CN114184536A - 一种铁素体热老化调幅分解状况的分析方法 - Google Patents

一种铁素体热老化调幅分解状况的分析方法 Download PDF

Info

Publication number
CN114184536A
CN114184536A CN202111299023.3A CN202111299023A CN114184536A CN 114184536 A CN114184536 A CN 114184536A CN 202111299023 A CN202111299023 A CN 202111299023A CN 114184536 A CN114184536 A CN 114184536A
Authority
CN
China
Prior art keywords
stainless steel
ferritic stainless
heat flow
heat
ferrite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202111299023.3A
Other languages
English (en)
Other versions
CN114184536B (zh
Inventor
刘向兵
贾文清
范敏郁
徐超亮
李远飞
钱王洁
全琪炜
尹建
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China General Nuclear Power Corp
CGN Power Co Ltd
Suzhou Nuclear Power Research Institute Co Ltd
Original Assignee
China General Nuclear Power Corp
CGN Power Co Ltd
Suzhou Nuclear Power Research Institute Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China General Nuclear Power Corp, CGN Power Co Ltd, Suzhou Nuclear Power Research Institute Co Ltd filed Critical China General Nuclear Power Corp
Priority to CN202111299023.3A priority Critical patent/CN114184536B/zh
Publication of CN114184536A publication Critical patent/CN114184536A/zh
Application granted granted Critical
Publication of CN114184536B publication Critical patent/CN114184536B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N17/00Investigating resistance of materials to the weather, to corrosion, or to light
    • G01N17/006Investigating resistance of materials to the weather, to corrosion, or to light of metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Ecology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Environmental Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Investigating And Analyzing Materials By Characteristic Methods (AREA)

Abstract

本发明公开一种铁素体热老化调幅分解状况的分析方法,其特征在于,包括如下步骤:利用差式扫描量热分析方法分别获得原始态铁素体不锈钢的热流‑温度曲线和热老化铁素体不锈钢的热流‑温度曲线;根据两个热流‑温度曲线得到修正后的铁素体不锈钢的热流‑温度曲线,并得到热老化铁素体不锈钢的特征峰;对修正后的铁素体不锈钢的热流‑温度曲线中的特征峰进行积分处理,并取其绝对值,得到特征焓H;根据铁素体不锈钢材料中铬元素的含量计算获得该铬元素含量对应的铁素体不锈钢热老化后调幅分解的标准焓Hs;采用公式
Figure DDA0003337734800000011
计算获得热老化后铁素体不锈钢中的铁素体调幅分解程度RSD。本发明的铁素体热老化调幅分解状况的分析方法,测试方便,测试数据精度高,重复性好。

Description

一种铁素体热老化调幅分解状况的分析方法
技术领域
本发明属于金属材料老化检测技术领域,具体涉及一种基于差式扫描量热分析方法检测铁素体热老化调幅分解状况的能量分析方法。
背景技术
由于以铬为主要添加元素的铁素体合金具有强度高、耐腐蚀性好、抗氧化能力强等优点,广泛应用于核电领域。含铁素体的Z3CN20.09M/CF3/CF8双相不锈钢广泛应用于压水堆核电站的主管道材料。以FeCrAl为主要组成元素的铁素体合金抗氧化性能优异,被视为新型ATF包壳材料研发的关键路线之一。由于在强度和抗辐照性能方面的优势,铁素体-马氏体不锈钢可用于第四代核电反应堆以及聚变反应堆的关键结构材料。作为重要结构部件,这些材料均需在高温环境下长期服役。
然而,在这类铁素体合金中,高铬元素含量的铁素体在300-500℃温度下长期服役过程中,会发生严重的热老化损伤问题。微观结构上,调幅分解造成铬元素局部富集并生成α’相,从而导致材料宏观力学性能上发生显著劣化,具体表现为:材料硬度和脆性升高、韧性降低、冲击性能降低,从而造成部件脆性断裂风险增大,安全风险升高,影响核电站的安全稳定运行。因此,针对铁素体热老化调幅分解状况的测量和评估十分必要。
对于热老化调幅分解状况,三维原子探针可以直接观测材料的微观元素富集状态,但该方法测试门槛高、成本大、耗时长,难以应用于实际工程情况下。而常规力学测试方法需要采用完整块体样品,所需样品多,测试误差大。
发明内容
有鉴于此,为了克服现有技术的缺陷,本发明的目的是提供一种基于热分析方法的铁素体合金热老化调幅分解状况的检测方法,能够实现铁素体受热老化状况的准确、快速检测和评估。
为了达到上述目的,本发明采用以下的技术方案:
一种铁素体热老化调幅分解状况的分析方法,包括如下步骤:利用差式扫描量热分析方法分别获得原始态铁素体不锈钢的热流-温度曲线和热老化铁素体不锈钢的热流-温度曲线;
根据两个热流-温度曲线得到修正后的铁素体不锈钢的热流-温度曲线,并得到热老化铁素体不锈钢的特征峰;
对修正后的铁素体不锈钢的热流-温度曲线中的特征峰进行积分处理,并取其绝对值,得到特征焓H;
根据铁素体不锈钢材料中铬元素的含量计算获得该铬元素含量对应的铁素体不锈钢热老化后调幅分解的标准焓Hs
采用公式
Figure BDA0003337734780000021
计算获得热老化后铁素体不锈钢中的铁素体调幅分解程度RSD
通过差式扫描量热分析方法,可以利用微小样品实现对铁素体调幅分解的准确、快速测量,相比于常规测量方法具有显著优势。
根据本发明的一些优选实施方面,所述原始态铁素体不锈钢的热流-温度曲线通过如下步骤得到:
将初始状态的铁素体不锈钢材料进行固溶处理后,除掉表面氧化层,取屑样进行差式扫描量热分析,获得原始态铁素体不锈钢的热流-温度曲线。
根据本发明的一些优选实施方面,所述固溶处理包括如下步骤:
若不锈钢中铬元素质量含量≤10%,则固溶热处理的温度为650-750℃,时间不少于20h;
若不锈钢中铬元素质量含量>10%,则固溶热处理的温度为1050℃-1150℃,时间为1-3h,优选为2h,并在固溶处理后采用水淬处理,时间不少于15min,水温低于45℃。
根据不锈钢中铬元素质量含量将固溶处理分为上述两种形式,能够更好地得到合金元素均匀分布的铁素体组织。
根据本发明的一些优选实施方面,所述热老化铁素体不锈钢的热流-温度曲线通过如下步骤得到:
将固溶处理后的铁素体不锈钢材料进行高温热时效处理,除掉表面氧化层,取屑样进行差式扫描量热分析,获得热老化铁素体不锈钢的热流-温度曲线。
根据本发明的一些优选实施方面,所述热时效处理温度为350-500℃。
根据本发明的一些优选实施方面,所述差式扫描量热分析测试温度区间为室温至700℃,升温速率为8-20℃/s。根据实验结果得到热老化铁素体不锈钢的特征峰温度范围为450-700℃,所以差式扫描量热分析的测试温度需要包含至700℃。
根据本发明的一些优选实施方面,所述修正后的铁素体不锈钢的热流-温度曲线通过如下步骤得到:
将所述热老化铁素体不锈钢的热流-温度曲线扣除原始态铁素体不锈钢对所述原始态铁素体不锈钢的热流-温度曲线的贡献并扣除基线,得到修正后的铁素体不锈钢的热流-温度曲线;通过所述修正后的铁素体不锈钢的热流-温度曲线获得热老化铁素体不锈钢的特征峰。
根据本发明的一些优选实施方面,所述标准焓Hs采用公式Hs=a+b×P计算获得;其中a、b为系数,P为原始态铁素体不锈钢材料中铬元素的质量含量。
根据本发明的一些优选实施方面,系数a、b为对多组铬元素质量含量在10%-40%之间的铁素体合金材料在400℃热时效5000h状况下的实验结果进行拟合后得到。
根据本发明的一些优选实施方面,所述铁素体不锈钢材料中铬元素质量含量P为利用化学分析法或电感耦合等离子体发射光谱法得到。
在本发明的一些实施例中,铁素体热老化调幅分解状况的能量分析方法包括如下步骤:
将初始状态的铁素体不锈钢材料进行固溶处理后,除掉表面氧化层,取屑样进行差式扫描量热分析,获得原始态铁素体不锈钢的热流-温度曲线;
将固溶处理后的铁素体不锈钢材料进行高温热时效处理,除掉表面氧化层,取屑样进行差式扫描量热分析,获得热老化铁素体不锈钢的热流-温度曲线;
将所述热老化铁素体不锈钢的热流-温度曲线扣除原始态铁素体不锈钢对所述原始态铁素体不锈钢的热流-温度曲线的贡献并扣除基线,得到修正后的铁素体不锈钢的热流-温度曲线;通过所述修正后的铁素体不锈钢的热流-温度曲线获得热老化铁素体不锈钢的特征峰;
对修正后的铁素体不锈钢的热流-温度曲线中的特征峰进行积分处理,并取其绝对值,得到特征焓H;
采用式Hs=a+b×P计算获得该铬元素含量铁素体不锈钢热老化后调幅分解的标准焓Hs;其中a、b为系数,P为铁素体不锈钢材料中铬元素的含量;
采用式
Figure BDA0003337734780000031
计算获得热老化后铁素体不锈钢中的铁素体调幅分解程度RSD
由于采用了上述技术方案,与现有技术相比,本发明的有益之处在于:本发明的铁素体热老化调幅分解状况的分析方法,通过差式扫描量热分析方法,从能量学角度给出定量分析,成本低、测试方便、所需测试样品微小、测试数据精度高、重复性好,相比于常规测量方法具有显著优势,对实际科学研究与样品分析具有很强的实用性,可有效解决现有技术中由于样品磁性大、调幅分解尺度小等问题导致的调幅分解程度测量困难的缺陷。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
附图1为本发明实施例中未经热老化的原始态铁素体不锈钢的第一H-T曲线。
附图2为本发明实施例中经400℃高温1000h热时效处理的热老化铁素体不锈钢的第二H-T曲线。
附图3为本发明实施例中经400℃高温1000h热时效处理的热老化铁素体不锈钢的第二H-T曲线扣除未经热老化原始态铁素体不锈钢的第一H-T曲线的贡献并扣除基线之后的结果,即第三H-T曲线。
具体实施方式
为了使本技术领域的人员更好地理解本发明的技术方案,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分的实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本发明保护的范围。
本实施例中的铁素体热老化调幅分解状况的能量分析方法,包括如下步骤:
(1)利用化学分析法或电感耦合等离子体发射光谱法等方法获取铁素体不锈钢材料中铬元素的质量含量P。即铬元素含量P为质量百分比。
(2)将初始状态的铁素体不锈钢加工成块状样品,置于高温环境中进行固溶处理。
为保证合金中的铁素体含量及合金元素分布均匀性,高温环境中的固溶处理包括如下两种情况:
若不锈钢中Cr元素含量≤10wt.%,则固溶热处理温度为700℃,时间不少于20小时;
若不锈钢中Cr元素含量>10wt.%,则固溶热处理温度在1050℃-1150℃之间,时间为2h,固溶处理后采用水淬处理,时间不少于15min,水温低于45℃。
(3)将步骤(2)得到的固溶处理后的材料除掉表面氧化层,取屑样,利用差式扫描量热方法测量获得原始态铁素体不锈钢的热流-温度曲线,定义为第一H-T曲线。
(4)对步骤(2)得到的固溶处理后的材料置于热处理炉内进行高温热时效处理。热时效处理的温度在350-500℃范围内。
(5)步骤(4)得到的热时效处理后的材料除掉表面氧化层,取屑样,利用差式扫描量热方法测量获得热老化铁素体不锈钢的热流-温度曲线,定义为第二H-T曲线。
上述差式扫描量热分析测试时的屑样质量为4-10mg,温度区间为室温至700℃,升温速率为8-20℃/s。根据实验结果得到热老化铁素体不锈钢的特征峰温度范围为450-700℃,所以差式扫描量热分析的测试温度需要包含至700℃。
(6)将所述第二H-T曲线扣除未热老化的原始态不锈钢对所述第一H-T曲线的贡献并扣除基线得到修正后的铁素体不锈钢的热流-温度曲线,定义为第三H-T曲线,通过所述第三H-T曲线获得热老化铁素体不锈钢的特征峰。
(7)对步骤(6)得到的第三H-T曲线中的特征峰进行积分处理,并取其绝对值,得到特征焓H。
(8)采用式Hs=a+b×P计算获得该铬元素含量铁素体不锈钢热老化后调幅分解的标准焓Hs
其中,基于大量铬元素含量在10wt.%-40wt.%之间的铁素体合金材料在400℃热时效5000小时状况下的实验结果,拟合得到系数a、b,分别为:a=-2.09,b=23.07。
(9)采用式
Figure BDA0003337734780000051
计算获得热老化后铁素体不锈钢中的铁素体调幅分解程度RSD
实施例:
本实施例对443铁素体不锈钢经过高温热老化后的调幅分解状况进行测定,具体步骤如下:
(1)利用电感耦合等离子体发射光谱法测量得到铁素体不锈钢材料中铬元素质量含量为P=20%。
(2)将初始状态的铁素体不锈钢加工成边长为15mm的块状样品,加工完成后在1100℃高温环境中进行固溶处理2小时后,将其置于25℃常温水环境进行20min水淬处理。
(3)将步骤(2)得到的材料除掉表面氧化层,取样制作成厚度为100um的薄片,切取5mg片状样品,利用差式扫描量热方法测量获得原始态铁素体不锈钢的热流-温度曲线,定义为第一H-T曲线,参见附图1所示。
(4)对步骤(2)得到的材料置于热处理炉内进行400℃高温1000小时热时效处理。
(5)将步骤(2)得到的材料除掉表面氧化层,取样制作成厚度为100um的薄片,切取5mg片状样品,利用差式扫描量热方法测量获得原始态铁素体不锈钢的热流-温度曲线,定义为第二H-T曲线,参见附图2所示。
(6)将所述第二H-T曲线扣除未热老化不锈钢对所述第一H-T曲线的贡献并扣除基线得到第三H-T曲线,所述第三H-T曲线获得热老化铁素体不锈钢的特征峰位于450℃-700℃之间,参见附图3所示。
(7)对步骤(6)得到的第三H-T曲线中的450℃-700℃特征峰进行积分处理,并取其绝对值,得到特征焓H=3.46。
(8)采用式Hs=-2.09+23.07×P计算获得该铬元素含量铁素体不锈钢热老化后调幅分解的标准焓Hs=-2.09+23.07×0.2=2.52。
(10)采用式
Figure BDA0003337734780000061
计算获得热老化后铁素体不锈钢中的铁素体调幅分解程度
Figure BDA0003337734780000062
由于铁素体不锈钢在高温环境下长期服役过程会发生由调幅分解导致的严重热老化损伤问题。但现有的常规分析方法难以对热老化调幅分解状况做出准确判断。本发明的基于热分析方法的铁素体合金热老化调幅分解状况的检测方法,通过差式扫描量热分析方法,从能量学角度给出定量分析,成本低,测试方便,所需测试样品微小,测试数据精度高,重复性好,相比于常规测量方法具有显著优势,对实际科学研究与样品分析具有很强的实用性,可有效解决现有技术中由于样品磁性大、调幅分解尺度小等问题导致的调幅分解程度测量困难的缺陷。
上述实施例只为说明本发明的技术构思及特点,其目的在于让熟悉此项技术的人士能够了解本发明的内容并据以实施,并不能以此限制本发明的保护范围,凡根据本发明精神实质所作的等效变化或修饰,都应涵盖在本发明的保护范围之内。

Claims (10)

1.一种铁素体热老化调幅分解状况的分析方法,其特征在于,包括如下步骤:利用差式扫描量热分析方法分别获得原始态铁素体不锈钢的热流-温度曲线和热老化铁素体不锈钢的热流-温度曲线;
根据两个热流-温度曲线得到修正后的铁素体不锈钢的热流-温度曲线,并得到热老化铁素体不锈钢的特征峰;
对修正后的铁素体不锈钢的热流-温度曲线中的特征峰进行积分处理,并取绝对值,得到特征焓H;
根据铁素体不锈钢材料中铬元素的含量计算获得该铬元素含量对应的铁素体不锈钢热老化后调幅分解的标准焓Hs
采用公式
Figure FDA0003337734770000011
计算获得热老化后铁素体不锈钢中的铁素体调幅分解程度RSD
2.根据权利要求1所述的分析方法,其特征在于,所述原始态铁素体不锈钢的热流-温度曲线通过如下步骤得到:
将初始状态的铁素体不锈钢材料进行固溶处理后,除掉表面氧化层,取屑样进行差式扫描量热分析,获得原始态铁素体不锈钢的热流-温度曲线。
3.根据权利要求2所述的分析方法,其特征在于,所述固溶处理包括如下步骤:
若不锈钢中铬元素质量含量≤10%,则固溶热处理的温度为650-750℃,时间不少于20h;
若不锈钢中铬元素质量含量>10%,则固溶热处理的温度为1050℃-1150℃,时间为1-3h,并在固溶处理后采用水淬处理,时间不少于15min,水温低于45℃。
4.根据权利要求2所述的分析方法,其特征在于,所述热老化铁素体不锈钢的热流-温度曲线通过如下步骤得到:
将固溶处理后的铁素体不锈钢材料进行高温热时效处理,除掉表面氧化层,取屑样进行差式扫描量热分析,获得热老化铁素体不锈钢的热流-温度曲线。
5.根据权利要求4所述的分析方法,其特征在于,所述热时效处理温度为350-500℃。
6.根据权利要求4所述的分析方法,其特征在于,所述差式扫描量热分析测试温度区间为室温至700℃,升温速率为8-20℃/s。
7.根据权利要求4所述的分析方法,其特征在于,所述修正后的铁素体不锈钢的热流-温度曲线通过如下步骤得到:
将所述热老化铁素体不锈钢的热流-温度曲线扣除原始态铁素体不锈钢对所述原始态铁素体不锈钢的热流-温度曲线的贡献并扣除基线,得到修正后的铁素体不锈钢的热流-温度曲线。
8.根据权利要求1所述的分析方法,其特征在于,所述标准焓Hs采用公式Hs=a+b×P计算获得;其中a、b为系数,P为原始态铁素体不锈钢材料中铬元素的质量含量。
9.根据权利要求8所述的分析方法,其特征在于,系数a、b为对多组不同铬元素质量含量在10%-40%之间的铁素体合金材料在400℃热时效5000h状况下的实验结果进行拟合后得到。
10.根据权利要求8所述的分析方法,其特征在于,所述铁素体不锈钢材料中铬元素质量含量P为利用化学分析法或电感耦合等离子体发射光谱法得到。
CN202111299023.3A 2021-11-04 2021-11-04 一种铁素体热老化调幅分解状况的分析方法 Active CN114184536B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111299023.3A CN114184536B (zh) 2021-11-04 2021-11-04 一种铁素体热老化调幅分解状况的分析方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111299023.3A CN114184536B (zh) 2021-11-04 2021-11-04 一种铁素体热老化调幅分解状况的分析方法

Publications (2)

Publication Number Publication Date
CN114184536A true CN114184536A (zh) 2022-03-15
CN114184536B CN114184536B (zh) 2023-05-30

Family

ID=80540634

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111299023.3A Active CN114184536B (zh) 2021-11-04 2021-11-04 一种铁素体热老化调幅分解状况的分析方法

Country Status (1)

Country Link
CN (1) CN114184536B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020033210A1 (en) * 2000-01-11 2002-03-21 Nobuyuki Fujitsuna High chromium ferritic heat resisting steel and method of heat treatment for the same
CN101323901A (zh) * 2007-06-12 2008-12-17 上海重型机器锻件厂 奥氏体不锈钢黑皮锻件锻后固溶处理工艺
CN102822377A (zh) * 2010-11-01 2012-12-12 日本碍子株式会社 热处理方法和热处理装置
CN110940628A (zh) * 2019-12-18 2020-03-31 苏州热工研究院有限公司 一种电化学原位微振磨损试验系统及其使用方法
CN111398333A (zh) * 2020-04-13 2020-07-10 中国科学院金属研究所 一种测量单晶高温合金初熔温度的差热分析方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020033210A1 (en) * 2000-01-11 2002-03-21 Nobuyuki Fujitsuna High chromium ferritic heat resisting steel and method of heat treatment for the same
CN101323901A (zh) * 2007-06-12 2008-12-17 上海重型机器锻件厂 奥氏体不锈钢黑皮锻件锻后固溶处理工艺
CN102822377A (zh) * 2010-11-01 2012-12-12 日本碍子株式会社 热处理方法和热处理装置
CN110940628A (zh) * 2019-12-18 2020-03-31 苏州热工研究院有限公司 一种电化学原位微振磨损试验系统及其使用方法
CN111398333A (zh) * 2020-04-13 2020-07-10 中国科学院金属研究所 一种测量单晶高温合金初熔温度的差热分析方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LAURENT COUTURIER ET AL: "A comparative study of Fe-Cr unmixing using differential scanning calorimetry and small-angle scattering", MATERIALS CHARACTERIZATION *
YUEFENG CHEN ET AL: "Evaluation of pitting corrosion in duplex stainless steel Fe20Cr9Ni for nuclear power application", ACTA MATERIALIA *

Also Published As

Publication number Publication date
CN114184536B (zh) 2023-05-30

Similar Documents

Publication Publication Date Title
US9939359B2 (en) Method of measurement and determination on fracture toughness of structural materials at high temperature
Manahan et al. Miniaturized disk bend test technique development and application
US11788951B2 (en) Testing method to evaluate cold forming effects on carbon steel susceptibility to hydrogen induced cracking (HIC)
US20230251181A1 (en) Development of Control Samples to Enhance the Accuracy of HIC Testing
Penttilä et al. Estimation of kinetic parameters of the corrosion layer constituents on steels in supercritical water coolant conditions
Saltzstein et al. Visualization of the high-burnup spent fuel rod phase 1 test plan: $ btechnical memo
Sun et al. A comparative study on potentiodynamic and potentiostatic critical pitting temperature of austenitic stainless steels
Sun et al. Application of potentiostatic pulse technique and statistical analysis in evaluating pitting resistance of aged 317L stainless steel
CN114184536B (zh) 一种铁素体热老化调幅分解状况的分析方法
CN110174460B (zh) 一种奥氏体不锈钢辐照加速应力腐蚀开裂敏感性的磁性评估方法
JP2009031106A (ja) 金属材料の機械的特性評価方法及び応力腐食割れ感受性評価方法
Sakamoto et al. Progress on Japanese development of accident tolerant FeCrAl-ODS fuel claddings for BWRs
Siefert et al. Optimization of vickers hardness parameters for micro-and macro-indentation of grade 91 steel
Majumdar Designing against low-cycle fatigue at elevated temperature
Yafei et al. Effect of temperature and composition on thermal properties of carbon steel
CN112730112B (zh) 适用于反应堆结构部件材料长期服役后的环境断裂评估方法
CN117665046A (zh) 基于热分析的双相不锈钢热老化状况的评估方法
Gusev et al. Correlation of yield stress and microhardness in 08Cr16Ni11Mo3 stainless steel irradiated to high dose in the BN-350 fast reactor
CN112597627A (zh) 一种预测弹簧钢加热过程氧化层厚度的计算方法
CN114279944A (zh) 不锈钢焊材热老化-应力-腐蚀耦合作用的评价方法
Smith et al. Assessment of mechanical properties and microstructure characterizing techniques in their ability to quantify amount of cold work in 316L alloy
Beale et al. Estimation of hydrogen in zircaloy using multi frequency eddy current
Daw et al. Thermal expansion coefficient of steels used in LWR vessels
Yamamoto et al. PTS evaluation case study considering actual through-wall fracture toughness distribution
Benvenuti et al. Assessment of material thermal history in elevated temperature components

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant