CN114184890A - Multi-interval wave recording data transmission method, system, device and storage medium - Google Patents

Multi-interval wave recording data transmission method, system, device and storage medium Download PDF

Info

Publication number
CN114184890A
CN114184890A CN202111456229.2A CN202111456229A CN114184890A CN 114184890 A CN114184890 A CN 114184890A CN 202111456229 A CN202111456229 A CN 202111456229A CN 114184890 A CN114184890 A CN 114184890A
Authority
CN
China
Prior art keywords
data
differential
bit width
bits
interval
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111456229.2A
Other languages
Chinese (zh)
Inventor
张志远
张茂群
赵虎
薄晓东
蔡智慧
李静
高尚
安荣起
王森
赵含雪
郭思远
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
State Grid Corp of China SGCC
State Grid Beijing Electric Power Co Ltd
Original Assignee
State Grid Corp of China SGCC
State Grid Beijing Electric Power Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by State Grid Corp of China SGCC, State Grid Beijing Electric Power Co Ltd filed Critical State Grid Corp of China SGCC
Priority to CN202111456229.2A priority Critical patent/CN114184890A/en
Publication of CN114184890A publication Critical patent/CN114184890A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/08Locating faults in cables, transmission lines, or networks
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/08Locating faults in cables, transmission lines, or networks
    • G01R31/081Locating faults in cables, transmission lines, or networks according to type of conductors
    • G01R31/086Locating faults in cables, transmission lines, or networks according to type of conductors in power transmission or distribution networks, i.e. with interconnected conductors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/08Locating faults in cables, transmission lines, or networks
    • G01R31/088Aspects of digital computing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/40Bus networks

Abstract

The invention discloses a method, a system, a device and a storage medium for transmitting multi-interval wave recording data, wherein the method for transmitting the multi-interval wave recording data comprises the following steps: acquiring cycle sampling data of voltage and current to buffer 256 original sampling data with 16 bits; performing data compression on original sampling data by using a differential compression algorithm to obtain a differential compressed data frame, and transmitting the differential compressed data frame to a communication opposite terminal; decompressing in the opposite communication terminal to obtain the restored original sampling data. And extracting the first 2 original sampling data as a difference reference of the newly generated compressed file, and calculating bit width and difference value of the subsequent sampling data by taking the original data as the reference to finally generate a compressed data packet. When the generated compression packet improves the data compression capacity, the method is compatible with the existing power distribution terminal equipment adopting 12-bit sampling bits, and can shorten the transmission time of multi-interval wave recording data in the terminal equipment.

Description

Multi-interval wave recording data transmission method, system, device and storage medium
Technical Field
The invention belongs to the technical field of data transmission, and particularly relates to a multi-interval wave recording data transmission method, a system, a device and a storage medium.
Background
The town cable line is used as an important component of the power distribution network, and the investment and construction strength are gradually increased under the development trend of the smart power grid in recent years. On the basis of the characteristics of large scale and complex structure of the power distribution network, the urban power distribution network concentrates a large number of important and high-density power utilization loads, and the forms of looped networks and multi-interval lines are adopted to ensure the power supply reliability of the power distribution network and meet the high-density power utilization requirements. In order to improve the operating efficiency and the automation level of a power grid, a large number of intelligent terminal devices with wave recording functions, such as station terminals, cable remote transmission type fault indicators and the like, are put into operation on a cable line, and when a line fault, particularly a low-current grounding fault, occurs in a power distribution network, technical support is provided for quickly and accurately positioning a fault section.
Along with the improvement of the requirement for monitoring the transient characteristics of the operation of the power distribution network, the number of monitored line intervals is increased, the sampling data volume of intelligent terminal equipment is increased rapidly, and a stricter requirement is provided for the timeliness of the communication transmission of the wave recording file. In the terminal device, a large amount of fault recording data at intervals are usually transmitted in an uncompressed data stream form, for example, when the sampling frequency is increased from 4kHz to 12.8kHz, that is, when the sampling point of each cycle is increased from 80 points to 256 points, the fault recording data is increased by 3 times, the internal transmission consumption time of the device is correspondingly increased by multiple times, and the transmission of the recording file is possibly overtime, so that a fault section is misjudged, and even a failure condition occurs. Moreover, if the terminal device monitors that the recording data is collected and transmitted at each interval, the data transmission amount and time of the recording file inside the terminal device are inevitably increased.
Disclosure of Invention
The invention aims to provide a multi-interval wave recording data transmission method, a system, a device and a storage medium, which ensure the accuracy and the integrity of the fault wave recording data of a cable line, effectively reduce the transmitted data volume and obviously shorten the transmission time.
In order to achieve the purpose, the invention adopts the following technical scheme:
the invention provides a multi-interval wave recording data transmission method for a power distribution network cable line, which comprises the following steps:
acquiring cycle sampling data of voltage and current to buffer 256 original sampling data with 16 bits;
performing data compression on the original sampling data by using a differential compression algorithm to obtain a differential compressed data frame, and transmitting the differential compressed data frame to a communication opposite terminal;
decompressing in the opposite communication terminal to obtain the restored original sampling data.
Optionally, the cycle sample data is original sample data of 256 points with 16 bits.
Optionally, the 16-bit 256-point original sampling data is acquired through an analog-to-digital conversion chip ADC in the intelligent terminal device.
Optionally, the original sample data is subjected to data compression by using a differential compression algorithm to obtain compressed sample data, and the specific method includes:
constructing a differential compressed data frame memory, wherein the frame memory consists of original data Si, bit width marks H i and differential data D i;
extracting original sampling data S0, S1 from 256 16 bit original sampling data S0, S1, S2, …, S255;
calculating differential data D [2], …, D [255] from the original sample data S [0], S [1] by calculating an expression D [ i ] ═ (int16_ t) (S [ i ] -S [ i-1] + S [ i-2]) (i ═ 2,3,4, …,255), such that D [0] ═ D [1] ═ 0;
dividing the differential data D [0], D [1], D [2], …, D [255] into 16 groups, wherein the bit width of each group of differential data is B [0], B [1], B [2], …, B [15] bits;
determining a bit width flag of each set of differential data, wherein the bit width B [ i ] of each set of differential data is determined by a bit width flag H [ i ] (i ═ 0 … 15), where H [ i ] ═ 0,1,2, and 3 correspond to B [ i ] ═ 4,8,12, and 16, respectively (i ═ 0,1,2, …, and 15);
if the set of differential data all belong to the interval [ -8,7], the bit width B of the set of differential data is 4 bits, and the flag H is 0;
if the set of differential data all belong to the interval [ -128,127], the bit width B of the set of differential data is 8 bits, and the flag H is 1;
if the set of differential data all belong to the interval [ -2048,2047], the bit width B of the set of differential data is 12 bits, and the flag H is 2;
if the set of differential data all belong to the interval [ -32768,32767], and therefore the bit width B of the set of differential data is 16 bits, the flag H is 3;
and respectively filling the original data Si, the bit width mark H i and the differential data D i obtained in the steps into a frame memory, wherein the differential data D i are continuously stored in a small-end mode to obtain a differential compressed data frame.
Optionally, decompressing in the correspondent node to obtain the restored original sample data, and the specific manner is as follows:
extracting H0, H1, H2, …, H15 and S0, S1 from the differential compressed data frame;
for each tag H [0], H [1], H [2], …, H [15], its corresponding bit width B [0], B [1], B [2], …, B [15] is determined as follows:
if the flag H is 0, the bit width B is 4 bits;
if the flag H is 1, the bit width B is 8 bits;
if the flag H is 2, the bit width B is 12 bits;
if the flag H is 3, the bit width B is 16 bits.
Based on bit width B0, B1, B2, …, B15, taking out D0, D1, D2, …, D255 as "2 complement" signed number;
according to a calculation formula S [ i ] (int16_ t) (S [ i-1] + S [ i-1] -S [ i-2] + D [ i ]) (i ═ 2,3,4, …,255), original sampling data are calculated and decompressed.
Optionally, when the differential compressed data frame is transmitted to a communication peer, a data bus is used for data transmission.
Optionally, the communication peer is an upper computer.
In a second aspect of the present invention, a system for the method for transmitting multi-interval recording data is provided, including:
the sampling module is used for acquiring cycle sampling data of voltage and current to buffer the cycle sampling data into 256 original sampling data with 16 bits;
the compression module is used for carrying out data compression on the original sampling data by using a differential compression algorithm to obtain a differential compressed data frame, and transmitting the differential compressed data frame to a communication opposite terminal;
and the decompression module is used for decompressing in the communication opposite terminal to obtain the restored original sampling data.
In a third aspect of the present invention, there is provided a computer device, including a memory, a processor, and a computer program stored in the memory and executable on the processor, wherein the processor implements the multi-interval recording data transmission method when executing the computer program.
In a fourth aspect of the present invention, a computer-readable storage medium is provided, where a computer program is stored, and when the computer program is executed by a processor, the method for transmitting multi-interval recording data is implemented.
The invention has the following beneficial effects:
the multi-interval wave recording data transmission method provided by the embodiment of the invention adopts a compression algorithm of 16-bit sampling data and uses a differential compression principle to extract the first 2 original sampling data as a differential reference of a newly generated compressed file, and the subsequent sampling data takes the original data as a reference to calculate bit width and differential value, so as to finally generate a compressed data packet. When the generated compression packet improves the data compression capacity, the method is compatible with the existing power distribution terminal equipment adopting 12-bit sampling bits, and can shorten the transmission time of multi-interval wave recording data in the terminal equipment.
Drawings
The accompanying drawings, which are incorporated in and constitute a part of this application, illustrate embodiments of the invention and, together with the description, serve to explain the invention and not to limit the invention. In the drawings:
fig. 1 is a schematic flow chart of a multi-interval recording data transmission method according to an embodiment of the present invention.
FIG. 2 is a diagram illustrating a method for compressing data according to an embodiment of the present invention.
Fig. 3 is a schematic diagram of a data decompression method according to an embodiment of the present invention.
Detailed Description
The present invention will be described in detail below with reference to the embodiments with reference to the attached drawings. It should be noted that the embodiments and features of the embodiments in the present application may be combined with each other without conflict.
The following detailed description is exemplary in nature and is intended to provide further details of the invention. Unless otherwise defined, all technical terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this application belongs. The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of exemplary embodiments according to the invention.
The embodiment of the invention provides a method, a system, a device and a storage medium for transmitting multi-interval wave recording data of a power distribution network cable line, which support the decompression of 16-bit sampling data and solve the problem that the transmission time consumption in terminal equipment is longer due to the larger multi-interval wave recording data amount of the cable line, and possibly causes the misjudgment or the failure of a fault section. The accuracy and the integrity of the cable line fault recording data are ensured, the transmitted data volume is effectively reduced, and the transmission time is obviously shortened.
As shown in fig. 1, in a first aspect of the present invention, a method for transmitting multi-interval recording data for a cable line of a power distribution network is provided, which includes the following steps:
s1, acquiring cycle sampling data of voltage and current to buffer into 256 original sampling data with 16 bits; the cycle sampling data is original sampling data of 256 points with 16 bits, and the original sampling data of the 256 points with 16 bits is collected through an analog-to-digital conversion chip ADC in the intelligent terminal equipment. In a cable line, the intelligent terminal device is generally provided with a plurality of lines and a plurality of spaced acquisition modules, each acquisition module can independently acquire three-phase voltage and current of one line, and the acquisition modules are in communication interaction with the main control module through a data center line. The cyclic sampling data of the three-phase voltage or current of each line needs to be buffered to form 256 original sampling data with 16 bits for the next data processing.
And S2, performing data compression on the original sampling data by using a differential compression algorithm to obtain a differential compressed data frame, and transmitting the differential compressed data frame to a communication opposite terminal by using a data bus.
As an example, the differential compression algorithm inputs are 256 16-bit integers S0, S1, S2, …, S255, referred to as raw data. The differential compression algorithm outputs as a bit stream, called a frame. The length is 1088 bits at minimum, 4160 bits at maximum, and is a multiple of 32 bits. The storage bit order and byte order of a frame in memory are both "small-endings". The frame is formed by compactly connecting a plurality of integers, and the bit sequence of each integer is 'small end'.
As shown in fig. 2, a specific method for performing data compression on the original sample data by using a differential compression algorithm to obtain a differential compressed data frame is as follows:
s21, constructing a differential compressed data frame memory, wherein the frame memory consists of original data Si, bit width labels Hi and differential data Di; see table 1 for details;
Figure BDA0003386741270000041
Figure BDA0003386741270000051
s22, extracting original sampling data S0, S1 from 256 original sampling data S0, S1, S2, …, S255 with 16 bits;
s23, according to the original sampling data S [0], S [1], calculating the expression:
D[i]=(int16_t)(S[i]-S[i-1]-S[i-1]+S[i-2])(i=2,3,4,…,255)
calculating to obtain difference data D [2], …, D [255], and making D [0] ═ D [1] ═ 0;
s24, dividing the differential data D [0], D [1], D [2], … and D [255] into 16 groups, wherein the bit width of each group of differential data is B [0], B [1], B [2], … and B [15] bits;
s25, determining a bit width flag of each set of differential data, where the bit width B [ i ] of each set of differential data is determined by a bit width flag H [ i ] (i ═ 0 … 15), where H [ i ] ═ 0,1,2, and 3 correspond to B [ i ] ═ 4,8,12, and 16(i ═ 0,1,2, …, and 15), respectively;
(1) if the set of differential data all belong to the interval [ -8,7], the bit width B of the set of differential data is 4 bits, and the flag H is 0;
(2) if the set of differential data all belong to the interval [ -128,127], the bit width B of the set of differential data is 8 bits, and the flag H is 1;
(3) if the set of differential data all belong to the interval [ -2048,2047], the bit width B of the set of differential data is 12 bits, and the flag H is 2;
(4) if the set of differential data all belong to the interval [ -32768,32767], and therefore the bit width B of the set of differential data is 16 bits, the flag H is 3;
s26, filling the original data Si, bit width mark H i and difference data D i obtained in the above steps into frame memory, wherein the difference data D i is stored continuously in small end mode to obtain difference compressed data frame, when D i occupies less bit width, the data size of the whole compressed data frame will be less, playing the role of data compression.
And S3, decompressing in the opposite communication terminal to obtain the restored original sampling data.
Specifically, the generated original sampling data of three-phase voltage and current is collected through a sampling module of the intelligent terminal device, and after differential compression, a differential compression data frame is generated. After the data frames are transmitted to the opposite communication terminal, the opposite terminal needs to correspondingly perform decompression algorithm processing. The input frames to the decompression algorithm must be the compressed data frames generated in step 3, and the decompression algorithm outputs the restored original data S [0], S [1], S [2], …, S [255 ].
As shown in fig. 3, the specific way of decompression is as follows:
s31, extracting H0, H1, H2, …, H15, S0 and S1 from the differential compressed data frame;
s32, determining the bit width B [0], B [1], B [2], …, B [15] corresponding to each mark H [0], H [1], H [2], …, H [15] according to the following method:
(1) if the flag H is 0, the bit width B is 4 bits;
(2) if the flag H is 1, the bit width B is 8 bits;
(3) if the flag H is 2, the bit width B is 12 bits;
(4) if the flag H is 3, the bit width B is 16 bits.
S33, according to bit width B0, B1, B2, …, B15, taking out D0, D1, D2, …, D255 as '2 complement' signed number;
and S34, calculating to obtain original sampling data according to a calculation formula S [ i ] (int16_ t) (S [ i-1] + S [ i-1] -S [ i-2] + D [ i ]) (i-2, 3,4, … and 255), and realizing decompression.
In a second aspect of the present invention, a system for the method for transmitting multi-interval recording data is provided, including:
the sampling module is used for acquiring cycle sampling data of voltage and current to buffer the cycle sampling data into 256 original sampling data with 16 bits;
the compression module is used for carrying out data compression on the original sampling data by using a differential compression algorithm to obtain a differential compressed data frame, and transmitting the differential compressed data frame to a communication opposite terminal;
and the decompression module is used for decompressing in the communication opposite terminal to obtain the restored original sampling data.
In a third aspect of the present invention, there is provided a computer device, including a memory, a processor, and a computer program stored in the memory and executable on the processor, wherein the processor implements the multi-interval recording data transmission method when executing the computer program.
In a fourth aspect of the present invention, a computer-readable storage medium is provided, where a computer program is stored, and when the computer program is executed by a processor, the method for transmitting multi-interval recording data is implemented.
As will be appreciated by one skilled in the art, embodiments of the present application may be provided as a method, system, or computer program product. Accordingly, the present application may take the form of an entirely hardware embodiment, an entirely software embodiment or an embodiment combining software and hardware aspects. Furthermore, the present application may take the form of a computer program product embodied on one or more computer-usable storage media (including, but not limited to, disk storage, CD-ROM, optical storage, and the like) having computer-usable program code embodied therein.
The present application is described with reference to flowchart illustrations and/or block diagrams of methods, apparatus (systems), and computer program products according to embodiments of the application. It will be understood that each flow and/or block of the flow diagrams and/or block diagrams, and combinations of flows and/or blocks in the flow diagrams and/or block diagrams, can be implemented by computer program instructions. These computer program instructions may be provided to a processor of a general purpose computer, special purpose computer, embedded processor, or other programmable data processing apparatus to produce a machine, such that the instructions, which execute via the processor of the computer or other programmable data processing apparatus, create means for implementing the functions specified in the flowchart flow or flows and/or block diagram block or blocks.
These computer program instructions may also be stored in a computer-readable memory that can direct a computer or other programmable data processing apparatus to function in a particular manner, such that the instructions stored in the computer-readable memory produce an article of manufacture including instruction means which implement the function specified in the flowchart flow or flows and/or block diagram block or blocks.
These computer program instructions may also be loaded onto a computer or other programmable data processing apparatus to cause a series of operational steps to be performed on the computer or other programmable apparatus to produce a computer implemented process such that the instructions which execute on the computer or other programmable apparatus provide steps for implementing the functions specified in the flowchart flow or flows and/or block diagram block or blocks.
It will be appreciated by those skilled in the art that the invention may be embodied in other specific forms without departing from the spirit or essential characteristics thereof. The embodiments disclosed above are therefore to be considered in all respects as illustrative and not restrictive. All changes which come within the scope of or equivalence to the invention are intended to be embraced therein.

Claims (10)

1. A multi-interval wave recording data transmission method for a power distribution network cable line is characterized by comprising the following steps:
acquiring cycle sampling data of voltage and current to buffer 256 original sampling data with 16 bits;
performing data compression on the original sampling data by using a differential compression algorithm to obtain a differential compressed data frame, and transmitting the differential compressed data frame to a communication opposite terminal;
decompressing in the opposite communication terminal to obtain the restored original sampling data.
2. The method for transmitting multi-interval recording data of a power distribution network cable line according to claim 1, wherein the cycle sampling data is 16-bit 256-point original sampling data.
3. The method for transmitting the multi-interval wave recording data of the power distribution network cable line according to claim 2, wherein the 16-bit 256-point original sampling data is acquired through an analog-to-digital conversion chip ADC in the intelligent terminal equipment.
4. The power distribution network cable line multi-interval wave recording data transmission method according to claim 1, wherein the original sampling data is subjected to data compression by using a differential compression algorithm to obtain compressed sampling data, and the specific method is as follows:
constructing a differential compressed data frame memory, wherein the frame memory consists of original data Si, bit width marks H i and differential data D i;
extracting original sampling data S0, S1 from 256 16 bit original sampling data S0, S1, S2, …, S255;
calculating differential data D [2], …, D [255] from the original sample data S [0], S [1] by calculating an expression D [ i ] ═ (int16_ t) (S [ i ] -S [ i-1] + S [ i-2]) (i ═ 2,3,4, …,255), such that D [0] ═ D [1] ═ 0;
dividing the differential data D [0], D [1], D [2], …, D [255] into 16 groups, wherein the bit width of each group of differential data is B [0], B [1], B [2], …, B [15] bits;
determining a bit width flag of each set of differential data, wherein the bit width B [ i ] of each set of differential data is determined by a bit width flag H [ i ] (i ═ 0 … 15), where H [ i ] ═ 0,1,2, and 3 correspond to B [ i ] ═ 4,8,12, and 16, respectively (i ═ 0,1,2, …, and 15);
if the set of differential data all belong to the interval [ -8,7], the bit width B of the set of differential data is 4 bits, and the flag H is 0;
if the set of differential data all belong to the interval [ -128,127], the bit width B of the set of differential data is 8 bits, and the flag H is 1;
if the set of differential data all belong to the interval [ -2048,2047], the bit width B of the set of differential data is 12 bits, and the flag H is 2;
if the set of differential data all belong to the interval [ -32768,32767], and therefore the bit width B of the set of differential data is 16 bits, the flag H is 3;
and respectively filling the original data Si, the bit width mark H i and the differential data D i obtained in the steps into a frame memory, wherein the differential data D i are continuously stored in a small-end mode to obtain a differential compressed data frame.
5. The power distribution network cable line multi-interval wave recording data transmission method according to claim 1, wherein decompression is performed in a communication opposite terminal to obtain restored original sampling data, and the specific manner is as follows:
extracting H0, H1, H2, …, H15 and S0, S1 from the differential compressed data frame;
for each tag H [0], H [1], H [2], …, H [15], its corresponding bit width B [0], B [1], B [2], …, B [15] is determined as follows:
if the flag H is 0, the bit width B is 4 bits;
if the flag H is 1, the bit width B is 8 bits;
if the flag H is 2, the bit width B is 12 bits;
if the flag H is 3, the bit width B is 16 bits;
based on bit width B0, B1, B2, …, B15, taking out D0, D1, D2, …, D255 as "2 complement" signed number;
according to a calculation formula S [ i ] (int16_ t) (S [ i-1] + S [ i-1] -S [ i-2] + D [ i ]) (i ═ 2,3,4, …,255), original sampling data are calculated and decompressed.
6. The method for transmitting the multi-interval wave recording data of the power distribution network cable line according to claim 1, wherein when the differential compressed data frame is transmitted to a communication opposite terminal, a data bus is adopted for data transmission.
7. The method for transmitting the multi-interval wave recording data of the power distribution network cable line according to claim 1, wherein the opposite communication terminal is an upper computer.
8. A system for the method of transmitting multi-interval recording data according to claim 1, comprising:
the sampling module is used for acquiring cycle sampling data of voltage and current to buffer the cycle sampling data into 256 original sampling data with 16 bits;
the compression module is used for carrying out data compression on the original sampling data by using a differential compression algorithm to obtain a differential compressed data frame, and transmitting the differential compressed data frame to a communication opposite terminal;
and the decompression module is used for decompressing in the communication opposite terminal to obtain the restored original sampling data.
9. A computer device comprising a memory, a processor and a computer program stored in the memory and executable on the processor, wherein the processor implements the method of multi-interval recording data transmission according to any one of claims 1 to 7 when executing the computer program.
10. A computer-readable storage medium, in which a computer program is stored, which, when being executed by a processor, implements the method for transmitting multi-interval recording data according to any one of claims 1 to 7.
CN202111456229.2A 2021-12-01 2021-12-01 Multi-interval wave recording data transmission method, system, device and storage medium Pending CN114184890A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111456229.2A CN114184890A (en) 2021-12-01 2021-12-01 Multi-interval wave recording data transmission method, system, device and storage medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111456229.2A CN114184890A (en) 2021-12-01 2021-12-01 Multi-interval wave recording data transmission method, system, device and storage medium

Publications (1)

Publication Number Publication Date
CN114184890A true CN114184890A (en) 2022-03-15

Family

ID=80541963

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111456229.2A Pending CN114184890A (en) 2021-12-01 2021-12-01 Multi-interval wave recording data transmission method, system, device and storage medium

Country Status (1)

Country Link
CN (1) CN114184890A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115940960A (en) * 2023-03-10 2023-04-07 湖南大学 Lossless compression method, system and medium for waveform data

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080215264A1 (en) * 2005-01-27 2008-09-04 Electro Industries/Gauge Tech. High speed digital transient waveform detection system and method for use in an intelligent device
US20130004091A1 (en) * 2011-06-28 2013-01-03 Nokia Corporation Methods, apparatuses and computer program products for utilizing wireless links for communication of compressed data
CN107390023A (en) * 2017-06-02 2017-11-24 中国电力科学研究院 A kind of power network electrical quantity broadband multi-frequency measurement apparatus and its implementation
CN112751567A (en) * 2019-10-31 2021-05-04 北京映翰通网络技术股份有限公司 Compression method of transient wave recording interactive data of power system
CN112988646A (en) * 2021-02-08 2021-06-18 北京博电新力电气股份有限公司 Data acquisition method and device and data acquisition card

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080215264A1 (en) * 2005-01-27 2008-09-04 Electro Industries/Gauge Tech. High speed digital transient waveform detection system and method for use in an intelligent device
US20130004091A1 (en) * 2011-06-28 2013-01-03 Nokia Corporation Methods, apparatuses and computer program products for utilizing wireless links for communication of compressed data
CN107390023A (en) * 2017-06-02 2017-11-24 中国电力科学研究院 A kind of power network electrical quantity broadband multi-frequency measurement apparatus and its implementation
CN112751567A (en) * 2019-10-31 2021-05-04 北京映翰通网络技术股份有限公司 Compression method of transient wave recording interactive data of power system
CN112988646A (en) * 2021-02-08 2021-06-18 北京博电新力电气股份有限公司 Data acquisition method and device and data acquisition card

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
劳日智等: "基于现场总线的电子互感器数字化接口研究与设计", 《高压电器》 *
张蕊等: "基于GHM多小波的电力系统故障录波数据压缩算法", 《电测与仪表》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115940960A (en) * 2023-03-10 2023-04-07 湖南大学 Lossless compression method, system and medium for waveform data

Similar Documents

Publication Publication Date Title
CN107102220A (en) Recorder data processing method and processing device
CN109255429B (en) Parameter decompression method for sparse neural network model
CN105530013A (en) Waveform data compression method and system
CN114184890A (en) Multi-interval wave recording data transmission method, system, device and storage medium
CN114138861A (en) Multi-source heterogeneous data processing method, device and system
CN109039342A (en) A kind of compression method, system and the decompression method of force data, system out
CN110417834B (en) Multi-substation data section transmission method and system with time scale measurement
CN104579358B (en) A kind of fault recorder data compression method
CN102394657B (en) Real-time power quality data compression algorithm
CN111625769A (en) PMU-SCADA data time synchronization and fusion method based on Lagrange interpolation and cubic exponential smoothing
CN111447229B (en) Large-scale data acquisition method and device based on compressed sensing theory
CN106557550B (en) Method and device for realizing rapid storage, retrieval and completion of self-description fixed-point records of power distribution terminal
CN116245260A (en) Optimization method for deploying 5G base station based on substation resources
CN201898627U (en) Digital broadband radio remote unit based on data compression
CN112751567B (en) Compression method for transient wave recording interaction data of power system
CN208850035U (en) A kind of voice amplification processing circuit
CN110829598B (en) Thing networking power conversion equipment
CN109309682B (en) FT 3-IEC 61850-9-2 protocol conversion method and system for digital metering
CN115051714A (en) Waveform data compression method based on FFT (fast Fourier transform)
CN114143628B (en) Multi-rate digital acquisition device and method
CN209911826U (en) Oil field beam-pumping unit control system
CN111371460B (en) High-low frequency matching data compression method suitable for intelligent ammeter
CN117176513B (en) Internet of things data acquisition gateway equipment based on 5G-R technology
CN113805094B (en) Method, device, equipment and medium for evaluating short circuit ratio of high-voltage direct-current transmission system
CN116127880A (en) Intelligent substation SCD automatic configuration system and method for interval

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20220315