-Sugeno type fuzzy neural network, which consists of a working condition identification module, a data preprocessing module, a feature reduction module, a controlled object model training module and a controlled object model testing module, realizes accurate prediction of key controlled variables, solves the problem that the controlled object model of the municipal solid waste incineration process is difficult to establish, and lays a foundation for studying the optimization control of municipal solid waste incineration;
本发明采用了如下的技术方案及实现步骤:The present invention adopts the following technical solutions and implementation steps:
一种多输入多输出的城市固废焚烧过程模型设计方法包括以下步骤:A multi-input and multi-output municipal solid waste incineration process model design method comprises the following steps:
1.一种多输入多输出的城市固废焚烧过程模型设计方法,其特征在于,包括以下步骤:1. A multi-input and multi-output municipal solid waste incineration process model design method, characterized by comprising the following steps:
(1)工况识别模块:本模块构建了一种基于一次风压的工况识别专家评判机制,依据 一次风压设定值对工况进行划分,进而针对不同工况构建相应的被控对象模型;(1) Working condition identification module: This module constructs an expert evaluation mechanism for working condition identification based on primary wind pressure, divides the working conditions according to the primary wind pressure setting value, and then constructs corresponding controlled object models for different working conditions;
(2)数据预处理模块:本模块通过异常数据剔除与数据归一化将采集得到的数据进行 预处理,计算步骤如下:(2) Data preprocessing module: This module preprocesses the collected data by eliminating abnormal data and normalizing the data. The calculation steps are as follows:
①异常数据剔除:首先,通过绘制分位数图对数据的正态分布性进行检测,之后通过 3σ准则对异常数据进行剔除,采集1~T时刻的关键被控变量:主蒸汽流量、炉膛温度和烟 气含氧量,将其定义为Ys(t),其中s=1,2,...,q,q为3,t=1,2,...,T,计算Ys(t)对应的剩 余误差εs(t)为:① Abnormal data elimination: First, the normal distribution of the data is tested by drawing a quantile diagram, and then the abnormal data is eliminated by the 3σ criterion. The key controlled variables at
计算数据集的标准偏差σs为:Calculate the standard deviation σs of the data set as:
当Ys(t)对应的剩余误差εs(t)符合以下条件时:When the residual error ε s (t) corresponding to Y s (t) meets the following conditions:
|εs(t)|>3σs (3)|ε s (t)|>3σ s (3)
则对此Ys(t)执行剔除操作,同时令T=T-1;Then perform a elimination operation on this Y s (t), and set T = T-1;
②数据归一化处理:提取城市固废焚烧过程的关键操作变量:干燥段炉排空气流量(左 1、右1、左2、右2)、燃烧1段炉排空气流量(左1、右1、左2、右2)、燃烧2段炉排空 气流量(左1、右1、左2、右2)、燃烬段炉排空气流量(左、右)、二次风流量、干燥段炉排 速度(左内、右内、左外、右外)、燃烧1段炉排速度(左内、右内、左外、右外)、燃烧2段 炉排速度(左内、右内、左外、右外)和燃烬段炉排速度(左内、右内),将其定义为Xi(t), 其中i=1,2,...,N,N为29,t=1,2,...,T,将采集数据Xi(t)与Ys(t)进行归一化处理,其计 算公式如下:② Data normalization: Extract the key operating variables of the municipal solid waste incineration process: drying grate air flow (left 1, right 1, left 2, right 2),
式中,xi(t)表示数据Xi(t)归一化后的值,ys(t)表示数据Ys(t)归一化后的值,Xi表示 第i个参数在采集时间段的所有数据,Ys表示第s个参数在采集时间段的所有数据;Wherein, Xi (t) represents the normalized value of data Xi (t), ys (t) represents the normalized value of data Ys (t), Xi represents all the data of the i-th parameter in the collection time period, and Ys represents all the data of the s-th parameter in the collection time period;
(3)特征约简模块:计算以上关键操作变量xi(t)与关键被控变量ys(t)之间的皮尔逊相 关系数,将皮尔逊相关系数定义为ρds,其计算方法为:(3) Feature reduction module: Calculate the Pearson correlation coefficient between the above key operating variables x i (t) and the key controlled variables y s (t). The Pearson correlation coefficient is defined as ρ ds , and its calculation method is:
根据计算结果,按照ρds的绝对值进行排序,选取排序为前3的操作变量,将其记为xi(t), 其中i=1,2,...,n,n为3;According to the calculation results, the absolute values of ρ ds are sorted, and the top 3 operating variables are selected and recorded as x i (t), where i = 1, 2, ..., n, and n is 3;
(4)多输入多输出Takagi-Sugeno型模糊神经网络训练模块:本模块设计的模型结构由 前件网络与后件网络两部分组成,其中前件网络包括输入层、隶属函数层、规则层、后件 层和输出层共5层,后件网络包括输入层、规则层和后件层共3层,对其数学描述如下:(4) Multi-input multi-output Takagi-Sugeno type fuzzy neural network training module: The model structure designed in this module consists of two parts: the antecedent network and the consequent network. The antecedent network includes five layers, namely the input layer, the membership function layer, the rule layer, the consequent layer and the output layer. The consequent network includes three layers, namely the input layer, the rule layer and the consequent layer. The mathematical description is as follows:
①输入层:该层共有n个神经元,n为3,其作用将输入值进行传递,当第t个样本进入时,输入层的输出为:① Input layer: This layer has n neurons, n is 3, and its function is to transmit the input value. When the tth sample enters, the output of the input layer is:
xi(t),i=1,2,...,n (7)x i (t), i = 1, 2, ..., n (7)
②隶属函数层:该层共有n×m个神经元,m为12,每个节点的输出代表对应输入量的隶属度值,隶属函数为:② Membership function layer: This layer has a total of n×m neurons, m is 12, and the output of each node represents the membership value of the corresponding input quantity. The membership function is:
式中,cij(t)与δij(t)分别为隶属度函数的中心和宽度,其初始值由rand随机函数生成 范围在[0,2]之间均匀分布的随机实数;Where c ij (t) and δ ij (t) are the center and width of the membership function, respectively. The initial value is a random real number uniformly distributed in the range [0,2] generated by the rand random function.
③规则层:该层设有m个神经元,采用模糊连乘算子作为模糊逻辑规则,规则层的输 出为:③ Rule layer: This layer has m neurons and uses fuzzy multiplication operators as fuzzy logic rules. The output of the rule layer is:
④后件层:该层共有m×q个神经元,q为3,每个节点执行T-S型模糊规则的线性求和,该层的作用是计算每条规则所对应输出的后件参数后件参数是由后件网络计算得出的,后件网络输入层传入n+1个变量,其中第0个节点的输入为常数,即x0(t)=1,将 后件参数传回前件网络的后件层中,其计算过程如下:④ Consequence layer: This layer has a total of m×q neurons, q is 3, and each node performs the linear summation of TS-type fuzzy rules. The function of this layer is to calculate the consequent parameters of the output corresponding to each rule The subsequent parameters are calculated by the subsequent network. The input layer of the subsequent network passes n+1 variables, where the input of the 0th node is a constant, that is, x 0 (t) = 1. The subsequent parameters are passed back to the subsequent layer of the antecedent network. The calculation process is as follows:
式中,为模糊系统的参数,其初始值设为0.3,x0(t),x1(t),…, xn(t)为输入变量;In the formula, are the parameters of the fuzzy system, whose initial value is set to 0.3, and x 0 (t), x 1 (t),…, x n (t) are the input variables;
⑤输出层:该层设有q个输出节点,每个节点对输入参数执行加权求和,其计算公式 如下:⑤ Output layer: This layer has q output nodes, each of which performs weighted summation on the input parameters. The calculation formula is as follows:
⑥模型参数学习:使用梯度下降算法来调整网络参数,首先,定义误差计算方法如下:⑥Model parameter learning: Use the gradient descent algorithm to adjust the network parameters. First, define the error calculation method as follows:
式中,ys(t)是第t个输入样本对应的第s个实际输出,是第t个输入样本对应的 第s个计算输出,es(t)为两者之间的误差,依据误差对网络的中心、宽度和模糊系统参数 更新算法定义如下:Where ys (t) is the sth actual output corresponding to the tth input sample, is the sth calculated output corresponding to the tth input sample, es (t) is the error between the two, and the center, width and fuzzy system parameter update algorithm of the network are defined as follows based on the error:
式中,η为在线学习率,η的取值范围为[0.01,0,05],cij(t-1)、δij(t-1)和分 别为第t-1个样本输入时网络隶属函数层的中心、宽度和模糊系统的参数,完成本次参数 更新后,输入训练样本数据xi(t+1),重复步骤①~⑥,直至所有训练样本全部输入,训练 样本数为总样本数T的80%,之后对模型进行迭代训练,,直至迭代次数达到最大迭代值Itmax,Itmax为500;Where η is the online learning rate, the value range of η is [0.01, 0, 05], c ij (t-1), δ ij (t-1) and are the center, width and fuzzy system parameters of the network membership function layer when the t-1th sample is input. After completing this parameter update, input the training sample data x i (t+1), and repeat
(5)模型训练完成后,即完成多输入多输出的城市固废焚烧过程模型的搭建,此时在 模型中输入一次风流量、二次风流量和炉排速度,则模型输出主蒸汽流量、炉膛温度和烟 气含氧量。(5) After the model training is completed, the multi-input and multi-output model of the municipal solid waste incineration process is built. At this time, the primary air flow rate, secondary air flow rate and grate speed are input into the model, and the model outputs the main steam flow rate, furnace temperature and flue gas oxygen content.
本发明的创造性主要体现在:The creativity of the present invention is mainly reflected in:
(1)本发明解决了城市固废焚烧过程内部机理难以分析,多变量耦合性强、内部规则 难以挖掘的问题,为研究城市固废焚烧过程的优化控制奠定了模型基础;(1) The present invention solves the problems that the internal mechanism of the municipal solid waste incineration process is difficult to analyze, the multivariable coupling is strong, and the internal rules are difficult to explore, and lays a model foundation for studying the optimization control of the municipal solid waste incineration process;
(2)本发明针对国内城市固废焚烧的工艺特点,设计了具有多工况识别与特征约简的 建模策略,模型具有较好的鲁棒性与适用性;(2) The present invention designs a modeling strategy with multi-condition identification and feature simplification based on the process characteristics of domestic municipal solid waste incineration, and the model has good robustness and applicability;
(3)本发明建立的被控对象模型具有多输出学习能力,利用多任务之间的互补信息同 时对多个被控量进行精准拟合,并对网络参数进行在线更新;(3) The controlled object model established by the present invention has multi-output learning capability, and uses the complementary information between multiple tasks to accurately fit multiple controlled quantities at the same time, and to update the network parameters online;
(4)本发明提出的基于Takagi-Sugeno型模糊神经网络的多输入多输出被控对象模型的 城市固废焚烧过程被控对象建模方法学习能力强、建模精度高,具有广泛的应用价值;(4) The method for modeling the controlled object of the municipal solid waste incineration process based on the multi-input multi-output controlled object model of the Takagi-Sugeno type fuzzy neural network proposed in the present invention has strong learning ability, high modeling accuracy, and has wide application value;
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
图1是本发明的城市固废焚烧过程工艺流程图FIG. 1 is a process flow chart of the municipal solid waste incineration process of the present invention.
图2是本发明的城市固废焚烧过程的控制流程图FIG. 2 is a control flow chart of the municipal solid waste incineration process of the present invention.
图3是本发明的基于数据驱动的城市固废焚烧过程被控对象模型构建方法FIG. 3 is a method for constructing a controlled object model of a municipal solid waste incineration process based on data drive according to the present invention.
图4是本发明的基于Takagi-Sugeno型模糊神经网络的多输入多输出模型FIG. 4 is a multi-input multi-output model based on Takagi-Sugeno type fuzzy neural network of the present invention.
图5是本发明的模型训练过程RMSE变化FIG. 5 is a diagram showing the RMSE variation during the model training process of the present invention.
图6是本发明的模型训练样本拟合效果FIG. 6 is a diagram showing the model training sample fitting effect of the present invention.
图7是本发明的模型测试样本拟合效果FIG. 7 is a diagram showing the model test sample fitting effect of the present invention.
图8是本发明的炉膛温度训练样本拟合效果图FIG. 8 is a diagram showing the fitting effect of the furnace temperature training sample of the present invention.
图9是本发明的烟气含氧量训练样本拟合效果图FIG. 9 is a diagram showing the fitting effect of the smoke oxygen content training sample of the present invention.
图10是本发明的主蒸汽流量测试样本拟合效果图FIG. 10 is a diagram showing the fitting effect of the main steam flow test sample of the present invention.
图11是本发明的炉膛温度测试样本拟合效果图FIG. 11 is a diagram showing the fitting effect of the furnace temperature test sample of the present invention.
图12是本发明的烟气含氧量测试样本拟合效果图FIG. 12 is a diagram showing the fitting effect of the smoke oxygen content test sample of the present invention.
图13是本发明的主蒸汽流量测试样本测试误差图FIG. 13 is a test error diagram of a main steam flow test sample of the present invention.
图14是本发明的炉膛温度测试样本测试误差图FIG. 14 is a test error diagram of a furnace temperature test sample of the present invention.
图15是本发明的烟气含氧量测试样本测试误差图FIG. 15 is a test error diagram of a flue gas oxygen content test sample of the present invention.
具体实施方式DETAILED DESCRIPTION
本发明获得了一种基于Takagi-Sugeno型模糊神经网络的多输入多输出被控对象模型, 该模型由工况识别模块、数据预处理模块、特征约简模块、被控对象模型训练模块与被控 对象模型测试模块组成,实现了对关键被控变量的精准预测,解决了城市固废焚烧过程被 控对象模型难以建立的问题,为研究城市固废焚烧优化控制奠定了基础;The present invention obtains a multi-input multi-output controlled object model based on Takagi-Sugeno type fuzzy neural network, which consists of a working condition identification module, a data preprocessing module, a feature reduction module, a controlled object model training module and a controlled object model testing module, realizes accurate prediction of key controlled variables, solves the problem that the controlled object model of the municipal solid waste incineration process is difficult to establish, and lays a foundation for studying the optimization control of municipal solid waste incineration;
本实验对某城市固废焚烧电厂的过程数据进行了采集,采样频率为1s/次,共采集得到 2×105组数据作为实验样本;This experiment collected process data from a certain city solid waste incineration power plant with a sampling frequency of 1s/time, and a total of 2×10 5 sets of data were collected as experimental samples;
一种多输入多输出的城市固废焚烧过程模型设计方法包括以下步骤:A multi-input and multi-output municipal solid waste incineration process model design method comprises the following steps:
(1)工况识别模块:本模块构建了一种基于一次风压的工况识别专家评判机制,依据 一次风压设定值对工况进行划分,进而针对不同工况构建相应的被控对象模型;(1) Working condition identification module: This module constructs an expert evaluation mechanism for working condition identification based on primary wind pressure, divides the working conditions according to the primary wind pressure setting value, and then constructs corresponding controlled object models for different working conditions;
(2)数据预处理模块:本模块通过异常数据剔除与数据归一化将采集得到的数据进行 预处理,计算步骤如下:(2) Data preprocessing module: This module preprocesses the collected data by eliminating abnormal data and normalizing the data. The calculation steps are as follows:
①异常数据剔除:首先,通过绘制分位数图对数据的正态分布性进行检测,之后通过 3σ准则对异常数据进行剔除,采集1~T时刻的关键被控变量:主蒸汽流量、炉膛温度和烟 气含氧量,将其定义为Ys(t),其中s=1,2,...,q,q为3,t=1,2,...,T,计算Ys(t)对应的剩 余误差εs(t)为:① Abnormal data elimination: First, the normal distribution of the data is tested by drawing a quantile diagram, and then the abnormal data is eliminated by the 3σ criterion. The key controlled variables at
计算数据集的标准偏差σs为:Calculate the standard deviation σs of the data set as:
当Ys(t)对应的剩余误差εs(t)符合以下条件时:When the residual error ε s (t) corresponding to Y s (t) meets the following conditions:
|εs(t)|>3σs (3)|ε s (t)|>3σ s (3)
则对此Ys(t)执行剔除操作,同时令T=T-1;Then perform a elimination operation on this Y s (t), and set T = T-1;
②数据归一化处理:提取城市固废焚烧过程的关键操作变量:干燥段炉排空气流量(左 1、右1、左2、右2)、燃烧1段炉排空气流量(左1、右1、左2、右2)、燃烧2段炉排空 气流量(左1、右1、左2、右2)、燃烬段炉排空气流量(左、右)、二次风流量、干燥段炉排 速度(左内、右内、左外、右外)、燃烧1段炉排速度(左内、右内、左外、右外)、燃烧2段 炉排速度(左内、右内、左外、右外)和燃烬段炉排速度(左内、右内),将其定义为Xi(t), 其中i=1,2,...,N,N为29,t=1,2,...,T,将采集数据Xi(t)与Ys(t)进行归一化处理,其计 算公式如下:② Data normalization: Extract the key operating variables of the municipal solid waste incineration process: drying grate air flow (left 1, right 1, left 2, right 2),
式中,xi(t)表示数据Xi(t)归一化后的值,ys(t)表示数据Ys(t)归一化后的值,Xi表示 第i个参数在采集时间段的所有数据,Ys表示第s个参数在采集时间段的所有数据;Wherein, Xi (t) represents the normalized value of data Xi (t), ys (t) represents the normalized value of data Ys (t), Xi represents all the data of the i-th parameter in the collection time period, and Ys represents all the data of the s-th parameter in the collection time period;
(3)特征约简模块:计算以上关键操作变量xi(t)与关键被控变量ys(t)之间的皮尔逊相 关系数,将皮尔逊相关系数定义为ρds,其计算方法为:(3) Feature reduction module: Calculate the Pearson correlation coefficient between the above key operating variables x i (t) and the key controlled variables y s (t). The Pearson correlation coefficient is defined as ρ ds , and its calculation method is:
根据计算结果,按照ρds的绝对值进行排序,选取排序为前3的操作变量,将其记为xi(t), 其中i=1,2,...,n,n为3;According to the calculation results, the absolute values of ρ ds are sorted, and the top 3 operating variables are selected and recorded as x i (t), where i = 1, 2, ..., n, and n is 3;
(4)多输入多输出Takagi-Sugeno型模糊神经网络训练模块:本模块设计的模型结构由 前件网络与后件网络两部分组成,其中前件网络包括输入层、隶属函数层、规则层、后件 层和输出层共5层,后件网络包括输入层、规则层和后件层共3层,对其数学描述如下:(4) Multi-input multi-output Takagi-Sugeno type fuzzy neural network training module: The model structure designed in this module consists of two parts: the antecedent network and the consequent network. The antecedent network includes five layers, namely the input layer, the membership function layer, the rule layer, the consequent layer and the output layer. The consequent network includes three layers, namely the input layer, the rule layer and the consequent layer. The mathematical description is as follows:
①输入层:该层共有n个神经元,n为3,其作用将输入值进行传递,当第t个样本进入时,输入层的输出为:① Input layer: This layer has n neurons, n is 3, and its function is to transmit the input value. When the tth sample enters, the output of the input layer is:
xi(t),i=1,2,...,n (7)x i (t), i = 1, 2, ..., n (7)
②隶属函数层:该层共有n×m个神经元,m为12,每个节点的输出代表对应输入量的隶属度值,隶属函数为:② Membership function layer: This layer has a total of n×m neurons, m is 12, and the output of each node represents the membership value of the corresponding input quantity. The membership function is:
式中,cij(t)与δij(t)分别为隶属度函数的中心和宽度,其初始值由rand随机函数生成 范围在[0,2]之间均匀分布的随机实数;Where c ij (t) and δ ij (t) are the center and width of the membership function, respectively. The initial value is a random real number uniformly distributed in the range [0,2] generated by the rand random function.
③规则层:该层设有m个神经元,采用模糊连乘算子作为模糊逻辑规则,规则层的输 出为:③ Rule layer: This layer has m neurons and uses fuzzy multiplication operators as fuzzy logic rules. The output of the rule layer is:
④后件层:该层共有m×q个神经元,q为3,每个节点执行T-S型模糊规则的线性求和,该层的作用是计算每条规则所对应输出的后件参数后件参数是由后件网络计算得出的,后件网络输入层传入n+1个变量,其中第0个节点的输入为常数,即x0(t)=1,将 后件参数传回前件网络的后件层中,其计算过程如下:④ Consequence layer: This layer has a total of m×q neurons, q is 3, and each node performs the linear summation of TS-type fuzzy rules. The function of this layer is to calculate the consequent parameters of the output corresponding to each rule The subsequent parameters are calculated by the subsequent network. The input layer of the subsequent network passes n+1 variables, where the input of the 0th node is a constant, that is, x 0 (t) = 1. The subsequent parameters are passed back to the subsequent layer of the antecedent network. The calculation process is as follows:
式中,为模糊系统的参数,其初始值设为0.3,x0(t),x1(t),…, xn(t)为输入变量;In the formula, are the parameters of the fuzzy system, whose initial value is set to 0.3, and x 0 (t), x 1 (t),…, x n (t) are the input variables;
⑤输出层:该层设有q个输出节点,每个节点对输入参数执行加权求和,其计算公式 如下:⑤ Output layer: This layer has q output nodes, each of which performs weighted summation on the input parameters. The calculation formula is as follows:
⑥模型参数学习:使用梯度下降算法来调整网络参数,首先,定义误差计算方法如下:⑥Model parameter learning: Use the gradient descent algorithm to adjust the network parameters. First, define the error calculation method as follows:
式中,ys(t)是第t个输入样本对应的第s个实际输出,是第t个输入样本对应的 第s个计算输出,es(t)为两者之间的误差,依据误差对网络的中心、宽度和模糊系统参数 更新算法定义如下:Where ys (t) is the sth actual output corresponding to the tth input sample, is the sth calculated output corresponding to the tth input sample, es (t) is the error between the two, and the center, width and fuzzy system parameter update algorithm of the network are defined as follows based on the error:
式中,η为在线学习率,η的取值范围为[0.01,0,05],cij(t-1)、δij(t-1)和分 别为第t-1个样本输入时网络隶属函数层的中心、宽度和模糊系统的参数,完成本次参数 更新后,输入训练样本数据xi(t+1),重复步骤①~⑥,直至所有训练样本全部输入,训练 样本数为总样本数T的80%,之后对模型进行迭代训练,,直至迭代次数达到最大迭代值Itmax,Itmax为500;Where η is the online learning rate, the value range of η is [0.01, 0, 05], c ij (t-1), δ ij (t-1) and are the center, width and fuzzy system parameters of the network membership function layer when the t-1th sample is input. After completing this parameter update, input the training sample data x i (t+1), and repeat
(5)模型训练完成后,即完成多输入多输出的城市固废焚烧过程模型的搭建,此时在 模型中输入一次风流量、二次风流量和炉排速度,则模型输出主蒸汽流量、炉膛温度和烟 气含氧量。(5) After the model training is completed, the multi-input and multi-output model of the municipal solid waste incineration process is built. At this time, the primary air flow rate, secondary air flow rate and grate speed are input into the model, and the model outputs the main steam flow rate, furnace temperature and flue gas oxygen content.
图1是本发明的城市固废焚烧过程工艺流程图FIG. 1 is a process flow chart of the municipal solid waste incineration process of the present invention.
图2是本发明的城市固废焚烧过程的控制流程图FIG. 2 is a control flow chart of the municipal solid waste incineration process of the present invention.
图3是本发明的基于Takagi-Sugeno型模糊神经网络的多输入多输出模型结构图FIG. 3 is a structural diagram of a multi-input multi-output model based on a Takagi-Sugeno type fuzzy neural network of the present invention.
图4是本发明的主蒸汽流量训练过程RMSE变化图FIG. 4 is a diagram showing the RMSE variation of the main steam flow rate training process of the present invention.
图5是本发明的炉膛温度训练过程RMSE变化图FIG. 5 is a diagram showing the RMSE variation of the furnace temperature training process of the present invention.
图6是本发明的烟气含氧量训练过程RMSE变化图FIG. 6 is a diagram showing the RMSE variation of the flue gas oxygen content training process of the present invention.
图7是本发明的主蒸汽流量训练样本拟合效果图FIG. 7 is a diagram showing the fitting effect of the main steam flow training sample of the present invention.
图8是本发明的炉膛温度训练样本拟合效果图FIG. 8 is a diagram showing the fitting effect of the furnace temperature training sample of the present invention.
图9是本发明的烟气含氧量训练样本拟合效果图FIG. 9 is a diagram showing the fitting effect of the smoke oxygen content training sample of the present invention.
图10是本发明的主蒸汽流量测试样本拟合效果图FIG. 10 is a diagram showing the fitting effect of the main steam flow test sample of the present invention.
图11是本发明的炉膛温度测试样本拟合效果图FIG. 11 is a diagram showing the fitting effect of the furnace temperature test sample of the present invention.
图12是本发明的烟气含氧量测试样本拟合效果图FIG. 12 is a diagram showing the fitting effect of the smoke oxygen content test sample of the present invention.
图13是本发明的主蒸汽流量测试样本测试误差图FIG. 13 is a test error diagram of a main steam flow test sample of the present invention.
图14是本发明的炉膛温度测试样本测试误差图FIG. 14 is a test error diagram of a furnace temperature test sample of the present invention.
图15是本发明的烟气含氧量测试样本测试误差图FIG. 15 is a test error diagram of a flue gas oxygen content test sample of the present invention.
城市固废焚烧过程工艺流程如图1所示;城市固废焚烧过程的控制流程如图2所示; 基于Takagi-Sugeno型模糊神经网络的多输入多输出模型结构如图3所示;将训练样本数 据作为模型的输入,模型训练过程RMSE变化如图4~图6所示;图4为主蒸汽流量训练 过程RMSE变化,X轴:训练步数,Y轴:训练RMSE值;图5为炉膛温度训练过程RMSE 变化,X轴:训练步数,Y轴:训练RMSE值;图6为烟气含氧量训练过程RMSE变化, X轴:训练步数,Y轴:训练RMSE值;模型训练样本拟合效果如图7~图9所示;图7 为主蒸汽流量训练样本拟合效果,X轴:样本序号,Y轴:主蒸汽流量,单位是t/h,黑色线为预测输出、灰色线为实际输出;图8为炉膛温度训练样本拟合效果,X轴:样本序号, Y轴:炉膛温度,单位是℃,黑色线为预测输出、灰色线为实际输出;图9为烟气含氧量 训练样本拟合效果,X轴:样本序号,Y轴:烟气含氧量,单位是%,黑色线为预测输出、灰色线为实际输出;将测试样本数据作为训练后的模型输入,模型测试样本拟合效果如图 10~图12所示;图10为主蒸汽流量测试样本拟合效果,X轴:样本序号,Y轴:主蒸汽 流量,单位是t/h,黑色线为预测输出、灰色线为实际输出;图11为炉膛温度测试样本拟 合效果,X轴:样本序号,Y轴:炉膛温度,单位是℃,黑色线为预测输出、灰色线为实 际输出;图12为烟气含氧量测试样本拟合效果,X轴:样本序号,Y轴:烟气含氧量,单 位是%,黑色线为预测输出、灰色线为实际输出;模型测试样本测试误差如图13~图15所 示;图13为主蒸汽流量测试样本测试误差,X轴:样本序号,Y轴:主蒸汽流量,单位是 t/h;图14为炉膛温度测试样本测试误差,X轴:样本序号,Y轴:炉膛温度,单位是℃;图15为烟气含氧量测试样本测试误差,X轴:样本序号,Y轴:烟气含氧量,单位是%; 结果表明该模型对城市固废焚烧过程被控对象建模的有效性。The process flow of the municipal solid waste incineration process is shown in Figure 1; the control process of the municipal solid waste incineration process is shown in Figure 2; the multi-input multi-output model structure based on the Takagi-Sugeno type fuzzy neural network is shown in Figure 3; the training sample data is used as the input of the model, and the RMSE changes in the model training process are shown in Figures 4 to 6; Figure 4 is the RMSE change in the main steam flow training process, X-axis: training steps, Y-axis: training RMSE value; Figure 5 is the RMSE change in the furnace temperature training process, X-axis: training steps, Y-axis: training RMSE value; Figure 6 is the RMSE change in the flue gas oxygen content training process, X-axis: training steps, Y-axis: training RMSE value; the model training sample fitting effect is shown in Figures 7 to 9; Figure 7 is the main steam flow training sample fitting effect, X-axis: sample number, Y-axis: main steam flow, the unit is t/h, the black line is the predicted output, and the gray line is the actual output; Figure 8 is the furnace temperature training sample fitting effect, X-axis: sample number, Y axis: furnace temperature, unit is ℃, black line is predicted output, gray line is actual output; Figure 9 is the fitting effect of flue gas oxygen content training sample, X axis: sample number, Y axis: flue gas oxygen content, unit is %, black line is predicted output, gray line is actual output; take the test sample data as the trained model input, the model test sample fitting effect is shown in Figure 10 to Figure 12; Figure 10 is the main steam flow test sample fitting effect, X axis: sample number, Y axis: main steam flow, unit is t/h, black line is predicted output, gray line is actual output; Figure 11 is the furnace temperature test sample fitting effect, X axis: sample number, Y axis: furnace temperature, unit is ℃, black line is predicted output, gray line is actual output; Figure 12 is the flue gas oxygen content test sample fitting effect, X axis: sample number, Y axis: flue gas oxygen content, unit is %, black line is predicted output, gray line is actual output; model test sample test error is shown in Figure 13 to Figure 15 Figure 13 is the test error of the main steam flow test sample, X-axis: sample number, Y-axis: main steam flow, the unit is t/h; Figure 14 is the test error of the furnace temperature test sample, X-axis: sample number, Y-axis: furnace temperature, the unit is ℃; Figure 15 is the test error of the flue gas oxygen content test sample, X-axis: sample number, Y-axis: flue gas oxygen content, the unit is %; The results show the effectiveness of the model in modeling the controlled object of the municipal solid waste incineration process.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110998327.2A CN114186472B (en) | 2021-08-27 | 2021-08-27 | Design method of multi-input multi-output urban solid waste incineration process model |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110998327.2A CN114186472B (en) | 2021-08-27 | 2021-08-27 | Design method of multi-input multi-output urban solid waste incineration process model |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114186472A CN114186472A (en) | 2022-03-15 |
CN114186472B true CN114186472B (en) | 2023-05-02 |
Family
ID=80601030
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110998327.2A Active CN114186472B (en) | 2021-08-27 | 2021-08-27 | Design method of multi-input multi-output urban solid waste incineration process model |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114186472B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115755779B (en) * | 2022-08-27 | 2024-08-30 | 北京工业大学 | Control-oriented data-driven urban solid waste incineration full-flow modeling method |
CN115542740B (en) * | 2022-10-07 | 2024-07-16 | 北京工业大学 | Multivariable active disturbance rejection control method based on data driving for urban solid waste incineration process |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101476731A (en) * | 2008-12-31 | 2009-07-08 | 华南理工大学 | Refuse incineration control method based on refuse thermal value soft measurement |
CN105864797A (en) * | 2016-04-01 | 2016-08-17 | 浙江大学 | Real-time prediction system and method for boiler entering heat value of circulating fluidized bed household garbage incineration boiler |
CN112733876A (en) * | 2020-10-28 | 2021-04-30 | 北京工业大学 | Soft measurement method for nitrogen oxides in urban solid waste incineration process based on modular neural network |
CN113191078A (en) * | 2021-04-26 | 2021-07-30 | 北京工业大学 | Method for forecasting flue gas temperature of primary combustion chamber in municipal solid waste incineration process |
-
2021
- 2021-08-27 CN CN202110998327.2A patent/CN114186472B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101476731A (en) * | 2008-12-31 | 2009-07-08 | 华南理工大学 | Refuse incineration control method based on refuse thermal value soft measurement |
CN105864797A (en) * | 2016-04-01 | 2016-08-17 | 浙江大学 | Real-time prediction system and method for boiler entering heat value of circulating fluidized bed household garbage incineration boiler |
CN112733876A (en) * | 2020-10-28 | 2021-04-30 | 北京工业大学 | Soft measurement method for nitrogen oxides in urban solid waste incineration process based on modular neural network |
CN113191078A (en) * | 2021-04-26 | 2021-07-30 | 北京工业大学 | Method for forecasting flue gas temperature of primary combustion chamber in municipal solid waste incineration process |
Also Published As
Publication number | Publication date |
---|---|
CN114186472A (en) | 2022-03-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US12182700B2 (en) | Method for deriving fault diagnosis rules of blast furnace based on deep neural network | |
Cheng et al. | ThermalNet: A deep reinforcement learning-based combustion optimization system for coal-fired boiler | |
CN111144609A (en) | Boiler exhaust emission prediction model establishing method, prediction method and device | |
CN114186472B (en) | Design method of multi-input multi-output urban solid waste incineration process model | |
CN108224446B (en) | A real-time optimization decision-making method for automatic combustion in waste incineration process | |
CN113837464A (en) | Load prediction method of cogeneration boiler based on CNN-LSTM-Attention | |
CN106934209A (en) | A kind of coal fired power plant flue gas oxygen content on-line prediction method | |
Ding et al. | MIMO modeling and multi-loop control based on neural network for municipal solid waste incineration | |
Tang et al. | A deep learning model for measuring oxygen content of boiler flue gas | |
CN110674459A (en) | GRU and Seq2Seq technology-based data driving type unit combination intelligent decision-making method | |
CN113947013A (en) | Boiler short-term NO based on hybrid deep neural network modelingxEmission prediction method | |
Zha et al. | An improved extreme learning machine with self-recurrent hidden layer | |
CN114527646B (en) | Multi-loop quasi-diagonal recursive neural network PID control method for municipal solid waste incineration process | |
CN115526433A (en) | Power plant reheat flue gas baffle operation prediction method based on integrated hybrid model | |
CN113779858A (en) | Combustion optimization method and system, storage medium and electronic equipment | |
CN117807872A (en) | Solid waste incineration multi-temperature synchronous prediction method capable of improving prediction precision | |
CN117592806A (en) | Cut-tobacco dryer outlet water content prediction method based on double-stage attention mechanism and time convolution network | |
Hu et al. | Research on the fault identification method of oil pumping unit based on residual network | |
CN113191078B (en) | Flue gas temperature forecasting method for primary combustion chamber in urban household garbage incineration process | |
CN115392125A (en) | Temperature prediction method for rotary cement kiln | |
CN114740713B (en) | A multi-objective optimization control method for wet flue gas desulfurization process | |
Tang et al. | Computer prediction model of heat consumption in thermal system of coal-fired power station based on big data analysis and information Sorting | |
CN115542740B (en) | Multivariable active disturbance rejection control method based on data driving for urban solid waste incineration process | |
CN118171502B (en) | Polyacrylonitrile precursor process simulation method based on Transformer | |
CN114297916B (en) | Temperature prediction method for municipal solid waste incinerator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |