CN114175588A - 基于丢包率(plr)的自适应的配置 - Google Patents

基于丢包率(plr)的自适应的配置 Download PDF

Info

Publication number
CN114175588A
CN114175588A CN202080054402.3A CN202080054402A CN114175588A CN 114175588 A CN114175588 A CN 114175588A CN 202080054402 A CN202080054402 A CN 202080054402A CN 114175588 A CN114175588 A CN 114175588A
Authority
CN
China
Prior art keywords
plr
connection
wireless communication
configuration
communication network
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202080054402.3A
Other languages
English (en)
Inventor
O·奥伊曼
T·路特泽恩基尔肯
J·帕龙
F·普兰特
U·艾雅拉索玛雅尤拉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Apple Inc
Original Assignee
Apple Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Apple Inc filed Critical Apple Inc
Priority to CN202310374203.6A priority Critical patent/CN116962162A/zh
Publication of CN114175588A publication Critical patent/CN114175588A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/06Management of faults, events, alarms or notifications
    • H04L41/0681Configuration of triggering conditions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/08Configuration management of networks or network elements
    • H04L41/0896Bandwidth or capacity management, i.e. automatically increasing or decreasing capacities
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/08Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters
    • H04L43/0823Errors, e.g. transmission errors
    • H04L43/0829Packet loss
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/16Threshold monitoring
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0231Traffic management, e.g. flow control or congestion control based on communication conditions
    • H04W28/0236Traffic management, e.g. flow control or congestion control based on communication conditions radio quality, e.g. interference, losses or delay
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0231Traffic management, e.g. flow control or congestion control based on communication conditions
    • H04W28/0242Determining whether packet losses are due to overload or to deterioration of radio communication conditions

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Environmental & Geological Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

公开了用于在无线通信网络中配置UE的丢包率(PLR)阈值的方法、系统、装置和计算机程序。在一个方面,一种方法包括与无线通信网络连接的UE接收来自该无线通信网络中的节点的丢包率(PLR)阈值配置消息;所述UE基于所述PLR阈值配置消息确定新PLR阈值配置;以及响应于确定该新PLR阈值配置,基于该新PLR阈值配置选择性地调整与到该无线通信网络的连接相关联的一个或多个配置设置。

Description

基于丢包率(PLR)的自适应的配置
优先权要求
本申请要求于2019年6月21日提交的名称为“OMA-DM CONFIGURATION OF PACKETLOSS RATE(PLR)BASED ADAPTATION IN IMS SPEECH SESSIONS”的美国临时专利申请号62/865,046的优先权,该专利申请全文以引用方式并入本文。
背景技术
用户设备(UE)可使用无线通信网络无线地传送数据。传达的数据可包括与电话呼叫相关联的语音数据,以及UE所发送和接收的其它网络流量。无线通信网络可包括与UE进行无线通信以允许其接入更广泛网络的演进节点B(eNB)。
发明内容
本公开涉及用于为各种编解码器和/或编解码器模式配置丢包率(PLR)阈值的方法、系统、装置、计算机程序或它们的组合,UE使用这些阈值来执行基于PLR的自适应。
根据本公开的一个方面,一种方法包括与无线通信网络连接的UE接收来自该无线通信网络中的节点的丢包率(PLR)阈值配置消息;所述UE基于所述PLR阈值配置消息确定新PLR阈值配置;以及响应于确定该新PLR阈值配置,基于该新PLR阈值配置选择性地调整与到该无线通信网络的连接相关联的一个或多个配置设置。
其他版本包括用于执行由编码在计算机可读存储设备上的指令定义的方法的动作的对应系统、装置和计算机程序。这些版本和其他版本可任选地包括以下特征中的一个或多个特征。
在一些具体实施中,该UE基于该PLR阈值配置消息确定新PLR阈值配置包括确定PLR阈值和与该PLR阈值相关联的配置动作。
在一些具体实施中,该PLR阈值定义该UE将对到该无线通信网络的该连接执行该配置动作的丢包率。
在一些具体实施中,过程300涉及响应于该连接的该丢包率超过该UE将执行该配置动作的该丢包率,该UE对到该无线通信网络的该连接执行该配置动作。
在一些具体实施中,该配置动作包括将当前编解码器更改为新编解码器,该当前编解码器与到该无线通信网络的该连接相关联。
在一些具体实施中,该新编解码器被配置为使用比该当前编解码器更小的网络带宽。
在一些具体实施中,该连接是与涉及该UE的电话呼叫相关联的语音连接。
在一些具体实施中,该连接是与涉及该UE的电话呼叫相关联的长期演进语音承载(VoLTE)连接。
根据本公开的另一方面,在无线通信网络中,一种方法包括该无线通信网络的节点确定UE的新丢包率(PLR)阈值配置,该UE具有到该无线通信网络的连接;响应于确定所述UE的所述新丢包率(PLR)阈值配置,生成包括所述UE的所述新丢包率(PLR)阈值配置的消息;以及将该消息传输到该UE。
其他版本包括用于执行由编码在计算机可读存储设备上的指令定义的方法的动作的对应系统、装置和计算机程序。这些版本和其他版本可任选地包括以下特征中的一个或多个特征。
在一些具体实施中,确定该新PLR阈值配置包括确定PLR阈值和与该PLR阈值相关联的配置动作。
在一些具体实施中,该PLR阈值定义该UE将对到该无线通信网络的该连接执行该配置动作的丢包率。
在一些具体实施中,该配置动作包括将当前编解码器更改为新编解码器,该当前编解码器与该UE到该无线通信网络的该连接相关联。
在一些具体实施中,该新编解码器被配置为使用比该当前编解码器更小的网络带宽。
在一些具体实施中,该UE到该无线通信网络的该连接是与涉及该UE的电话呼叫相关联的语音连接。
在一些具体实施中,该UE到该无线通信网络的该连接是与涉及该UE的电话呼叫相关联的长期演进语音承载(VoLTE)连接。
附图说明
图1是示出了根据本公开的一些具体实施的基于网络的PLR自适应的示例性过程的泳道图。
图2是示出PLR自适应的示例性过程的泳道图。
图3A和图3B各自示出了根据本公开的一些具体实施的示例性方法。
图4示出了无线通信系统的示例。
图5示出了根据各种实施方案的包括第一CN的系统的示例性架构。
图6示出了根据各种实施方案的包括第二CN的系统的架构。
图7示出了根据各种实施方案的基础设施装备的示例。
图8示出了根据各种实施方案的平台(或“设备”)的示例。
图9示出了根据各种实施方案的基带电路和无线电前端模块(RFEM)的示例性部件。
图10示出了根据各种实施方案的可在无线通信设备中实现的各种协议功能。
图11是示出了根据一些示例性实施方案的能够从机器可读或计算机可读介质(例如,非暂态机器可读存储介质)读取指令并且能够执行本文所讨论的方法中的任一者或多者的部件的框图。
各个附图中的类似参考标号和名称指示类似的元素。
具体实施方式
在无线通信网络中,可基于网络条件自适应地在UE与eNB之间进行无线通信。例如,响应于在UE与eNB之间的语音通信会话中丢包率(PLR)超过阈值,该UE可更改与语音通信会话相关联的编解码器或编解码器模式(例如,从高带宽到较低带宽编解码器)以尝试提高PLR(例如,通过减少网络拥塞)。本公开涉及使操作员能够使用配置协议,例如开放移动联盟(OMA)-设备管理(DM),来为各种编解码和/或编解码器模式配置丢包率(PLR)阈值,UE使用这些阈值来执行基于PLR的自适应。虽然UE可发送信号“PLR_adapt”(例如,在会话描述协议(SDP)中)以指示其执行基于PLR的自适应的能力,但是仍然不清楚哪些PLR值会触发对不同编解码器配置的请求。代替舍弃该具体实施特定的,本公开为操作员提供了一种机制,用于为各种编解码器和/或编解码器模式配置PLR阈值,UE使用这些阈值来执行基于PLR的自适应。这种方法还可导致在无线通信网络中涉及的UE的自适应行为更加一致和可预测,从而简化了网络中的管理和故障排除问题的任务。
本技术可以与其它PLR自适应方法协同工作,例如3GPP TS 26.114中描述的多媒体覆盖和切换增强(CHEM)方案。在LTE网络中,需要保持尽可能高的语音质量,从而增加长期演进语音承载(VoLTE)覆盖区域。这也可以尽可能避免或至少延迟单无线电语音呼叫连续性(SRVCC),从而最大限度地减少对具有弱LTE覆盖的区域内的VoLTE订户的用户体验的负面影响。一个问题是此类网络中的随机接入(RAN)机制没有传达足够的信息(例如,编解码器配置)以执行用于VoLTE的优化切换。因此,尽管VoLTE呼叫可以在LTE弱覆盖区域内存活,但是没有必要通过SRVCC切换(HO)将VoLTE呼叫切换到2G/3G CS。本公开可以从架构的角度实现RAN所需信息的通信,以对VoLTE做出优化的HO决策。
可通过选择编解码器及它们的配置、通话中动态速率和模式自适应、应用层冗余和其它技术来提高语音呼叫的稳健性(如3GPP TS 26.114中规定的)。增强型语音服务编解码器(EVS),尤其是EVS通道感知模式,通过应用层部分冗余展示了比自适应多速率(AMR)和AMR-WB编解码器更高的针对传输错误率的稳健性。
在某些情况下,可使用“Max PLR”参数(最大可容许丢包率)来通知eNB所选编解码器的稳健性。可使用来自网络的信令(策略和计费规则功能(PCRF))或来自UE的信令将稳健性(例如,Max PLR)信息传送到eNB。eNB可从该Max PLR导出相关的SRVCC阈值(取决于具体实施)。在多速率/多模式编解码器配置的情况下,不同的编解码器模式通常具有不同的MaxPLR,例如不同的稳健性。本公开描述了一种用于在更改编解码器和编解码器配置时实施可预测的UE行为的机制。
在一些具体实施中,可从网络侧向UE和eNB推送编解码器/编解码器模式和相关联的阈值配置。此类基于网络的方法依赖于以下事实:关于IP多媒体子系统(IMS)会话的协商的编解码器和配置(或编解码器模式)的信息通过其对SDP的了解在PCRF中是可用的,该SDP含有协商的IMS会话参数。基于此类信息,PCRF可推导出相关的稳健性参数信息(例如,最大丢包率),并且确定相应的下行链路(DL)和上行链路(UL)PLR阈值,并将该信息用信号发送给eNB。基于协商的编解码器模式的稳健性参数信息的推导可根据标准化映射规则来进行,例如,利用每个编解码器模式的最大丢包率的指示和基于协商的编解码器模式的最大丢包率的计算。
图1是示出例如第五代(5G)和/或新空口(NR)通信标准中的基于网络的PLR自适应的示例性过程100的泳道图。如图所示,该过程涉及UE 102、UE 114、eNB 104、eNB 112、PCRF106、PCRF 110和IMS 108之间的通信。在过程100中,PCRF 104默认不知道客户端自适应行为,并且因此将基于协商的编解码器配置中最不稳健的编解码器模式来设置稳健性参数(例如,Max PLR)。然而,如果PCRF 104从SDP知道客户端接收器支持自适应最稳健的编解码器模式,例如,当UE 102检测到丢包时,其将请求发送器将其编码器更改为更稳健的模式,则PCRF 104可基于最稳健的编解码器模式设置稳健性参数,并且由此实现更优化的SRVCC切换性能。可通过本文所述的新SDP参数“PLR_adapt”来启用对PCRF 104的此类指示。
支持媒体类型(例如,语音或视频)的CHEM特征的TS 26.114(例如,UE 202和UE214)IMS多媒体电话服务(MTSI)终端可支持以下过程:
·当发送SDP提供时,MTSI客户端包括在SDP提供中针对该媒体类型的媒体行中的PLR_adapt属性;
·当发送SDP应答时,MTSI客户端包括在SDP应答中针对该媒体类型的媒体行中的PLR_adapt属性,而不管是否在SDP提供中接收到该PLR_adapt属性;
·当接收媒体的MTSI客户端检测到丢包率高于当前使用的编解码器配置容许的丢包率,并且对于同一编解码器有更稳健的编解码器配置可用时,MTSI客户端应向媒体发送方发送请求以使用将提供较低PLR的同一编解码器的更稳健的编解码器配置;
·当接收媒体的MTSI客户端检测到丢包率足够低以支持提供媒体质量优于当前编解码器配置的同一编解码器的编解码器配置,并且切换到新的编解码器配置将不会导致在更稳健与不太稳健编解码器配置之间摆动时,MTSI客户端应向媒体发送方发送请求,以使用提供更佳媒体质量的同一编解码器的编解码器配置。
UE 102(或114)可考虑其抖动缓冲器管理(JBM)和/或丢包隐藏(PLC)能力来推导出当使用其JBM和PLC具体实施时,终端可容许的给定编解码器/模式的最大端到端丢包率(Max-e2e-PLR),并且将该参数或从其导出的一些指示作为信号通过会话描述协议(SDP)等潜在机制发送到网络(例如,PCRF 106)。然后,eNB 104中使用的稳健性参数值可以使用该推荐,或基于该推荐被精细化。具有高级JBM和PLC能力的UE 102可确定推荐的Max-e2e-PLR值,该值高于对应于最稳健的编解码器配置的Max PLR。这意味着UE 102的PLC和JBM能力可在最稳健的编解码器配置所实现的稳健性之上进一步提高稳健性。如果PCRF 106从UE进一步提高稳健性的此类指示,则其可以相应地配置eNB 104的PLR阈值,使得即使超过Max PLR值(基于最稳健的编解码器配置),eNB 104也可以进一步延迟SRVCC切换决策,从而实现更优化的SRVCC切换。此外,由于从发送终端(UE 102)到接收终端(UE 114)的端到端路径中通常存在两个无线电链路,因此最终必须与传输路径中的两个eNB 104和eNB 112共享信息,以确定如何基于实现适当的packet_loss_rate目标来设置它们的SRVCC切换阈值。
图2是示出PLR自适应的示例性过程200的泳道图。如图所示,该过程涉及UE A、UEB、eNB A和eNB B。
设置切换阈值的挑战之一是确保从媒体发送方到接收方的传输路径上的端到端错误率不超过接收UE中的编解码器、PLC具体实施和JBM具体实施可以处理的最大丢包率(Max PLR)。在过程200中,假设回程引入可忽略的误差要求在从UE B到UE A的传输方向上,
eNB_A_DL_PLR+eNB_B_UL_PLR<=Max PLR编解码器和(在UE A中,PLC+JBM)
在这里,eNB_A_DL_PLR是设置为eNB A与UE A之间DL连接的SRVCC触发阈值的最大PLR值。同样,eNB_B_UL_PLR是设置为eNB B与UE B之间UL连接的SRVCC触发阈值的最大PLR值。
因此,UE A可基于其PLC和JBM具体实施确定最大PLR值,然后决定如何在eNB_A_DL_PLR(用于图3左侧的黄色箭头链接的从eNB A到UE A的下行链路的PLR)与eNB_B_UL_PLR(用于图3右侧的黄色箭头链接的从UE B到eNB B的上行链路的PLR)之间对其进行分配。具体地,UE A可根据对UE A与eNB A之间的本地下行无线电条件的评估来决定eNB_A_DL_PLR的值,然后通过从最大端到端PLR(UE A处的Max-e2e-PLR)减去eNB_A_DL_PLR来确定eNB_B_UL_PLR。然后,UE A可为SDP中的最大端到端PLR(UE A处的Max-e2e-PLR)、eNB_A_DL_PLR和eNB_B_UL_PLR提供推荐值。因此,媒体接收方和媒体发送方都具有交换UL PLR信息的构件,以便动态地优化DL PLR和UL PLR的分配,并导致在链路的两端上的SRVCC切换阈值的最优选择。
虽然终端(例如,UE A和UE B)可能会在SDP中发送信号“PLR_adapt”以指示其执行基于PLR的自适应的能力,但是仍然不清楚哪些PLR值会触发对不同编解码器配置的请求。代替舍弃该具体实施特定的,本公开为操作员提供了一种机制,用于为各种编解码器和/或编解码器模式配置PLR阈值,UE使用这些阈值来执行基于PLR的自适应。
一种示例性方法是基于类似于TS 26.114第17条中的MTSI媒体自适应管理对象的新媒体自适应对象来修改OMA-DM,但该新对象包括新节点,该新节点指示各种编解码器模式的PLR阈值,UE使用这些PLR阈值来执行基于PLR的自适应。实现这一点的新OMA-DM管理对象节点的示例可以如下所示:
表1
Figure BDA0003491738570000071
该内部节点指定MTSI网络偏好管理对象的唯一对象ID。该内部节点的目的是将单个对象的参数集合在一起。
如果终端中的MTSI客户端支持“MTSI网络偏好管理对象”,则应包含以下内部节点。
表2
Figure BDA0003491738570000081
表3
Figure BDA0003491738570000082
表4
Figure BDA0003491738570000083
表5
Figure BDA0003491738570000084
表6
Figure BDA0003491738570000085
Figure BDA0003491738570000091
表7
Figure BDA0003491738570000092
值“AMR”是指3GPP中定义的AMR语音编解码器。值“AMR-WB”是指3GPP中定义的AMR-WB语音编解码器。值“EVS”是指3GPP中定义的EVS语音编解码器。
表8
Figure BDA0003491738570000093
表9
Figure BDA0003491738570000094
表10
Figure BDA0003491738570000101
表11
Figure BDA0003491738570000102
表12
Figure BDA0003491738570000103
表13
Figure BDA0003491738570000104
表14
Figure BDA0003491738570000111
图3A和图3B示出了根据本公开的一些具体实施的示例性过程的流程图。为了清楚地展示,下面的描述通常在本说明书中的其他附图的上下文中描述过程。然而,应当理解,这些过程可视情况例如由任何合适的系统、环境、软件和硬件或者系统、环境、软件和硬件的组合执行。在一些具体实施中,过程的各个步骤可并行运行、组合运行、循环运行或以任何顺序运行。
图3A是用于在无线通信网络中配置UE的新PLR阈值的示例性过程300的流程图。在步骤302,过程300涉及与无线通信网络连接的UE接收来自该无线通信网络中的节点的丢包率(PLR)阈值配置消息。在步骤304,过程300涉及该UE基于该PLR阈值配置消息确定新PLR阈值配置。在步骤306,过程300涉及响应于确定该新PLR阈值配置,基于该新PLR阈值配置选择性地调整与到无线通信网络的连接相关联的一个或多个配置设置。
在一些具体实施中,该UE基于该PLR阈值配置消息确定新PLR阈值配置包括确定PLR阈值和与该PLR阈值相关联的配置动作。
在一些具体实施中,该PLR阈值定义该UE将对到该无线通信网络的该连接执行该配置动作的丢包率。
在一些具体实施中,过程300涉及响应于该连接的该丢包率超过该UE将执行该配置动作的该丢包率,该UE对到该无线通信网络的该连接执行该配置动作。
在一些具体实施中,该配置动作包括将当前编解码器更改为新编解码器,该当前编解码器与到该无线通信网络的该连接相关联。
在一些具体实施中,该新编解码器被配置为使用比该当前编解码器更小的网络带宽。
在一些具体实施中,该连接是与涉及该UE的电话呼叫相关联的语音连接。
在一些具体实施中,该连接是与涉及该UE的电话呼叫相关联的长期演进语音承载(VoLTE)连接。
图3B是用于在无线通信网络中配置UE的新PLR阈值的示例性过程310的流程图。在步骤312,过程310涉及该无线通信网络的节点确定UE的新丢包率(PLR)阈值配置,该UE具有到该无线通信网络的连接。在步骤314,过程310涉及响应于确定该UE的新丢包率(PLR)阈值配置,生成包括该UE的该新丢包率(PLR)阈值配置的消息。在步骤316,过程310涉及将该消息传输到该UE。
在一些具体实施中,确定该新PLR阈值配置包括确定PLR阈值和与该PLR阈值相关联的配置动作。
在一些具体实施中,该PLR阈值定义该UE将对到该无线通信网络的该连接执行该配置动作的丢包率。
在一些具体实施中,该配置动作包括将当前编解码器更改为新编解码器,该当前编解码器与该UE到该无线通信网络的该连接相关联。
在一些具体实施中,该新编解码器被配置为使用比该当前编解码器更小的网络带宽。
在一些具体实施中,该UE到该无线通信网络的该连接是与涉及该UE的电话呼叫相关联的语音连接。
在一些具体实施中,该UE到该无线通信网络的该连接是与涉及该UE的电话呼叫相关联的长期演进语音承载(VoLTE)连接。
图3A和图3B中所示的示例性过程可被修改或重新配置为包括附加、更少或不同的步骤(图3A和图3B中未示出),这些步骤可按所示顺序或按不同顺序执行。
图4示出了无线通信系统400的示例。为了方便而非限制的目的,示例性系统100在长期演进(LTE)和第五代(5G)新空口(NR)通信标准的上下文中描述,如由第三代合作伙伴计划(3GPP)技术规范定义的。更具体地讲,无线通信系统400在结合LTE和NR两者的非独立(NSA)网络(例如,E-UTRA(演进的通用陆地无线电接入)-NR双连接(EN-DC)网络和NE-DC网络)的上下文中进行描述。然而,无线通信系统400也可以是仅结合NR的独立(SA)网络。此外,其他类型的通信标准也是可能的,包括未来的3GPP系统(例如,第六代(6G))系统、IEEE802.16协议(例如,WMAN、WiMAX等)等。
如图4所示,系统400包括UE 401a和UE 401b(统称为“UE401”)。在该示例中,UE401被示为智能电话(例如,可连接到一个或多个蜂窝网络的手持式触摸屏移动计算设备),但也可包括任何移动或非移动计算设备,诸如消费电子设备、移动电话、智能电话、功能手机、平板电脑、可穿戴计算机设备、个人数字助理(PDA)、寻呼机、无线手持设备、台式计算机、膝上型计算机、车载信息娱乐(IVI)、车载娱乐(ICE)设备、仪表板(IC)、平视显示器(HUD)设备、板载诊断(OBD)设备、dashtop移动装备(DME)、移动数据终端(MDT)、电子发动机管理系统(EEMS)、电子/发动机电子控制单元(ECU)、电子/发动机电子控制模块(ECM)、嵌入式系统、微控制器、控制模块、发动机管理系统(EMS)、联网或“智能”家电、MTC设备、M2M、IoT设备等。
在一些实施方案中,UE 401中的任一者可包以是IoT UE,这种UE可包括被设计用于利用短期UE连接的低功率IoT应用的网络接入层。IoT UE可利用诸如M2M或MTC的技术来经由PLMN、ProSe或D2D通信、传感器网络或IoT网络与MTC服务器或设备交换数据。M2M或MTC数据交换可以是机器启动的数据交换。IoT网络描述了互连的IoT UE,这些UE可包括具有短暂连接的唯一可识别的嵌入式计算设备(在互联网基础设施内)。IoT UE可执行后台应用程序(例如,保持活动消息、状态更新等)以促进IoT网络的连接。
UE 401可被配置为与RAN 410连接,例如通信地耦接。在实施方案中,RAN 410可以是NG RAN或5G RAN、E-UTRAN或传统RAN,诸如UTRAN或GERAN。如本文所用,术语“NG RAN”等可以是指在NR或5G系统400中操作的RAN 410,而术语“E-UTRAN”等可以是指在LTE或4G系统400中操作的RAN 410。UE 401分别利用连接(或信道)403和404,每个连接包括物理通信接口或层(下文进一步详细讨论)。
在该示例中,连接403和连接404示出为空中接口以实现通信耦接,并且可与蜂窝通信协议一致,诸如GSM协议、CDMA网络协议、PTT协议、POC协议、UMTS协议、3GPP LTE协议、高级长期演进(LTE-A)协议、基于LTE的未许可频谱接入(LTE-U)、5G协议、NR协议、基于NR的未许可频谱接入(NR-U)协议和/或本文讨论的任何其他通信协议。在实施方案中,UE 401可经由ProSe接口405直接交换通信数据。ProSe接口405可另选地称为SL接口405,并且可包括一个或多个逻辑信道,包括但不限于PSCCH、PSSCH、PSDCH和PSBCH。
UE 401b被示出为被配置为经由连接407接入AP 406(也称为“WLAN节点406”、“WLAN 406”、“WLAN终端406”、“WT 406”等)。连接407可包括本地无线连接,诸如与任何IEEE802.11协议一致的连接,其中AP 406将包括无线保真
Figure BDA0003491738570000141
路由器。在该示例中,示出AP 406连接到互联网而没有连接到无线系统的核心网络(下文进一步详细描述)。在各种实施方案中,UE 401b、RAN 410和AP 406可被配置为利用LWA操作和/或LWIP操作。LWA操作可涉及由RAN节点411a-b将处于RRC_CONNECTED状态的UE 401b配置为利用LTE和WLAN的无线电资源。LWIP操作可涉及UE 401b经由IPsec协议隧道来使用WLAN无线电资源(例如,连接407)来认证和加密通过连接407发送的分组(例如,IP分组)。IPsec隧道传送可包括封装整个原始IP分组并添加新的分组头,从而保护IP分组的原始头。
RAN 410包括启用连接403和404的一个或多个AN节点或RAN节点411a和411b(统称为“RAN节点411”)。如本文所用,术语“接入节点”、“接入点”等可描述为网络与一个或多个用户之间的数据和/或语音连接提供无线电基带功能的装备。这些接入节点可被称为BS、gNB、RAN节点、eNB、NodeB、RSU、TRxP或TRP等,并且可包括在地理区域(例如,小区)内提供覆盖的地面站(例如,陆地接入点)或卫星站。如本文所用,术语“NG RAN节点”等可以指在NR或5G系统400中操作的RAN节点411(例如gNB),而术语“E-UTRAN节点”等可以指在LTE或4G系统400中操作的RAN节点411(例如eNB)。根据各种实施方案,RAN节点411可被实现为专用物理设备诸如宏小区基站和/或用于提供与宏小区相比具有较小覆盖区域、较小用户容量或较高带宽的毫微微小区、微微小区或其他类似小区的低功率(LP)基站中的一者或多者。
在一些实施方案中,RAN节点411的全部或部分可被实现为在服务器计算机上运行的一个或多个软件实体,作为可被称为CRAN和/或虚拟基带单元池(vBBUP)的虚拟网络的一部分。在这些实施方案中,CRAN或vBBUP可实现RAN功能划分,诸如PDCP划分,其中RRC和PDCP层由CRAN/vBBUP操作,而其他L2协议实体由各个RAN节点411操作;MAC/PHY划分,其中RRC、PDCP、RLC和MAC层由CRAN/vBBUP操作,并且PHY层由各个RAN节点411操作;或“下部PHY”划分,其中RRC、PDCP、RLC、MAC层和PHY层的上部部分由CRAN/vBBUP操作,并且PHY层的下部部分由各个RAN节点411操作。该虚拟化框架允许RAN节点411的空闲处理器核心执行其他虚拟化应用程序。在一些具体实施中,各个RAN节点411可表示经由各个F1接口(图4未示出)连接到gNB-CU的各个gNB-DU。在这些具体实施中,gNB-DU可以包括一个或多个远程无线电头端或RFEM(参见例如,图7),并且gNB-CU可由位于RAN 410(未示出)中的服务器或由服务器池以与CRAN/vBBUP类似的方式操作。除此之外或另选地,RAN节点411中的一个或多个RAN节点可以是下一代eNB(ng-eNB),该下一代eNB是向UE 401提供E-UTRA用户平面和控制平面协议终端并且经由NG接口(下文讨论)连接到5GC(例如,图6的CN 620)的RAN节点。
在V2X场景中,RAN节点411中的一个或多个RAN节点可以是RSU或充当RSU。术语“道路侧单元”或“RSU”可指用于V2X通信的任何交通基础设施实体。RSU可在合适的RAN节点或静止(或相对静止)的UE中实现或由其实现,其中在UE中实现或由其实现的RSU可被称为“UE型RSU”,在eNB中实现或由其实现的RSU可被称为“eNB型RSU”,在gNB中实现或由其实现的RSU可被称为“gNB型RSU”等等。在一个示例中,RSU是与位于道路侧上的射频电路耦接的计算设备,该计算设备向通过的车辆UE 401(vUE 401)提供连接性支持。RSU还可包括内部数据存储电路,其用于存储交叉路口地图几何形状、交通统计、媒体,以及用于感测和控制正在进行的车辆和行人交通的应用程序/软件。RSU可在5.9GHz直接近程通信(DSRC)频带上操作以提供高速事件所需的极低延迟通信,诸如防撞、交通警告等。除此之外或另选地,RSU可在蜂窝V2X频带上操作以提供前述低延迟通信以及其他蜂窝通信服务。除此之外或另选地,RSU可作为Wi-Fi热点(2.4GHz频带)操作和/或提供与一个或多个蜂窝网络的连接以提供上行链路和下行链路通信。计算设备和RSU的射频电路中的一些或全部可封装在适用于户外安装的耐候性封装件中,并且可包括网络接口控制器以提供与交通信号控制器和/或回程网络的有线连接(例如,以太网)。
RAN节点411中的任一个节点都可终止空中接口协议,并且可以是UE 401的第一联系点。在一些实施方案中,RAN节点411中的任一个节点都可执行RAN 410的各种逻辑功能,包括但不限于无线电网络控制器(RNC)的功能,诸如无线电承载管理、上行链路和下行链路动态无线电资源管理和数据分组调度以及移动性管理。
在实施方案中,UE 401可被配置为根据各种通信技术,使用OFDM通信信号在多载波通信信道上彼此或者与RAN节点411中的任一个节点进行通信,该通信技术诸如但不限于OFDMA通信技术(例如,用于下行链路通信)或SC-FDMA通信技术(例如,用于上行链路和ProSe或侧链路通信),但实施方案的范围在这方面不受限制。OFDM信号可包括多个正交子载波。
在一些实施方案中,下行链路资源网格可用于从RAN节点411中的任一个节点到UE401的下行链路传输,而上行链路传输可利用类似的技术。网格可以是时频网格,称为资源网格或时频资源网格,其是每个时隙中下行链路中的物理资源。对于OFDM系统,此类时频平面表示是常见的做法,这使得无线资源分配变得直观。资源网格的每一列和每一行分别对应一个OFDM符号和一个OFDM子载波。时域中资源网格的持续时间与无线电帧中的一个时隙对应。资源网格中最小的时频单位表示为资源元素。每个资源网格包括多个资源块,这些资源块描述了某些物理信道到资源元素的映射。每个资源块包括资源元素的集合;在频域中,这可以表示当前可以分配的最少量资源。使用此类资源块来传送几个不同的物理下行链路信道。
根据各种实施方案,UE 401和RAN节点411通过许可介质(也称为“许可频谱”和/或“许可频带”)和未许可共享介质(也称为“未许可频谱”和/或“未许可频带”)来传送数据(例如,传输数据和接收数据)。许可频谱可包括在大约400MHz至大约3.8GHz的频率范围内操作的信道,而未许可频谱可包括5GHz频带。未许可频谱中的NR可被称为NR-U,并且未许可频谱中的LTE可被称为LTE-U、许可辅助接入(LAA)或MulteFire。
为了在未许可频谱中操作,UE 401和RAN节点411可使用LAA、eLAA和/或feLAA机制来操作。在这些具体实施中,UE 401和RAN节点411可执行一个或多个已知的介质感测操作和/或载波感测操作,以便确定未许可频谱中的一个或多个信道当在未授权频谱中传输之前是否不可用或以其他方式被占用。可根据先听后说(LBT)协议来执行介质/载波感测操作。
LBT是一种机制,由此装备(例如,UE 401RAN节点411等)利用该机制来感测介质(例如,信道或载波频率)并且在该介质被感测为空闲时(或者感测到该介质中的特定信道未被占用时)进行传输。介质感测操作可包括CCA,该CCA利用至少ED来确定信道上是否存在其他信号,以便确定信道是被占用还是空闲。该LBT机制允许蜂窝/LAA网络与未许可频谱中的现有系统以及与其他LAA网络共存。ED可包括感测一段时间内在预期传输频带上的RF能量,以及将所感测的RF能量与预定义或配置的阈值进行比较。
通常,5GHz频带中的现有系统是基于IEEE 802.11技术的WLAN。WLAN采用基于争用的信道接入机制,称为CSMA/CA。这里,当WLAN节点(例如,移动站(MS)诸如UE 401、AP 406等)打算传输时,WLAN节点可在传输之前首先执行CCA。另外,在多于一个WLAN节点将信道感测为空闲并且同时进行传输的情况下,使用退避机制来避免冲突。该退避机制可以是在CWS内随机引入的计数器,该计数器在发生冲突时呈指数增加,并且在传输成功时重置为最小值。被设计用于LAA的LBT机制与WLAN的CSMA/CA有点类似。在一些具体实施中,DL或UL传输突发(包括PDSCH或PUSCH传输)的LBT过程可具有在X和Y ECCA时隙之间长度可变的LAA争用窗口,其中X和Y为LAA的CWS的最小值和最大值。在一个示例中,LAA传输的最小CWS可为9微秒(μs);然而,CWS的大小和MCOT(例如,传输突发)可基于政府监管要求。
LAA机制建立在LTE-Advanced系统的CA技术上。在CA中,每个聚合载波都被称为CC。一个CC可具有1.4、3、5、10、15或20MHz的带宽,并且最多可聚合五个CC,因此最大聚合带宽为100MHz。在FDD系统中,对于DL和UL,聚合载波的数量可以不同,其中UL CC的数量等于或低于DL分量载波的数量。在一些情况下,各个CC可具有与其他CC不同的带宽。在TDD系统中,CC的数量以及每个CC的带宽通常对于DL和UL是相同的。
CA还包含各个服务小区以提供各个CC。服务小区的覆盖范围可不同,例如,因为不同频带上的CC将经历不同的路径损耗。主要服务小区或PCell可为UL和DL两者提供PCC,并且可处理与RRC和NAS相关的活动。其他服务小区被称为SCell,并且每个SCell可为UL和DL两者提供各个SCC。可以按需要添加和移除SCC,而改变PCC可能需要UE 401经历切换。在LAA、eLAA和feLAA中,SCell中的一些或全部可在未许可频谱(称为“LAA SCell”)中操作,并且LAA SCell由在许可频谱中操作的PCell协助。当UE被配置为具有多于一个LAA SCell时,UE可在配置的LAA SCell上接收UL授权,指示同一子帧内的不同PUSCH起始位置。
PDSCH将用户数据和较高层信令承载到UE 401。除其他信息外,PDCCH承载关于与PDSCH信道有关的传输格式和资源分配的信息。它还可以向UE 401通知关于与上行链路共享信道有关的传输格式、资源分配和HARQ信息。通常,可基于从UE 401中的任一个UE反馈的信道质量信息在RAN节点411中的任一个RAN节点上执行下行链路调度(向小区内的UE 401b分配控制和共享信道资源块)。可在用于(例如,分配给)多个UE 401中的每个UE的PDCCH上发送下行链路资源分配信息。
PDCCH使用CCE来传送控制信息。在被映射到资源元素之前,可以首先将PDCCH复数值符号组织为四元组,然后可以使用子块交织器对其进行排列以进行速率匹配。可以使用这些CCE中的一个或多个来传输每个PDCCH,其中每个CCE可以对应于分别具有四个物理资源元素的九个集合,称为REG。四个正交相移键控(QPSK)符号可以映射到每个REG。根据DCI的大小和信道条件,可以使用一个或多个CCE来传输PDCCH。可存在四个或更多个被定义在LTE中具有不同数量的CCE(例如,聚合级,L=1、2、4或8)的不同的PDCCH格式。
一些实施方案可以使用用于控制信道信息的资源分配的概念,其是上述概念的扩展。例如,一些实施方案可利用将PDSCH资源用于控制信息传输的EPDCCH。可使用一个或多个ECCE来传输EPDCCH。与以上类似,每个ECCE可以对应于九个包括四个物理资源元素的集合,称为EREG。在一些情况下,ECCE可以具有其他数量的EREG。
RAN节点411可被配置为经由接口412彼此通信。在系统400是LTE系统的实施方案中(例如,当CN 420是如图5中的EPC 520时),接口412可以是X2接口412。X2接口可被限定在连接到EPC 420的两个或更多个RAN节点411(例如,两个或更多个eNB等)之间,和/或连接到EPC 420的两个eNB之间。在一些具体实施中,X2接口可包括X2用户平面接口(X2-U)和X2控制平面接口(X2-C)。X2-U可为通过X2接口传输的用户分组提供流控制机制,并且可用于传送关于eNB之间的用户数据的递送的信息。例如,X2-U可提供关于从MeNB传输到SeNB的用户数据的特定序号信息;关于针对用户数据成功将PDCP PDU从SeNB按序递送到UE 401的信息;未递送到UE 401的PDCP PDU的信息;关于SeNB处用于向UE传输用户数据的当前最小期望缓冲器大小的信息;等等。X2-C可提供LTE内接入移动性功能,包括从源eNB到目标eNB的上下文传输、用户平面传输控制等;负载管理功能;以及小区间干扰协调功能。
在系统400是5G或NR系统的实施方案中(例如,当CN 420是如图6中的5GC 620时),接口412可以是Xn接口412。Xn接口被限定在连接到5GC 420的两个或更多个RAN节点411(例如,两个或更多个gNB等)之间、连接到5GC 420的RAN节点411(例如,gNB)与eNB之间,和/或连接到5GC 420的两个eNB之间。在一些具体实施中,Xn接口可包括Xn用户平面(Xn-U)接口和Xn控制平面(Xn-C)接口。Xn-U可提供用户平面PDU的非保证递送并支持/提供数据转发和流量控制功能。Xn-C可提供管理和错误处理功能,用于管理Xn-C接口的功能;在连接模式(例如,CM连接)下对UE 401的移动性支持包括用于管理一个或多个RAN节点411之间的连接模式的UE移动性的功能。该移动性支持可包括从旧(源)服务RAN节点411到新(目标)服务RAN节点411的上下文传输;以及对旧(源)服务RAN节点411到新(目标)服务RAN节点411之间的用户平面隧道的控制。Xn-U的协议栈可包括建立在因特网协议(IP)传输层上的传输网络层,以及UDP和/或IP层的顶部上的用于承载用户平面PDU的GTP-U层。Xn-C协议栈可包括应用层信令协议(称为Xn应用协议(Xn-AP))和构建在SCTP上的传输网络层。SCTP可在IP层的顶部,并且可提供对应用层消息的有保证的递送。在传输IP层中,使用点对点传输来递送信令PDU。在其他具体实施中,Xn-U协议栈和/或Xn-C协议栈可与本文所示和所述的用户平面和/或控制平面协议栈相同或类似。
RAN 410被示出为通信地耦接到核心网络——在该实施方案中,通信地耦接到核心网络(CN)420。CN 420可包括多个网络元件422,其被配置为向经由RAN 410连接到CN 420的客户/订户(例如,UE 401的用户)提供各种数据和电信服务。CN 420的部件可在一个物理节点或分开的物理节点中实现,包括用于从机器可读或计算机可读介质(例如,非暂态机器可读存储介质)读取和执行指令的部件。在一些实施方案中,NFV可用于经由存储在一个或多个计算机可读存储介质中的可执行指令来将上述网络节点功能中的任一个或全部虚拟化(下文将进一步详细描述)。CN 420的逻辑实例可被称为网络切片,并且CN 420的一部分的逻辑实例可被称为网络子切片。NFV架构和基础设施可用于将一个或多个网络功能虚拟化到包含行业标准服务器硬件、存储硬件或交换机的组合的物理资源上(另选地由专有硬件执行)。换句话讲,NFV系统可用于执行一个或多个EPC部件/功能的虚拟或可重新配置的具体实施。
一般来讲,应用服务器430可以是提供与核心网络一起使用IP承载资源的应用的元件(例如,UMTS PS域、LTE PS数据服务等)。应用服务器430还可被配置为经由EPC 420支持针对UE 401的一种或多种通信服务(例如,VoIP会话、PTT会话、群组通信会话、社交网络服务等)。
在实施方案中,CN 420可以是5GC(称为“5GC 420”等),并且RAN 410可经由NG接口413与CN 420连接。在实施方案中,NG接口413可分成两部分:NG用户平面(NG-U)接口414,该接口在RAN节点411和UPF之间承载流量数据;和S1控制平面(NG-C)接口415,该接口是RAN节点411和AMF之间的信令接口。参照图6更详细地讨论CN 420为5GC 420的实施方案。
在实施方案中,CN 420可以是5G CN(称为“5GC 420”等),而在其他实施方案中,CN420可以是EPC。在CN 420是EPC(称为“EPC 420”等)的情况下,RAN 410可经由S1接口413与CN 420连接。在实施方案中,S1接口413可分成两部分:S1用户平面(S1-U)接口414,该接口在RAN节点411和S-GW之间承载流量数据;和S1-MME接口415,该接口是RAN节点411和MME之间的信令接口。
图5示出了根据各种实施方案的包括第一CN 520的系统500的示例性架构。在该示例中,系统500可实现LTE标准,其中CN 520是对应于图4的CN 420的EPC 520。另外,UE 501可与图4的UE 401相同或类似,并且E-UTRAN 510可为与图4的RAN 410相同或类似的RAN,并且其可包括先前讨论的RAN节点411。CN 520可包括MME 521、S-GW 522、P-GW 523、HSS 524和SGSN 525。
MME 521在功能上可类似于传统SGSN的控制平面,并且可实施MM功能以保持跟踪UE 501的当前位置。MME 521可执行各种MM过程以管理访问中的移动性方面,诸如网关选择和跟踪区域列表管理。MM(在E-UTRAN系统中也称为“EPS MM”或“EMM”)可以指用于维护关于UE501的当前位置的知识、向用户/订阅者提供用户身份保密性和/或执行其他类似服务的所有适用程序、方法、数据存储等。每个UE 501和MME 521可包括MM或EMM子层,并且当成功完成附接过程时,可在UE 501和MME 521中建立MM上下文。MM上下文可以是存储UE 501的MM相关信息的数据结构或数据库对象。MME 521可经由S6a参考点与HSS 524耦接,经由S3参考点与SGSN 525耦接,并且经由S11参考点与S-GW 522耦接。
SGSN 525可以是通过跟踪单独UE 501的位置并执行安全功能来服务于UE 501的节点。此外,SGSN 525可执行EPC间节点信令以用于2G/3G与E-UTRAN 3GPP接入网络之间的移动性;如由MME 521指定的PDN和S-GW选择;UE 501时区功能的处理,如由MME 521所指定的;以及用于切换到E-UTRAN 3GPP接入网络的MME选择。MME 521与SGSN 525之间的S3参考点可在空闲状态和/或活动状态下启用用于3GPP间接入网络移动性的用户和承载信息交换。
HSS 524可包括用于网络用户的数据库,该数据库包括用于支持网络实体处理通信会话的订阅相关信息。EPC 520可包括一个或若干个HSS 524,这取决于移动订阅者的数量、装备的容量、网络的组织等。例如,HSS 524可以为路由/漫游、认证、授权、命名/寻址解决方案、位置依赖性等提供支持。HSS 524和MME 521之间的S6a参考点可以启用订阅和认证数据的转移,以用于认证/授权用户访问HSS 524和MME 521之间的EPC 520。
S-GW 522可终止朝向RAN 510的S1接口413(在图5中为“S1-U”),并且在RAN 510与EPC 520之间路由数据分组。此外,S-GW 522可以是用于RAN间节点切换的本地移动锚定点,并且还可以提供用于3GPP间移动的锚。其他职责可包括合法拦截、计费和执行某些策略。S-GW 522与MME 521之间的S11参考点可在MME 521与S-GW 522之间提供控制平面。S-GW 522可经由S5参考点与P-GW 523耦接。
P-GW 523可终止朝向PDN 530的SGi接口。P-GW 523可经由IP接口425(参见例如,图4)在EPC 520与外部网络诸如包括应用服务器430(另选地称为“AF”)的网络之间路由数据分组。在实施方案中,P-GW 523可经由IP通信接口425(参见例如,图4)通信地耦接到应用服务器(图4中的应用服务器430或图5中的PDN 530)。P-GW 523与S-GW 522之间的S5参考点可在P-GW 523与S-GW 522之间提供用户平面隧穿和隧道管理。由于UE 501的移动性以及S-GW 522是否需要连接到非并置的P-GW 523以用于所需的PDN连接性,S5参考点也可用于S-GW 522重定位。P-GW 523还可包括用于策略实施和计费数据收集(例如PCEF(未示出))的节点。另外,P-GW 523与分组数据网络(PDN)530之间的SGi参考点可以是运营商外部公共、私有PDN或内部运营商分组数据网络,例如以用于提供IMS服务。P-GW 523可经由Gx参考点与PCRF 526耦接。
PCRF 526是EPC 520的策略和计费控制元素。在非漫游场景中,与UE 501的互联网协议连接访问网络(IP-CAN)会话相关联的国内公共陆地移动网络(HPLMN)中可能存在单个PCRF 526。在具有本地流量突破的漫游场景中,可能存在与UE 501的IP-CAN会话相关联的两个PCRF:HPLMN中的国内PCRF(H-PCRF)和受访公共陆地移动网络(VPLMN)中的受访PCRF(V-PCRF)。PCRF 526可经由P-GW 523通信地耦接到应用服务器530。应用服务器530可发信号通知PCRF 526以指示新服务流,并且选择适当的QoS和计费参数。PCRF 526可将该规则配置为具有适当的TFT和QCI的PCEF(未示出),该功能如由应用服务器530指定的那样开始QoS和计费。PCRF 526和P-GW 523之间的Gx参考点可允许在P-GW 523中将QoS策略和收费规则从PCRF 526传输到PCEF。Rx参考点可驻留在PDN 530(或“AF 530”)与PCRF 526之间。
图6示出了根据各种实施方案的包括第二CN 620的系统600的架构。系统600被示出为包括UE 601,其可与先前讨论的UE 401和UE 501相同或类似;(R)AN 610,其可与先前讨论的RAN 410和RAN 510相同或类似,并且其可包括先前讨论的RAN节点411;以及DN 603,其可以是例如运营商服务、互联网访问或第3方服务;和5GC 620。5GC 620可包括AUSF 622;AMF 621;SMF 624;NEF 623;PCF 626;NRF 625;UDM 627;AF 628;UPF 602;以及NSSF 629。
UPF 602可充当RAT内和RAT间移动性的锚点、与DN 603互连的外部PDU会话点,以及支持多宿主PDU会话的分支点。UPF 602还可执行分组路由和转发,执行分组检查,执行策略规则的用户平面部分,合法拦截分组(UP收集),执行流量使用情况报告,对用户平面执行QoS处理(例如,分组滤波、门控、UL/DL速率执行),执行上行链路流量验证(例如,SDF到QoS流映射),上行链路和下行链路中的传输级别分组标记以及执行下行链路分组缓冲和下行链路数据通知触发。UPF 602可包括用于支持将流量流路由到数据网络的上行链路分类器。DN 603可表示各种网络运营商服务、互联网访问或第三方服务。DN 603可包括或类似于先前讨论的应用服务器430。UPF 602可经由SMF 624和UPF 602之间的N4参考点与SMF 624进行交互。
AUSF 622可存储用于UE 601的认证的数据并处理与认证相关的功能。AUSF 622可有利于针对各种访问类型的公共认证框架。AUSF 622可经由AMF 621和AUSF 622之间的N12参考点与AMF 621通信;并且可经由UDM 627和AUSF 622之间的N13参考点与UDM 627通信。另外,AUSF 622可呈现出基于Nausf服务的接口。
AMF 621可负责注册管理(例如,负责注册UE 601等)、连接管理、可达性管理、移动性管理和对AMF相关事件的合法拦截,并且访问认证和授权。AMF 621可以是AMF 621和SMF624之间的N11参考点的终止点。AMF 621可为UE 601和SMF 624之间的SM消息提供传输,并且充当用于路由SM消息的透明代理。AMF 621还可为UE 601和SMSF(图6中未示出)之间的SMS消息提供传输。AMF 621可充当SEAF,该SEAF可包括与AUSF 622和UE 601的交互,接收由于UE 601认证过程而建立的中间密钥。在使用基于USIM的认证的情况下,AMF 621可从AUSF622检索安全材料。AMF 621还可包括SCM功能,该SCM功能从SEA接收用于导出接入网络特定密钥的密钥。此外,AMF 621可以是RAN CP接口的终止点,其可包括或为(R)AN 610和AMF621之间的N2参考点;并且AMF 621可以是NAS(N1)信令的终止点,并且执行NAS加密和完整性保护。
AMF 621还可通过N3 IWF接口支持与UE 601的NAS信令。N3IWF可用于提供对不可信实体的访问。N3IWF可以是控制平面的(R)AN 610和AMF 621之间的N2接口的终止点,并且可以是用户平面的(R)AN 610和UPF 602之间的N3参考点的终止点。因此,AMF 621可处理来自SMF 624和AMF 621的用于PDU会话和QoS的N2信令,封装/解封分组以用于IPSec和N3隧道,将N3用户平面分组标记在上行链路中,并且执行对应于N3分组标记的QoS,这考虑到与通过N2接收到的此类标记相关联的QoS需求。N3IWF还可经由UE 601和AMF 621之间的N1参考点在UE 601和AMF 621之间中继上行链路和下行链路控制平面NAS信令,并且在UE 601和UPF 602之间中继上行链路和下行链路用户平面分组。N3IWF还提供用于利用UE 601建立IPsec隧道的机制。AMF 621可呈现出基于Namf服务的接口,并且可以是两个AMF 621之间的N14参考点和AMF 621与5G-EIR(图6未示出)之间的N17参考点的终止点。
UE 601可能需要向AMF 621注册以便接收网络服务。RM用于向网络(例如,AMF621)注册UE 601或解除UE的注册,并且在网络(例如,AMF 621)中建立UE上下文。UE 601可在RM-REGISTERED状态或RM-DEREGISTERED状态下操作。在RM DEREGISTERED状态下,UE 601未向网络注册,并且AMF 621中的UE上下文不保持UE 601的有效位置或路由信息,因此AMF621无法到达UE 601。在RM REGISTERED状态下,UE 601向网络注册,并且AMF 621中的UE上下文可保持UE 601的有效位置或路由信息,因此AMF 621可到达UE 601。在RM-REGISTERED状态下,UE 601可执行移动性注册更新过程,执行由周期性更新定时器的到期触发的周期性注册更新过程(例如,以通知网络UE 601仍然处于活动状态),并且执行注册更新过程以更新UE能力信息或与网络重新协商协议参数等。
AMF 621可存储用于UE 601的一个或多个RM上下文,其中每个RM上下文与对网络的特定接入相关联。RM上下文可以是数据结构、数据库对象等,其指示或存储尤其每种接入类型的注册状态和周期性更新计时器。AMF 621还可存储可与先前讨论的(E)MM上下文相同或类似的5GC MM上下文。在各种实施方案中,AMF 621可在相关联的MM上下文或RM上下文中存储UE 601的CE模式B限制参数。AMF 621还可在需要时从已经存储在UE上下文(和/或MM/RM上下文)中的UE的使用设置参数导出值。
CM可用于通过N1接口建立和释放UE 601和AMF 621之间的信令连接。信令连接用于启用UE 601和CN 620之间的NAS信令交换,并且包括UE和AN之间的信令连接(例如,用于非3GPP接入的RRC连接或UE-N3IWF连接)以及AN(例如,RAN 610)和AMF 621之间的UE 601的N2连接。UE 601可在两个CM状态(CM-IDLE模式或CM-CONNECTED模式)中的一者下操作。当UE601在CM-IDLE状态/模式下操作时,UE 601可不具有通过N1接口与AMF 621建立的NAS信令连接,并且可存在用于UE 601的(R)AN 610信令连接(例如,N2和/或N3连接)。当UE 601在CM-CONNECTED状态/模式下操作时,UE 601可具有通过N1接口与AMF 621建立的NAS信令连接,并且可存在用于UE 601的(R)AN 610信令连接(例如,N2和/或N3连接)。在(R)AN 610与AMF 621之间建立N2连接可致使UE 601从CM-IDLE模式转变为CM-CONNECTED模式,并且当(R)AN 610与AMF 621之间的N2信令被释放时,UE 601可从CM-CONNECTED模式转变为CM-IDLE模式。
SMF 624可负责SM(例如,会话建立、修改和发布,包括UPF和AN节点之间的隧道维护);UE IP地址分配和管理(包括任选授权);UP功能的选择和控制;配置UPF的交通转向以将流量路由至正确的目的地;终止朝向策略控制功能的接口;策略执行和QoS的控制部分;合法拦截(对于SM事件和与LI系统的接口);终止NAS消息的SM部分;下行链路数据通知;发起经由AMF通过N2发送到AN的AN特定SM信息;以及确定会话的SSC模式。SM可指PDU会话的管理,并且PDU会话或“会话”可指提供或实现由数据网络名称(DNN)识别的UE 601和数据网络(DN)603之间的PDU交换的PDU连接性服务。PDU会话可在UE 601请求时建立,在UE 601和5GC620请求时修改,并且在UE 601和5GC 620请求时使用通过UE 601和SMF 624之间的N1参考点交换的NAS SM信令来释放。在从应用服务器请求时,5GC 620可触发UE 601中的特定应用程序。响应于接收到触发消息,UE 601可将触发消息(或触发消息的相关部分/信息)传递到UE 601中的一个或多个识别的应用程序。UE 601中的识别的应用程序可建立到特定DNN的PDU会话。SMF 624可检查UE 601请求是否符合与UE 601相关联的用户订阅信息。就这一点而言,SMF 624可检索和/或请求以从UDM 627接收关于SMF 624级别订阅数据的更新通知。
SMF 624可包括以下漫游功能:处理本地执行以应用QoS SLA(VPLMN);计费数据采集和计费接口(VPLMN);合法拦截(对于SM事件和与LI系统的接口,在VPLMN中);以及支持与外部DN的交互,以传输用于通过外部DN进行PDU会话授权/认证的信令。在漫游场景中,两个SMF 624之间的N16参考点可包括在系统600中,该系统可位于受访网络中的SMF 624与家庭网络中的另一个SMF 624之间。另外,SMF 624可呈现出基于Nsmf服务的接口。
NEF 623可提供用于安全地暴露由3GPP网络功能为第三方、内部暴露/再暴露、应用功能(例如,AF 628)、边缘计算或雾计算系统等提供的服务和能力的构件。在此类实施方案中,NEF 623可对AF进行认证、授权和/或限制。NEF 623还可转换与AF 628交换的信息以及与内部网络功能交换的信息。例如,NEF 623可在AF服务标识符和内部5GC信息之间转换。NEF 623还可基于其他网络功能的暴露能力从其他网络功能(NF)接收信息。该信息可作为结构化数据存储在NEF 623处,或使用标准化接口存储在数据存储NF处。然后,存储的信息可由NEF 623重新暴露于其他NF和AF,并且/或者用于其他目的诸如分析。另外,NEF 623可呈现出基于Nnef服务的接口。
NRF 625可支持服务发现功能,从NF实例接收NF发现请求,并且向NF实例提供发现的NF实例的信息。NRF 625还维护可用的NF实例及其支持的服务的信息。如本文所用,术语“实例化”等可指实例的创建,并且“实例”可指对象的具体出现,其可例如在程序代码的执行期间发生。另外,NRF 625可呈现出基于Nnrf服务的接口。
PCF 626可提供用于控制平面功能的策略规则以强制实施这些功能,并且还可支持统一策略框架以管理网络行为。PCF 626还可实现FE以访问与UDM 627的UDR中的策略决策相关的订阅信息。PCF 626可经由PCF 626和AMF 621之间的N15参考点与AMF 621通信,这可包括受访网络中的PCF 626和在漫游场景情况下的AMF 621。PCF 626可经由PCF 626和AF628之间的N5参考点与AF 628通信;并且经由PCF 626和SMF 624之间的N7参考点与SMF 624通信。系统600和/或CN 620还可包括(家庭网络中的)PCF 626和受访网络中的PCF 626之间的N24参考点。另外,PCF 626可呈现出基于Npcf服务的接口。
UDM 627可处理与订阅相关的信息以支持网络实体对通信会话的处理,并且可存储UE 601的订阅数据。例如,可经由UDM 627和AMF之间的N8参考点在UDM 627和AMF 621之间传送订阅数据。UDM 627可包括两部分:应用程序FE和UDR(图6未示出FE和UDR)。UDR可存储UDM 627和PCF 626的订阅数据和策略数据,和/或NEF 623的用于暴露的结构化数据以及应用数据(包括用于应用检测的PFD、多个UE 601的应用请求信息)。基于Nudr服务的接口可由UDR 221呈现出以允许UDM 627、PCF 626和NEF 623访问存储的数据的特定集,以及读取、更新(例如,添加、修改)、删除和订阅UDR中的相关数据更改的通知。UDM可包括UDM-FE,其负责处理凭据、位置管理、订阅管理等。在不同的事务中,若干不同的前端可为同一用户服务。UDM-FE访问存储在UDR中的订阅信息,并且执行认证凭证处理、用户识别处理、访问授权、注册/移动性管理和订阅管理。UDR可经由UDM 627和SMF 624之间的N10参考点与SMF 624进行交互。UDM 627还可支持SMS管理,其中SMS-FE实现如上所述的类似应用逻辑。另外,UDM 627可呈现出基于Nudm服务的接口。
AF 628可提供应用程序对流量路由的影响,提供对NCE的访问,并且与策略框架进行交互以进行策略控制。NCE可以是允许5GC 620和AF 628经由NEF 623彼此提供信息的机制,该机制可用于边缘计算具体实施。在此类具体实施中,网络运营商和第三方服务可被托管在附件的UE 601接入点附近,以通过减小的端到端延迟和传输网络上的负载来实现有效的服务递送。对于边缘计算具体实施,5GC可选择UE 601附近的UPF 602并且经由N6接口执行从UPF 602到DN 603的流量转向。这可基于UE订阅数据、UE位置和AF 628所提供的信息。这样,AF 628可影响UPF(重新)选择和流量路由。基于运营商部署,当AF 628被认为是可信实体时,网络运营商可允许AF 628与相关NF直接进行交互。另外,AF 628可呈现出基于Naf服务的接口。
NSSF 629可选择为UE 601服务的一组网络切片实例。如果需要,NSSF 629还可确定允许的NSSAI和到订阅的S-NSSAI的映射。NSSF 629还可基于合适的配置并且可能通过查询NRF 625来确定用于为UE 601服务的AMF集,或候选AMF 621的列表。UE 601的一组网络切片实例的选择可由AMF 621触发,其中UE 601通过与NSSF 629进行交互而注册,这可导致AMF 621发生改变。NSSF 629可经由AMF 621和NSSF 629之间的N22参考点与AMF 621进行交互;并且可经由N31参考点(图6未示出)与受访网络中的另一NSSF 629通信。另外,NSSF 629可呈现出基于Nnssf服务的接口。
如前所讨论,CN 620可包括SMSF,该SMSF可负责SMS订阅检查和验证,并向/从UE601从/向其他实体中继SM消息,所述其他实体诸如SMS-GMSC/IWMSC/SMS路由器。SMS还可与AMF 621和UDM 627进行交互以用于UE 601可用于SMS传输的通知程序(例如,设置UE不可达标志,并且当UE 601可用于SMS时通知UDM 627)。
CN 120还可以包括图6中未示出的其他元素,诸如数据存储系统/架构、5G-EIR、SEPP等。数据存储系统可包括SDSF、UDSF等。任何NF均可经由任何NF和UDSF(图6未示出)之间的N18参考点将非结构化数据存储到UDSF(例如,UE上下文)中或从中检索。单个NF可共享用于存储其相应非结构化数据的UDSF,或者各个NF可各自具有位于单个NF处或附近的它们自己的UDSF。另外,UDSF可呈现出基于Nudsf服务的接口(图6未示出)。5G-EIR可以是NF,其检查PEI的状态,以确定是否将特定装备/实体从网络中列入黑名单;并且SEPP可以是在PLMN间控制平面接口上执行拓扑隐藏、消息过滤和警管的非透明代理。
另外,NF中的NF服务之间可存在更多参考点和/或基于服务的接口;然而,为了清楚起见,图6省略了这些接口和参考点。在一个示例中,CN 620可包括Nx接口,其为MME(例如,MME 521)和AMF 621之间的CN间接口,以便能够在CN 620和CN 520之间进行互通。其他示例接口/参考点可包括由5G-EIR呈现出的基于N5g-EIR服务的接口、受访网络中的NRF和家庭网络中的NRF之间的N27参考点;以及受访网络中的NSSF和家庭网络中的NSSF之间的N31参考点。
图7示出了根据各种实施方案的基础设施装备700的示例。基础设施装备700(或“系统700”)可被实现为基站、无线电头端、RAN节点(诸如先前所示和所述的RAN节点411和/或AP 406)、应用服务器430和/或本文所讨论的任何其他元件/设备。在其他示例中,系统700可在UE中或由UE实现。
系统700可包括:应用电路705、基带电路710、一个或多个无线电前端模块715、存储器电路720、电源管理集成电路(PMIC)725、电源三通电路730、网络控制器电路735、网络接口连接器740、卫星定位电路745和用户接口750。在一些实施方案中,设备700可包括附加元件,诸如例如存储器/存储装置、显示器、相机、传感器或输入/输出(I/O)接口。在其他实施方案中,这些部件可包括在多于一个设备中。例如,所述电路可单独地包括在用于CRAN、vBBU或其他类似具体实施的多于一个设备中。
应用电路705可包括电路,诸如但不限于一个或多个处理器(或处理器核心)、高速缓存存储器,以及以下中的一者或多者:低压差稳压器(LDO)、中断控制器、串行接口诸如SPI、I2C或通用可编程串行接口模块、实时时钟(RTC)、包括间隔计时器和看门狗计时器的计时器-计数器、通用输入/输出(I/O或IO)、存储卡控制器诸如安全数字(SD)多媒体卡(MMC)或类似产品、通用串行总线(USB)接口、移动产业处理器接口(MIPI)接口和联合测试访问组(JTAG)测试访问端口。应用电路705的处理器(或核心)可与存储器/存储元件耦接或可包括存储器/存储元件,并且可被配置为执行存储在存储器/存储元件中的指令,以使各种应用程序或操作系统能够在系统700上运行。在一些具体实施中,存储器/存储元件可以是片上存储器电路,该电路可包括任何合适的易失性和/或非易失性存储器,诸如DRAM、SRAM、EPROM、EEPROM、闪存存储器、固态存储器和/或任何其他类型的存储器设备技术,诸如本文讨论的那些。
应用电路705的处理器可包括例如一个或多个处理器核心(CPU)、一个或多个应用处理器、一个或多个图形处理单元(GPU)、一个或多个精简指令集计算(RISC)处理器、一个或多个Acorn RISC机器(ARM)处理器、一个或多个复杂指令集计算(CISC)处理器、一个或多个数字信号处理器(DSP)、一个或多个FPGA、一个或多个PLD、一个或多个ASIC、一个或多个微处理器或控制器或它们的任何合适的组合。在一些实施方案中,应用电路705可包括或可以是用于根据本文的各种实施方案进行操作的专用处理器/控制器。作为示例,应用电路705的处理器可包括一个或多个Apple A系列处理器、Intel
Figure BDA0003491738570000301
Figure BDA0003491738570000302
处理器;Advanced Micro Devices(AMD)
Figure BDA0003491738570000303
处理器、加速处理单元(APU)或
Figure BDA0003491738570000304
处理器;ARM Holdings,Ltd.许可的基于ARM的处理器,诸如由Cavium(TM),Inc.提供的ARMCortex-A系列处理器和
Figure BDA0003491738570000305
来自MIPS Technologies,Inc.的基于MIPS的设计,诸如MIPS Warrior P级处理器;等等。在一些实施方案中,系统700可能不利用应用电路705,并且替代地可能包括专用处理器/控制器以处理例如从EPC或5GC接收的IP数据。
在一些具体实施中,应用电路705可包括一个或多个硬件加速器,该硬件加速器可以是微处理器、可编程处理设备等。该一个或多个硬件加速器可包括例如计算机视觉(CV)和/或深度学习(DL)加速器。例如,可编程处理设备可以是一个或多个现场可编程设备(FPD),诸如现场可编程门阵列(FPGA)等;可编程逻辑设备(PLD),诸如复杂PLD(CPLD)、大容量PLD(HCPLD)等;ASIC,诸如结构化ASIC等;可编程SoC(PSoC);等等。在此类具体实施中,应用电路705的电路可包括逻辑块或逻辑构架,以及可被编程用于执行各种功能诸如本文所讨论的各种实施方案的规程、方法、功能等的其他互连资源。在此类实施方案中,应用电路705的电路可包括用于存储查找表(LUT)等中的逻辑块、逻辑构架、数据等的存储器单元(例如,可擦可编程只读存储器(EPROM)、电可擦可编程只读存储器(EEPROM)、闪存存储器、静态存储器(例如,静态随机存取存储器(SRAM)、防熔丝等))。
基带电路710可被实现为例如焊入式衬底,其包括一个或多个集成电路、焊接到主电路板的单个封装集成电路或包含两个或更多个集成电路的多芯片模块。在下文中参考图9讨论了基带电路710的各种硬件电子元件。
用户接口电路750可包括被设计成使得用户能够与系统700或外围部件接口进行交互的一个或多个用户接口,该外围部件接口被设计成使得外围部件能够与系统700进行交互。用户接口可包括但不限于一个或多个物理或虚拟按钮(例如,复位按钮)、一个或多个指示器(例如,发光二极管(LED))、物理键盘或小键盘、鼠标、触摸板、触摸屏、扬声器或其他音频发射设备、麦克风、打印机、扫描仪、头戴式耳机、显示屏或显示设备等。外围部件接口可包括但不限于非易失性存储器端口、通用串行总线(USB)端口、音频插孔、电源接口等。
无线电前端模块(RFEM)715可包括毫米波(mmWave)RFEM和一个或多个子毫米波射频集成电路(RFIC)。在一些具体实施中,该一个或多个子毫米波RFIC可与毫米波RFEM物理地分离。RFIC可包括到一个或多个天线或天线阵列的连接(参见例如下文图9的天线阵列911),并且RFEM可连接到多个天线。在另选的具体实施中,毫米波和子毫米波两者的无线电功能均可在结合毫米波天线和子毫米波两者的相同的物理RFEM715中实现。
存储器电路720可包括以下中的一者或多者:包括动态随机存取存储器(DRAM)和/或同步动态随机存取存储器(SDRAM)的易失性存储器、包括高速电可擦存储器(通常称为“闪存存储器”)的非易失性存储器(NVM)、相变随机存取存储器(PRAM)、磁阻随机存取存储器(MRAM)等,并且可结合
Figure BDA0003491738570000311
Figure BDA0003491738570000312
的三维(3D)交叉点(XPOINT)存储器。存储器电路720可被实现为以下中的一者或多者:焊入式封装集成电路、套接存储器模块和插入式存储卡。
PMIC 725可包括稳压器、电涌保护器、电源警报检测电路以及一个或多个备用电源,诸如电池或电容器。电源警报检测电路可检测掉电(欠压)和电涌(过压)状况中的一者或多者。电源三通电路730可提供从网络电缆提取的电力,以使用单个电缆来为基础设施装备700提供电源和数据连接两者。
网络控制器电路735可使用标准网络接口协议诸如以太网、基于GRE隧道的以太网、基于多协议标签交换(MPLS)的以太网或一些其他合适的协议来提供到网络的连接。可使用物理连接经由网络接口连接器740向基础设施装备700提供网络连接/提供来自该基础设施装备的网络连接,该物理连接可以是电连接(通常称为“铜互连”)、光学连接或无线连接。网络控制器电路735可包括用于使用前述协议中的一者或多者来通信的一个或多个专用处理器和/或FPGA。在一些具体实施中,网络控制器电路735可包括用于使用相同或不同的协议来提供到其他网络的连接的多个控制器。
定位电路745包括用于接收和解码由全球导航卫星系统(GNSS)的定位网络发射/广播的信号的电路。导航卫星星座(或GNSS)的示例包括美国的全球定位系统(GPS)、俄罗斯的全球导航系统(GLONASS)、欧盟的伽利略系统、中国的北斗导航卫星系统、区域导航系统或GNSS增强系统(例如,利用印度星座(NAVIC)、日本的准天顶卫星系统(QZSS)、法国的多普勒轨道图和卫星集成的无线电定位(DORIS)等进行导航)等。定位电路745包括各种硬件元件(例如,包括用于促进OTA通信的硬件设备诸如开关、滤波器、放大器、天线元件等)以与定位网络的部件诸如导航卫星星座节点通信。在一些实施方案中,定位电路745可包括用于定位、导航和定时的微型技术(微型PNT)IC,其在没有GNSS辅助的情况下使用主定时时钟来执行位置跟踪/估计。定位电路745还可以是基带电路710和/或RFEM 715的一部分或与之交互以与定位网络的节点和部件通信。定位电路745还可向应用电路705提供位置数据和/或时间数据,该应用电路可使用该数据来使操作与各种基础设施(例如,RAN节点411等)等同步。
图7所示的部件可使用接口电路来彼此通信,该接口电路可包括任何数量的总线和/或互连(IX)技术,诸如行业标准架构(ISA)、扩展ISA(EISA)、外围部件互连(PCI)、外围部件互连扩展(PCIx)、PCI express(PCIe)或任何数量的其他技术。总线/IX可以是专有总线,例如,在基于SoC的系统中使用。可包括其他总线/IX系统,诸如I2C接口、SPI接口、点对点接口和电源总线等等。
图8示出了根据各种实施方案的平台800(或“设备800”)的示例。在实施方案中,计算机平台800可适于用作UE 401、501、601、应用服务器430和/或本文所讨论的任何其他元件/设备。平台800可包括示例中所示的部件的任何组合。平台800的部件可被实现为集成电路(IC)、IC的部分、分立电子设备或适配在计算机平台800中的其他模块、逻辑、硬件、软件、固件或它们的组合,或者被实现为以其他方式结合在较大系统的底盘内的部件。图8的框图旨在示出计算机平台800的部件的高级视图。然而,可省略所示的部件中的一些,可存在附加部件,并且所示部件的不同布置可在其他具体实施中发生。
应用电路805包括电路,诸如但不限于一个或多个处理器(或处理器内核)、高速缓存存储器,以及LDO、中断控制器、串行接口(诸如SPI)、I2C或通用可编程串行接口模块、RTC、计时器(包括间隔计时器和看门狗计时器)、通用I/O、存储卡控制器(诸如SD MMC或类似控制器)、USB接口、MIPI接口和JTAG测试接入端口中的一者或多者。应用电路805的处理器(或内核)可与存储器/存储元件耦接或可包括存储器/存储元件,并且可被配置为执行存储在存储器/存储元件中的指令,以使各种应用程序或操作系统能够在系统800上运行。在一些具体实施中,存储器/存储元件可以是片上存储器电路,该电路可包括任何合适的易失性和/或非易失性存储器,诸如DRAM、SRAM、EPROM、EEPROM、闪存存储器、固态存储器和/或任何其他类型的存储器设备技术,诸如本文讨论的那些。
应用电路705的处理器可包括例如一个或多个处理器核心、一个或多个应用处理器、一个或多个GPU、一个或多个RISC处理器、一个或多个ARM处理器、一个或多个CISC处理器、一个或多个DSP、一个或多个FPGA、一个或多个PLD、一个或多个ASIC、一个或多个微处理器或控制器、多线程处理器、超低电压处理器、嵌入式处理器、一些其他已知的处理元件或它们的任何合适的组合。在一些实施方案中,应用电路705可包括或可以是用于根据本文的各种实施方案进行操作的专用处理器/控制器。
作为示例,应用电路805的处理器可包括Apple A系列处理器。应用电路805的处理器还可以是以下中的一者或多者:基于
Figure BDA0003491738570000331
Architecture CoreTM的处理器,诸如QuarkTM、AtomTM、i3、i5、i7或MCU级处理器,或可购自加利福尼亚州圣克拉拉市
Figure BDA0003491738570000332
公司(
Figure BDA0003491738570000333
Corporation,Santa Clara,CA)的另一此类处理器;Advanced Micro Devices(AMD)
Figure BDA0003491738570000334
处理器或加速处理单元(APU);来自
Figure BDA0003491738570000335
Technologies,Inc.的SnapdragonTM处理器、Texas Instruments,
Figure BDA0003491738570000336
Open Multimedia ApplicationsPlatform(OMAP)TM处理器;来自MIPS Technologies,Inc.的基于MIPS的设计,诸如MIPSWarrior M级、Warrior I级和Warrior P级处理器;获得ARM Holdings,Ltd.许可的基于ARM的设计,诸如ARM Cortex-A、Cortex-R和Cortex-M系列处理器;等。在一些具体实施中,应用电路805可以是片上系统(SoC)的一部分,其中应用电路805和其他部件形成为单个集成电路。
除此之外或另选地,应用电路805可包括电路,诸如但不限于一个或多个现场可编程设备(FPD)诸如FPGA等;可编程逻辑设备(PLD),诸如复杂PLD(CPLD)、大容量PLD(HCPLD)等;ASIC,诸如结构化ASIC等;可编程SoC(PSoC);等等。在此类实施方案中,应用电路805的电路可包括逻辑块或逻辑构架,以及可被编程用于执行各种功能诸如本文所讨论的各种实施方案的过程、方法、功能等的其他互连资源。在此类实施方案中,应用电路805的电路可包括用于将逻辑块、逻辑构架、数据等存储在查找表(LUT)等中的存储器单元(例如,可擦可编程只读存储器(EPROM)、电可擦除可编程只读存储器(EEPROM)、闪存存储器、静态存储器(例如,静态随机存取存储器(SRAM)、防熔丝等))。
基带电路810可被实现为例如焊入式衬底,其包括一个或多个集成电路、焊接到主电路板的单个封装集成电路或包含两个或更多个集成电路的多芯片模块。在下文中参照图9讨论基带电路810的各种硬件电子元件。
RFEM 815可包括毫米波(mmWave)RFEM和一个或多个子毫米波射频集成电路(RFIC)。在一些具体实施中,该一个或多个子毫米波RFIC可与毫米波RFEM物理地分离。RFIC可包括到一个或多个天线或天线阵列的连接(参见例如下文图9的天线阵列911),并且RFEM可连接到多个天线。在另选的具体实施中,毫米波和子毫米波两者的无线电功能均可在结合毫米波天线和子毫米波两者的相同的物理RFEM 815中实现。
存储器电路820可包括用于提供给定量的系统存储器的任何数量和类型的存储器设备。例如,存储器电路820可包括以下各项中的一者或多者:易失性存储器,其包括随机存取存储器(RAM)、动态RAM(DRAM)和/或同步动态RAM(SDRAM);和非易失性存储器(NVM),其包括高速电可擦除存储器(通常称为闪存存储器)、相变随机存取存储器(PRAM)、磁阻随机存取存储器(MRAM)等。存储器电路820可根据联合电子设备工程委员会(JEDEC)基于低功率双倍数据速率(LPDDR)的设计诸如LPDDR2、LPDDR3、LPDDR4等进行开发。存储器电路820可被实现为以下中的一者或多者:焊入式封装集成电路、单管芯封装(SDP)、双管芯封装(DDP)或四管芯封装(Q17P)、套接存储器模块、包括微DIMM或迷你DIMM的双列直插存储器模块(DIMM),并且/或者经由球栅阵列(BGA)焊接到母板上。在低功率具体实施中,存储器电路820可以是与应用电路805相关联的片上存储器或寄存器。为了提供对信息诸如数据、应用程序、操作系统等的持久存储,存储器电路820可包括一个或多个海量存储设备,其可尤其包括固态磁盘驱动器(SSDD)、硬盘驱动器(HDD)、微型HDD、电阻变化存储器、相变存储器、全息存储器或化学存储器等等。例如,计算机平台800可结合得自
Figure BDA0003491738570000351
Figure BDA0003491738570000352
的三维(3D)交叉点(XPOINT)存储器。
可移除存储器电路823可包括用于将便携式数据存储设备与平台800耦接的设备、电路、外壳/壳体、端口或插座等。这些便携式数据存储设备可用于大容量存储,并且可包括例如闪存存储器卡(例如,安全数字(SD)卡、微型SD卡、xD图片卡等),以及USB闪存驱动器、光盘、外部HDD等。
平台800还可包括用于将外部设备与平台800连接的接口电路(未示出)。经由该接口电路连接到平台800的外部设备包括传感器电路821和机电部件(EMC)822,以及耦接到可移除存储器电路823的可移除存储器设备。
传感器电路821包括目的在于检测其环境中的事件或变化的设备、模块或子系统,并且将关于所检测的事件的信息(传感器数据)发送到一些其他设备、模块、子系统等。此类传感器的示例尤其包括:包括加速度计、陀螺仪和/或磁力仪的惯性测量单元(IMU);包括三轴加速度计、三轴陀螺仪和/或磁力仪的微机电系统(MEMS)或纳机电系统(NEMS);液位传感器;流量传感器;温度传感器(例如,热敏电阻器);压力传感器;气压传感器;重力仪;测高仪;图像捕获设备(例如,相机或无透镜孔径);光检测和测距(LiDAR)传感器;接近传感器(例如,红外辐射检测器等)、深度传感器、环境光传感器、超声收发器;麦克风或其他类似的音频捕获设备;等。
EMC 822包括目的在于使平台800能够改变其状态、位置和/或取向或者移动或控制机构或(子)系统的设备、模块或子系统。另外,EMC 822可被配置为生成消息/信令并向平台800的其他部件发送消息/信令以指示EMC 822的当前状态。EMC 822包括一个或多个电源开关、继电器(包括机电继电器(EMR)和/或固态继电器(SSR))、致动器(例如,阀致动器等)、可听声发生器、视觉警告设备、马达(例如,DC马达、步进马达等)、轮、推进器、螺旋桨、爪、夹钳、钩和/或其他类似的机电部件。在实施方案中,平台800被配置为基于从服务提供方和/或各种客户端接收到的一个或多个捕获事件和/或指令或控制信号来操作一个或多个EMC822。
在一些具体实施中,接口电路可将平台800与定位电路845连接。定位电路845包括用于接收和解码由GNSS的定位网络发射/广播的信号的电路。导航卫星星座(或GNSS)的示例可包括美国的GPS、俄罗斯的GLONASS、欧盟的伽利略系统、中国的北斗导航卫星系统、区域导航系统或GNSS增强系统(例如,NAVIC、日本的QZSS、法国的DORIS等)等。定位电路845可包括各种硬件元件(例如,包括用于促进OTA通信的硬件设备诸如开关、滤波器、放大器、天线元件等)以与定位网络的部件诸如导航卫星星座节点通信。在一些实施方案中,定位电路845可包括微型PNT IC,其在没有GNSS辅助的情况下使用主定时时钟来执行位置跟踪/估计。定位电路845还可以是基带电路710和/或RFEM 815的一部分或与之交互以与定位网络的节点和部件通信。定位电路845还可向应用电路805提供位置数据和/或时间数据,该应用电路可使用该数据来使操作与各种基础设施(例如,无线电基站)同步,以用于逐个拐弯导航应用程序等。
在一些具体实施中,接口电路可将平台800与近场通信(NFC)电路840连接。NFC电路840被配置为基于射频识别(RFID)标准提供非接触式近程通信,其中磁场感应用于实现NFC电路840与平台800外部的支持NFC的设备(例如,“NFC接触点”)之间的通信。NFC电路840包括与天线元件耦接的NFC控制器和与NFC控制器耦接的处理器。NFC控制器可以是通过执行NFC控制器固件和NFC堆栈向NFC电路840提供NFC功能的芯片/IC。NFC堆栈可由处理器执行以控制NFC控制器,并且NFC控制器固件可由NFC控制器执行以控制天线元件发射近程RF信号。RF信号可为无源NFC标签(例如,嵌入贴纸或腕带中的微芯片)供电以将存储的数据传输到NFC电路840,或者发起在NFC电路840和靠近平台800的另一个有源NFC设备(例如,智能电话或支持NFC的POS终端)之间的数据传输。
驱动电路846可包括用于控制嵌入在平台800中、附接到平台800或以其他方式与平台800通信地耦接的特定设备的软件元件和硬件元件。驱动电路846可包括各个驱动器,从而允许平台800的其他部件与可存在于平台800内或连接到该平台的各种输入/输出(I/O)设备交互或控制这些I/O设备。例如,驱动电路846可包括:用于控制并允许接入显示设备的显示驱动器、用于控制并允许接入平台800的触摸屏接口的触摸屏驱动器、用于获取传感器电路821的传感器读数并控制且允许接入传感器电路821的传感器驱动器、用于获取EMC822的致动器位置并且/或者控制并允许接入EMC 822的EMC驱动器、用于控制并允许接入嵌入式图像捕获设备的相机驱动器、用于控制并允许接入一个或多个音频设备的音频驱动器。
电源管理集成电路(PMIC)825(也称为“电源管理电路825”)可管理提供给平台800的各种部件的电力。具体地讲,相对于基带电路810,PMIC 825可控制电源选择、电压调节、电池充电或DC-DC转换。当平台800能够由电池830供电时,例如,当设备包括在UE 401、501、601中时,通常可包括PMIC 825。
在一些实施方案中,PMIC 825可以控制或以其他方式成为平台800的各种省电机制的一部分。例如,如果平台800处于RRC_Connected状态,在该状态下该平台仍连接到RAN节点,因为它预期不久接收流量,则在一段时间不活动之后,该平台可进入被称为非连续接收模式(DRX)的状态。在该状态期间,平台800可以在短时间间隔内断电,从而节省功率。如果在延长的时间段内不存在数据流量活动,则平台800可以转换到RRC_Idle状态,在该状态下该平台与网络断开连接,并且不执行操作诸如信道质量反馈、切换等。平台800进入极低功率状态,并且执行寻呼,其中该平台周期性地唤醒以侦听网络,然后再次断电。平台800在该状态下可能不接收数据;为了接收数据,该平台必须转变回RRC_Connected状态。附加的省电模式可以使设备无法使用网络的时间超过寻呼间隔(从几秒到几小时不等)。在此期间,该设备完全无法连接到网络,并且可以完全断电。在此期间发送的任何数据都会造成很大的延迟,并且假定延迟是可接受的。
电池830可为平台800供电,但在一些示例中,平台800可被安装在固定位置,并且可具有耦接到电网的电源。电池830可以是锂离子电池、金属-空气电池诸如锌-空气电池、铝-空气电池、锂-空气电池等。在一些具体实施中,例如在V2X应用中,电池830可以是典型的铅酸汽车电池。
在一些具体实施中,电池830可以是“智能电池”,其包括电池管理系统(BMS)或电池监测集成电路或与其耦接。BMS可包括在平台800中以跟踪电池830的充电状态(SoCh)。BMS可用于监测电池830的其他参数,诸如电池830的健康状态(SoH)和功能状态(SoF),以提供故障预测。BMS可将电池830的信息传送到应用电路805或平台800的其他部件。BMS还可包括模数(ADC)转换器,该模数转换器允许应用电路805直接监测电池830的电压或来自电池830的电流。电池参数可用于确定平台800可执行的动作,诸如传输频率、网络操作、感测频率等。
耦接到电网的功率块或其他电源可与BMS耦接以对电池830进行充电。在一些示例中,可用无线功率接收器替换功率块XS30,以例如通过计算机平台800中的环形天线来无线地获取电力。在这些示例中,无线电池充电电路可包括在BMS中。所选择的具体充电电路可取决于电池830的大小,并因此取决于所需的电流。充电可使用航空燃料联盟公布的航空燃料标准、无线电力联盟公布的Qi无线充电标准,或无线电力联盟公布的Rezence充电标准来执行。
用户接口电路850包括存在于平台800内或连接到该平台的各种输入/输出(I/O)设备,并且包括被设计成实现与平台800的用户交互的一个或多个用户接口和/或被设计成实现与平台800的外围部件交互的外围部件接口。用户接口电路850包括输入设备电路和输出设备电路。输入设备电路包括用于接受输入的任何物理或虚拟装置,尤其包括一个或多个物理或虚拟按钮(例如,复位按钮)、物理键盘、小键盘、鼠标、触控板、触摸屏、麦克风、扫描仪、头戴式耳机等。输出设备电路包括用于显示信息或以其他方式传达信息(诸如传感器读数、致动器位置或其他类似信息)的任何物理或虚拟装置。输出设备电路可包括任何数量和/或组合的音频或视觉显示,尤其包括一个或多个简单的视觉输出/指示器(例如,二进制状态指示器(例如,发光二极管(LED))和多字符视觉输出,或更复杂的输出,诸如显示设备或触摸屏(例如,液晶显示器(LCD)、LED显示器、量子点显示器、投影仪等),其中字符、图形、多媒体对象等的输出由平台800的操作生成或产生。输出设备电路还可包括扬声器或其他音频发射设备、打印机等。在一些实施方案中,传感器电路821可用作输入设备电路(例如,图像捕获设备、运动捕获设备等),并且一个或多个EMC可用作输出设备电路(例如,用于提供触觉反馈的致动器等)。在另一个示例中,可包括NFC电路以读取电子标签和/或与另一个支持NFC的设备连接,该NFC电路包括与天线元件耦接的NFC控制器和处理设备。外围部件接口可包括但不限于非易失性存储器端口、USB端口、音频插孔、电源接口等。
尽管未示出,但平台800的部件可使用合适的总线或互连(IX)技术彼此通信,所述技术可包括任何数量的技术,包括ISA、EISA、PCI、PCIx、PCIe、时间触发协议(TTP)系统、FlexRay系统或任何数量的其他技术。总线/IX可以是专有总线/IX,例如,在基于SoC的系统中使用。可包括其他总线/IX系统,诸如I2C接口、SPI接口、点对点接口和电源总线等等。
图9示出了根据各种实施方案的基带电路910和无线电前端模块(RFEM)915的示例性部件。基带电路910分别对应于图7和图8的基带电路710和810。RFEM 915分别对应于图7和图8的RFEM 715和815。如图所示,RFEM 915可包括射频(RF)电路906、前端模块(FEM)电路908、至少如图所示耦接在一起的天线阵列911。
基带电路910包括电路和/或控制逻辑部件,其被配置为执行使得能够经由RF电路906实现与一个或多个无线电网络的通信的各种无线电/网络协议和无线电控制功能。无线电控制功能可包括但不限于信号调制/解调、编码/解码、射频移位等。在一些实施方案中,基带电路910的调制/解调电路可包括快速傅里叶变换(FFT)、预编码或星座映射/解映射功能。在一些实施方案中,基带电路910的编码/解码电路可包括卷积、咬尾卷积、turbo、维特比或低密度奇偶校验(LDPC)编码器/解码器功能。调制/解调和编码器/解码器功能的实施方案不限于这些示例,并且在其他实施方案中可包括其他合适的功能。基带电路910被配置为处理从RF电路906的接收信号路径所接收的基带信号以及生成用于RF电路906的发射信号路径的基带信号。基带电路910被配置为与应用电路705/805(参见图7和图8)连接,以生成和处理基带信号并控制RF电路906的操作。基带电路910可处理各种无线电控制功能。
基带电路910的前述电路和/或控制逻辑部件可包括一个或多个单核或多核处理器。例如,该一个或多个处理器可包括3G基带处理器904A、4G/LTE基带处理器904B、5G/NR基带处理器904C,或用于其他现有代、正在开发或将来待开发的代(例如,第六代(6G)等)的一些其他基带处理器904D。在其他实施方案中,基带处理器904A-D中的一些或全部功能可包括在存储器904G中存储的模块中,并且经由中央处理单元(CPU)904E来执行。在其他实施方案中,基带处理器904A-D的一些功能或全部功能可被提供为加载有存储在相应存储器单元中的适当比特流或逻辑块的硬件加速器(例如,FPGA、ASIC等)。在各种实施方案中,存储器904G可存储实时OS(RTOS)的程序代码,该程序代码当由CPU 904E(或其他基带处理器)执行时,将使CPU 904E(或其他基带处理器)管理基带电路910的资源、调度任务等。RTOS的示例可包括由
Figure BDA0003491738570000401
提供的Operating System Embedded(OSE)TM,由Mentor
Figure BDA0003491738570000402
提供的Nucleus RTOSTM,由Mentor
Figure BDA0003491738570000403
提供的Versatile Real-Time Executive(VRTX),由Express
Figure BDA0003491738570000404
提供的ThreadXTM,由
Figure BDA0003491738570000405
提供的FreeRTOS、REX OS,由OpenKernel(OK)
Figure BDA0003491738570000406
提供的OKL4,或任何其他合适的RTOS,诸如本文所讨论的那些。此外,基带电路910包括一个或多个音频数字信号处理器(DSP)904F。音频DSP 904F包括用于压缩/解压和回声消除的元件,并且在其他实施方案中可包括其他合适的处理元件。
在一些实施方案中,处理器904A-904E中的每个处理器包括相应的存储器接口以向存储器904G发送数据/从该存储器接收数据。基带电路910还可包括用于通信地耦接到其他电路/设备的一个或多个接口,诸如用于向基带电路910外部的存储器发送数据/从该基带电路外部的存储器接收数据的接口;用于向图7至图XT的应用电路705/805发送数据/从该应用电路接收数据的应用电路接口;用于向图9的RF电路906发送数据/从该RF电路接收数据的RF电路接口;用于从一个或多个无线硬件元件(例如,近场通信(NFC)部件、
Figure BDA0003491738570000407
低功耗部件、
Figure BDA0003491738570000408
部件等)发送数据/从这些无线硬件元件接收数据的无线硬件连接接口;以及用于向PMIC 825发送电力或控制信号/从该PMIC接收电力或控制信号的电源管理接口。
在另选的实施方案(其可与上述实施方案组合)中,基带电路910包括一个或多个数字基带系统,该一个或多个数字基带系统经由互连子系统彼此耦接并且耦接到CPU子系统、音频子系统和接口子系统。数字基带子系统还可经由另一个互连子系统耦接到数字基带接口和混合信号基带子系统。互连子系统中的每个可包括总线系统、点对点连接件、片上网络(NOC)结构和/或一些其他合适的总线或互连技术,诸如本文所讨论的那些。音频子系统可包括DSP电路、缓冲存储器、程序存储器、语音处理加速器电路、数据转换器电路诸如模数转换器电路和数模转换器电路,包括放大器和滤波器中的一者或多者的模拟电路,和/或其他类似部件。在本公开的一个方面,基带电路910可包括具有一个或多个控制电路实例(未示出)的协议处理电路,以为数字基带电路和/或射频电路(例如,无线电前端模块915)提供控制功能。
尽管图9中未示出,但在一些实施方案中,基带电路910包括用以操作一个或多个无线通信协议的各个处理设备(例如,“多协议基带处理器”或“协议处理电路”)和用以实现PHY层功能的各个处理设备。在这些实施方案中,PHY层功能包括前述无线电控制功能。在这些实施方案中,协议处理电路操作或实现一个或多个无线通信协议的各种协议层/实体。在第一示例中,当基带电路910和/或RF电路906是毫米波通信电路或一些其他合适的蜂窝通信电路的一部分时,协议处理电路可操作LTE协议实体和/或5G/NR协议实体。在第一示例中,协议处理电路将操作MAC、RLC、PDCP、SDAP、RRC和NAS功能。在第二示例中,当基带电路910和/或RF电路906是Wi-Fi通信系统的一部分时,协议处理电路可操作一个或多个基于IEEE的协议。在第二示例中,协议处理电路将操作Wi-Fi MAC和逻辑链路控制(LLC)功能。协议处理电路可包括用于存储程序代码和用于操作协议功能的数据的一个或多个存储器结构(例如904G),以及用于执行程序代码和使用数据执行各种操作的一个或多个处理内核。基带电路910还可支持多于一个无线协议的无线电通信。
本文讨论的基带电路910的各种硬件元件可被实现为例如焊入式衬底,其包括一个或多个集成电路(IC)、焊接到主电路板的单个封装集成电路或包含两个或更多个IC的多芯片模块。在一个示例中,基带电路910的部件可适当地组合在单个芯片或单个芯片组中,或设置在同一电路板上。在另一个示例中,基带电路910和RF电路906的组成部件中的一些或全部可一起实现,诸如例如片上系统(SOC)或系统级封装(SiP)。在另一个示例中,基带电路910的组成部件中的一些或全部可被实现为与RF电路906(或RF电路906的多个实例)通信地耦接的单独的SoC。在又一个示例中,基带电路910和应用电路705/805的组成部件中的一些或全部可一起被实现为安装到同一电路板的单独的SoC(例如,“多芯片封装”)。
在一些实施方案中,基带电路910可提供与一种或多种无线电技术兼容的通信。例如,在一些实施方案中,基带电路910可支持与E-UTRAN或其他WMAN、WLAN、WPAN的通信。其中基带电路910被配置为支持多于一种的无线协议的无线电通信的实施方案可被称为多模式基带电路。
RF电路906可实现使用调制的电磁辐射通过非固体介质与无线网络通信。在各种实施方案中,RF电路906可包括开关、滤波器、放大器等,以促进与无线网络的通信。RF电路906可包括接收信号路径,该接收信号路径可包括用于下变频从FEM电路908接收的RF信号并向基带电路910提供基带信号的电路。RF电路906还可包括发射信号路径,该发射信号路径可包括用于上变频由基带电路910提供的基带信号并向FEM电路908提供用于传输的RF输出信号的电路。
在一些实施方案中,RF电路906的接收信号路径可包括混频器电路906a、放大器电路906b和滤波器电路906c。在一些实施方案中,RF电路906的发射信号路径可包括滤波器电路906c和混频器电路906a。RF电路906还可包括合成器电路906d,该合成器电路用于合成由接收信号路径和发射信号路径的混频器电路906a使用的频率。在一些实施方案中,接收信号路径的混频器电路906a可以被配置为基于合成器电路906d提供的合成频率来将从FEM电路908接收的RF信号下变频。放大器电路906b可被配置为放大下变频信号,并且滤波器电路906c可以是低通滤波器(LPF)或带通滤波器(BPF),其被配置为从下变频信号中移除不想要的信号以生成输出基带信号。可将输出基带信号提供给基带电路910以进行进一步处理。在一些实施方案中,尽管这不是必需的,但是输出基带信号可以是零频率基带信号。在一些实施方案中,接收信号路径的混频器电路906a可包括无源混频器,但是实施方案的范围在这方面不受限制。
在一些实施方案中,发射信号路径的混频器电路906a可被配置为基于由合成器电路906d提供的合成频率来对输入基带信号进行上变频,以生成用于FEM电路908的RF输出信号。基带信号可由基带电路910提供,并且可由滤波器电路906c滤波。
在一些实施方案中,接收信号路径的混频器电路906a和发射信号路径的混频器电路906a可包括两个或更多个混频器,并且可被布置为分别用于正交下变频和正交上变频。在一些实施方案中,接收信号路径的混频器电路906a和发射信号路径的混频器电路906a可包括两个或更多个混频器,并且可被布置用于镜像抑制(例如,Hartley镜像抑制)。在一些实施方案中,接收信号路径的混频器电路906a和发射信号路径的混频器电路906a可被布置为分别用于直接下变频和直接上变频。在一些实施方案中,接收信号路径的混频器电路906a和发射信号路径的混频器电路906a可被配置为用于超外差操作。
在一些实施方案中,输出基带信号和输入基带信号可以是模拟基带信号,尽管实施方案的范围在这方面不受限制。在一些另选实施方案中,输出基带信号和输入基带信号可以是数字基带信号。在这些另选的实施方案中,RF电路906可包括模数转换器(ADC)和数模转换器(DAC)电路,并且基带电路910可包括数字基带接口以与RF电路906进行通信。
在一些双模式实施方案中,可以提供单独的无线电IC电路来处理每个频谱的信号,但是实施方案的范围在这方面不受限制。
在一些实施方案中,合成器电路906d可以是分数N合成器或分数N/N+1合成器,但是实施方案的范围在这方面不受限制,因为其他类型的频率合成器也可以是合适的。例如,合成器电路906d可以是Δ-∑合成器、倍频器或包括具有分频器的锁相环路的合成器。
合成器电路906d可被配置为基于频率输入和分频器控制输入来合成输出频率,以供RF电路906的混频器电路906a使用。在一些实施方案中,合成器电路906d可以是分数N/N+1合成器。
在一些实施方案中,频率输入可由电压控制振荡器(VCO)提供,尽管这不是必须的。可由基带电路910或应用电路705/805根据所需的输出频率提供分频器控制输入。在一些实施方案中,可以基于由应用电路705/805指示的信道,从查找表中确定分频器控制输入(例如,N)。
RF电路906的合成器电路906d可包括分频器、延迟锁定环路(DLL)、复用器和相位累加器。在一些实施方案中,分频器可以是双模分频器(DMD),并且相位累加器可以是数字相位累加器(DPA)。在一些实施方案中,DMD可以被配置为将输入信号除以N或N+1(例如,基于进位),以提供分数除法比。在一些示例实施方案中,DLL可包括级联的、可调谐的、延迟元件、鉴相器、电荷泵和D型触发器集。在这些实施方案中,延迟元件可以被配置为将VCO周期分成Nd个相等的相位分组,其中Nd是延迟线中的延迟元件的数量。这样,DLL提供了负反馈,以帮助确保通过延迟线的总延迟为一个VCO周期。
在一些实施方案中,合成器电路906d可被配置为生成载波频率作为输出频率,而在其他实施方案中,输出频率可以是载波频率的倍数(例如,载波频率的两倍,载波频率的四倍)并且可与正交发生器和分频器电路一起使用以在该载波频率上生成相对于彼此具有多个不同相位的多个信号。在一些实施方案中,输出频率可为LO频率(fLO)。在一些实施方案中,RF电路906可包括IQ/极性转换器。
FEM电路908可包括接收信号路径,该接收信号路径可包括电路,该电路被配置为对从天线阵列911接收的RF信号进行操作,放大接收到的信号并且将接收到的信号的放大版本提供给RF电路906以进行进一步处理。FEM电路908还可包括发射信号路径,该发射信号路径可包括电路,该电路被配置为放大由RF电路906提供的、用于由天线阵列911中的一个或多个天线元件发射的发射信号。在各种实施方案中,可仅在RF电路906中、仅在FEM电路908中或者在RF电路906和FEM电路908两者中完成通过传输或接收信号路径的放大。
在一些实施方案中,FEM电路908可包括TX/RX开关,以在发射模式与接收模式操作之间切换。FEM电路908可包括接收信号路径和发射信号路径。FEM电路908的接收信号路径可包括LNA以放大接收到的RF信号并且提供经放大的接收到的RF信号作为输出(例如,给RF电路906)。FEM电路908的发射信号路径可包括用于放大输入RF信号(例如,由RF电路906提供)的功率放大器(PA),以及用于生成RF信号以便随后由天线阵列911的一个或多个天线元件传输的一个或多个滤波器。
天线阵列911包括一个或多个天线元件,每个天线元件被配置为将电信号转换成无线电波以行进通过空气并且将所接收的无线电波转换成电信号。例如,由基带电路910提供的数字基带信号被转换成模拟RF信号(例如,调制波形),该模拟RF信号将被放大并经由包括一个或多个天线元件(未示出)的天线阵列911的天线元件传输。天线元件可以是全向的、定向的或是它们的组合。天线元件可形成如已知那样和/或本文讨论的多种布置。天线阵列911可包括制造在一个或多个印刷电路板的表面上的微带天线或印刷天线。天线阵列911可形成为各种形状的金属箔的贴片(例如,贴片天线),并且可使用金属传输线等与RF电路906和/或FEM电路908耦接。
应用电路705/805的处理器和基带电路910的处理器可用于执行协议栈的一个或多个实例的元件。例如,可单独地或组合地使用基带电路910的处理器来执行层3、层2或层1功能,而应用电路705/805的处理器可利用从这些层接收到的数据(例如,分组数据)并进一步执行层4功能(例如,TCP和UDP层)。如本文所提到的,层3可包括RRC层,下文将进一步详细描述。如本文所提到的,层2可包括MAC层、RLC层和PDCP层,下文将进一步详细描述。如本文所提到的,层1可包括UE/RAN节点的PHY层,下文将进一步详细描述。
图10示出了根据各种实施方案的可在无线通信设备中实现的各种协议功能;具体地讲,图10包括示出各种协议层/实体之间的互连的布置1000。针对结合5G/NR系统标准和LTE系统标准操作的各种协议层/实体提供了图10的以下描述,但图10的一些或所有方面也可适用于其他无线通信网络系统。
除了未示出的其他较高层功能之外,布置1000的协议层还可包括PHY 1010、MAC1020、RLC 1030、PDCP 1040、SDAP 1047、RRC 1055和NAS层1057中的一者或多者。协议层可包括能够提供两个或更多个协议层之间的通信的一个或多个服务接入点(例如,图10中的项1059、1056、1050、1049、1045、1035、1025和1015)。
PHY 1010可以传输和接收物理层信号1005,这些物理层信号可以从一个或多个其他通信设备接收或传输至一个或多个其他通信设备。物理层信号1005可包括一个或多个物理信道,诸如本文所讨论的那些。PHY 1010还可执行链路自适应或自适应调制和编码(AMC)、功率控制、小区搜索(例如,用于初始同步和切换目的)以及由较高层(例如,RRC1055)使用的其他测量。PHY 1010还可进一步在传输信道、传输信道的前向纠错(FEC)编码/解码、物理信道的调制/解调、交织、速率匹配、映射到物理信道以及MIMO天线处理上执行错误检测。在实施方案中,PHY 1010的实例可经由一个或多个PHY-SAP 1015处理来自MAC1020的实例的请求,并且向其提供指示。根据一些实施方案,经由PHY-SAP 1015传送的请求和指示可包括一个或多个传输信道。
MAC 1020的实例可经由一个或多个MAC-SAP 1025处理来自RLC 1030的实例的请求,并且向其提供指示。经由MAC-SAP 1025传送的这些请求和指示可包括一个或多个逻辑信道。MAC 1020可以执行逻辑信道与传输信道之间的映射,将来自一个或多个逻辑信道的MAC SDU复用到待经由传输信道递送到PHY 1010的TB上,将MAC SDU从经由传输信道从PHY1010递送的TB解复用到一个或多个逻辑信道,将MAC SDU复用到TB上,调度信息报告,通过HARQ进行纠错以及逻辑信道优先级划分。
RLC 1030的实例可经由一个或多个无线电链路控制服务接入点(RLC-SAP)1035处理来自PDCP 1040的实例的请求,并且向其提供指示。经由RLC-SAP 1035传送的这些请求和指示可包括一个或多个RLC信道。RLC 1030可以多种操作模式进行操作,包括:透明模式(TM)、未确认模式(UM)和已确认模式(AM)。RLC 1030可以执行上层协议数据单元(PDU)的传输,通过用于AM数据传输的自动重传请求(ARQ)的纠错,以及用于UM和AM数据传输的RLCSDU的级联、分段和重组。RLC 1030还可以对用于AM数据传输的RLC数据PDU执行重新分段,对用于UM和AM数据传输的RLC数据PDU进行重新排序,检测用于UM和AM数据传输的重复数据,丢弃用于UM和AM数据传输的RLC SDU,检测用于AM数据传输的协议错误,并且执行RLC重新建立。
PDCP 1040的实例可经由一个或多个分组数据汇聚协议服务点(PDCP-SAP)1045处理来自RRC 1055的实例和/或SDAP 1047的实例的请求,并且向其提供指示。经由PDCP-SAP1045传送的这些请求和指示可包括一个或多个无线电承载。PDCP 1040可以执行IP数据的标头压缩和解压缩,维护PDCP序列号(SN),在下层重新建立时执行上层PDU的顺序递送,在为RLC AM上映射的无线电承载重新建立低层时消除低层SDU的重复,加密和解密控制平面数据,对控制平面数据执行完整性保护和完整性验证,控制基于定时器的数据丢弃,并且执行安全操作(例如,加密、解密、完整性保护、完整性验证等)。
SDAP 1047的实例可经由一个或多个SDAP-SAP 1049处理来自一个或多个较高层协议实体的请求,并且向其提供指示。经由SDAP-SAP 1049传送的这些请求和指示可包括一个或多个QoS流。SDAP 1047可将QoS流映射到DRB,反之亦然,并且还可标记DL分组和UL分组中的QFI。单个SDAP实体1047可被配置用于单独的PDU会话。在UL方向上,NG-RAN 410可以以两种不同的方式(反射映射或显式映射)控制QoS流到DRB的映射。对于反射映射,UE 401的SDAP 1047可监测每个DRB的DL分组的QFI,并且可针对在UL方向上流动的分组应用相同的映射。对于DRB,UE 401的SDAP 1047可映射属于QoS流的UL分组,该QoS流对应于在该DRB的DL分组中观察到的QoS流ID和PDU会话。为了实现反射映射,NG-RAN 610可通过Uu接口用QoS流ID标记DL分组。显式映射可涉及RRC 1055用QoS流到DRB的显式映射规则配置SDAP 1047,该规则可由SDAP 1047存储并遵循。在实施方案中,SDAP 1047可仅用于NR具体实施中,并且可不用于LTE具体实施中。
RRC 1055可经由一个或多个管理服务接入点(M-SAP)配置一个或多个协议层的各方面,该一个或多个协议层可包括PHY 1010、MAC 1020、RLC 1030、PDCP 1040和SDAP 1047的一个或多个实例。在实施方案中,RRC 1055的实例可处理来自一个或多个NAS实体1057的请求,并且经由一个或多个RRC-SAP 1056向其提供指示。RRC 1055的主要服务和功能可包括系统信息的广播(例如,包括在与NAS有关的MIB或SIB中),与接入层(AS)有关的系统信息的广播,UE 401与RAN 410之间的RRC连接的寻呼、建立、维护和释放(例如,RRC连接寻呼、RRC连接建立、RRC连接修改和RRC连接释放),点对点无线电承载的建立、配置、维护和释放,包括密钥管理的安全功能,RAT间的移动性以及用于UE测量报告的测量配置。这些MIB和SIB可包括一个或多个IE,其各自可以包括单独的数据字段或数据结构。
NAS 1057可形成UE 401与AMF 621之间的控制平面的最高层。NAS 1057可支持UE401的移动性和会话管理过程,以在LTE系统中建立和维护UE 401和P-GW之间的IP连接。
根据各种实施方案,布置1000的一个或多个协议实体可在UE 401、RAN节点411、NR具体实施中的AMF 621或LTE具体实施中的MME 521、NR具体实施中的UPF 602或LTE具体实施中的S-GW 522和P-GW 523等中实现,以用于前述设备之间的控制平面或用户平面通信协议栈。在此类实施方案中,可在UE 401、gNB 411、AMF 621等中的一者或多者中实现的一个或多个协议实体可以与可在另一个设备中或在另一个设备上实现的相应对等协议实体进行通信,该实体使用相应较低层协议实体的服务来进行这种通信。在一些实施方案中,gNB411的gNB-CU可托管gNB的控制一个或多个gNB-DU操作的RRC 1055、SDAP 1047和PDCP1040,并且gNB 411的gNB-DU可各自托管gNB 411的RLC 1030、MAC 1020和PHY 1010。
在第一示例中,控制平面协议栈可按从最高层到最低层的顺序包括NAS 1057、RRC1055、PDCP 1040、RLC 1030、MAC 1020和PHY 1010。在该示例中,上层1060可构建在NAS1057的顶部,该NAS包括IP层1061、SCTP 1062和应用层信令协议(AP)1063。
在NR具体实施中,AP 1063可以是用于被限定在NG-RAN节点411和AMF 621之间的NG接口413的NG应用协议层(NGAP或NG-AP)1063,或者AP 1063可以是用于被限定在两个或更多个RAN节点411之间的Xn接口412的Xn应用协议层(XnAP或Xn-AP)1063。
NG-AP 1063可支持NG接口413的功能,并且可包括初级程序(EP)。NG-AP EP可以是NG-RAN节点411与AMF 621之间的交互单元。NG-AP 1063服务可包括两个组:UE相关联的服务(例如,与UE 401有关的服务)和非UE相关联的服务(例如,与NG-RAN节点411和AMF 621之间的整个NG接口实例有关的服务)。这些服务可包括功能,包括但不限于:用于将寻呼请求发送到特定寻呼区域中涉及的NG-RAN节点411的寻呼功能;用于允许AMF 621建立、修改和/或释放AMF 621和NG-RAN节点411中的UE上下文的UE上下文管理功能;用于ECM-CONNECTED模式下的UE 401的移动性功能,用于系统内HO支持NG-RAN内的移动性,并且用于系统间HO支持从/到EPS系统的移动性;用于在UE 401和AMF 621之间传输或重新路由NAS消息的NAS信令传输功能;用于确定AMF 621和UE 401之间的关联的NAS节点选择功能;用于设置NG接口并通过NG接口监测错误的NG接口管理功能;用于提供经由NG接口传输警告消息或取消正在进行的警告消息广播的手段的警告消息发送功能;用于经由CN 420在两个RAN节点411之间请求和传输RAN配置信息(例如,SON信息、性能测量(PM)数据等)的配置传输功能;和/或其他类似的功能。
XnAP 1063可支持Xn接口412的功能,并且可包括XnAP基本移动性过程和XnAP全局过程。XnAP基本移动性过程可包括用于处理NG RAN 411(或E-UTRAN 510)内的UE移动性的过程,诸如切换准备和取消过程、SN状态传输过程、UE上下文检索和UE上下文释放过程、RAN寻呼过程、与双连接有关的过程等。XnAP全局过程可包括与特定UE 401无关的过程,诸如Xn接口设置和重置过程、NG-RAN更新过程、小区激活过程等。
在LTE具体实施中,AP 1063可以是用于被限定在E-UTRAN节点411和MME之间的S1接口413的S1应用协议层(S1-AP)1063,或者AP 1063可以是用于限定在两个或更多个E-UTRAN节点411之间的X2接口412的X2应用协议层(X2AP或X2-AP)1063。
S1应用协议层(S1-AP)1063可支持S1接口的功能,并且类似于先前讨论的NG-AP,S1-AP可包括S1-AP EP。S1-AP EP可以是LTE CN 420内的E-UTRAN节点411与MME 521之间的交互单元。S1-AP 1063服务可包括两组:UE相关联的服务和非UE相关联的服务。这些服务执行的功能包括但不限于:E-UTRAN无线电接入承载(E-RAB)管理、UE能力指示、移动性、NAS信令传输、RAN信息管理(RIM)和配置传输。
X2AP 1063可支持X2接口412的功能,并且可包括X2AP基本移动性过程和X2AP全局过程。X2AP基本移动性过程可包括用于处理E-UTRAN 420内的UE移动性的过程,诸如切换准备和取消过程、SN状态传输过程、UE上下文检索和UE上下文释放过程、RAN寻呼过程、与双连接有关的过程等。X2AP全局过程可包括与特定UE 401无关的过程,诸如X2接口设置和重置过程、负载指示过程、错误指示过程、小区激活过程等。
SCTP层(另选地称为SCTP/IP层)1062可提供应用层消息(例如,NR具体实施中的NGAP或XnAP消息,或LTE具体实施中的S1-AP或X2AP消息)的保证递送。SCTP 1062可以部分地基于由IP 1061支持的IP协议来确保RAN节点411和AMF 621/MME 521之间的信令消息的可靠递送。互联网协议层(IP)1061可用于执行分组寻址和路由功能。在一些具体实施中,IP层1061可使用点对点传输来递送和传送PDU。就这一点而言,RAN节点411可包括与MME/AMF的L2和L1层通信链路(例如,有线或无线)以交换信息。
在第二示例中,用户平面协议栈可按从最高层到最低层的顺序包括SDAP 1047、PDCP 1040、RLC 1030、MAC 1020和PHY 1010。用户平面协议栈可用于NR具体实施中的UE401、RAN节点411和UPF 602之间的通信,或LTE具体实施中的S-GW 522和P-GW 523之间的通信。在该示例中,上层1051可构建在SDAP 1047的顶部,并且可包括用户数据报协议(UDP)和IP安全层(UDP/IP)1052、用于用户平面层(GTP-U)1053的通用分组无线服务(GPRS)隧道协议和用户平面PDU层(UP PDU)1063。
传输网络层1054(也被称为“传输层”)可构建在IP传输上,并且GTP-U 1053可用于UDP/IP层1052(包括UDP层和IP层)的顶部以承载用户平面PDU(UP-PDU)。IP层(也称为“互联网层”)可用于执行分组寻址和路由功能。IP层可将IP地址分配给例如以IPv4、IPv6或PPP格式中的任一种格式用户数据分组。
GTP-U 1053可用于在GPRS核心网络内以及在无线电接入网和核心网络之间承载用户数据。例如,传输的用户数据可以是IPv4、IPv6或PPP格式中任一种格式的分组。UDP/IP1052可提供用于数据完整性的校验和,用于寻址源和目的地处的不同功能的端口号,以及对所选择数据流的加密和认证。RAN节点411和S-GW 522可利用S1-U接口经由包括L1层(例如,PHY 1010)、L2层(例如,MAC 1020、RLC 1030、PDCP 1040和/或SDAP 1047)、UDP/IP层1052以及GTP-U 1053的协议栈来交换用户平面数据。S-GW 522和P-GW 523可利用S5/S8a接口经由包括L1层、L2层、UDP/IP层1052和GTP-U 1053的协议栈来交换用户平面数据。如先前讨论的,NAS协议可支持UE 401的移动性和会话管理过程,以建立和维护UE 401与P-GW 523之间的IP连接。
此外,尽管图10中未示出,但应用层可存在于AP 1063和/或传输网络层1054上方。应用层可以是其中UE 401、RAN节点411或其他网络元件的用户与例如分别由应用电路705或应用电路805执行的软件应用进行交互的层。应用层还可为软件应用提供一个或多个接口以与UE 401或RAN节点411的通信系统(诸如基带电路910)进行交互。在一些具体实施中,IP层和/或应用层可提供与开放系统互连(OSI)模型的层5至层7或其部分(例如,OSI层7—应用层、OSI层6—表示层和OSI层5—会话层)相同或类似的功能。
众所周知,使用个人可识别信息应遵循公认为满足或超过维护用户隐私的行业或政府要求的隐私政策和做法。具体地,应管理和处理个人可识别信息数据,以使无意或未经授权的访问或使用的风险最小化,并应当向用户明确说明授权使用的性质。

Claims (60)

1.在无线通信网络中,一种方法,包括:
与所述无线通信网络连接的UE接收来自所述无线通信网络中的节点的丢包率(PLR)阈值配置消息;
所述UE基于所述PLR阈值配置消息确定新PLR阈值配置;以及
响应于确定所述新PLR阈值配置,基于所述新PLR阈值配置选择性地调整与到所述无线通信网络的连接相关联的一个或多个配置设置。
2.根据权利要求1所述的方法,其中所述UE基于所述PLR阈值配置消息确定所述新PLR阈值配置包括:
确定PLR阈值和与所述PLR阈值相关联的配置动作。
3.根据权利要求2所述的方法,其中所述PLR阈值定义所述UE将对到所述无线通信网络的所述连接执行所述配置动作的丢包率。
4.根据权利要求3所述的方法,还包括:
响应于所述连接的所述丢包率超过所述UE将执行所述配置动作的所述丢包率,所述UE对到所述无线通信网络的所述连接执行所述配置动作。
5.根据权利要求4所述的方法,其中所述配置动作包括将当前编解码器更改为新编解码器,所述当前编解码器与到所述无线通信网络的所述连接相关联。
6.根据权利要求5所述的方法,其中所述新编解码器被配置为使用比所述当前编解码器更小的网络带宽。
7.根据权利要求1所述的方法,其中所述连接是与涉及所述UE的电话呼叫相关联的语音连接。
8.根据权利要求1所述的方法,其中所述连接是与涉及所述UE的电话呼叫相关联的长期演进语音承载(VoLTE)连接。
9.在无线通信网络中,一种方法,包括:
所述无线通信网络的节点确定UE的新丢包率(PLR)阈值配置,所述UE具有到所述无线通信网络的连接;
响应于确定所述UE的所述新丢包率(PLR)阈值配置,生成包括所述UE的所述新丢包率(PLR)阈值配置的消息;以及
将所述消息传输到所述UE。
10.根据权利要求9所述的方法,其中确定所述新PLR阈值配置包括:
确定PLR阈值和与所述PLR阈值相关联的配置动作。
11.根据权利要求10所述的方法,其中所述PLR阈值定义所述UE将对到所述无线通信网络的所述连接执行所述配置动作的丢包率。
12.根据权利要求11所述的方法,其中所述配置动作包括将当前编解码器更改为新编解码器,所述当前编解码器与所述UE到所述无线通信网络的所述连接相关联。
13.根据权利要求12所述的方法,其中所述新编解码器被配置为使用比所述当前编解码器更小的网络带宽。
14.根据权利要求9所述的方法,其中所述UE到所述无线通信网络的所述连接是与涉及所述UE的电话呼叫相关联的语音连接。
15.根据权利要求9所述的方法,其中所述UE到所述无线通信网络的所述连接是与涉及所述UE的电话呼叫相关联的长期演进语音承载(VoLTE)连接。
16.一种其上存储有指令的非暂态计算机可读存储设备,所述指令在由数据处理装置执行时使得所述数据处理装置执行包括以下项的操作:
与无线通信网络连接的UE接收来自所述无线通信网络中的节点的丢包率(PLR)阈值配置消息;
所述UE基于所述PLR阈值配置消息确定新PLR阈值配置;以及
响应于确定所述新PLR阈值配置,基于所述新PLR阈值配置选择性地调整与到所述无线通信网络的连接相关联的一个或多个配置设置。
17.根据权利要求16所述的非暂态计算机可读存储设备,其中所述UE基于所述PLR阈值配置消息确定所述新PLR阈值配置包括:
确定PLR阈值和与所述PLR阈值相关联的配置动作。
18.根据权利要求17所述的非暂态计算机可读存储设备,其中所述PLR阈值定义所述UE将对到所述无线通信网络的所述连接执行所述配置动作的丢包率。
19.根据权利要求18所述的非暂态计算机可读存储设备,所述操作还包括:
响应于所述连接的所述丢包率超过所述UE将执行所述配置动作的所述丢包率,所述UE对到所述无线通信网络的所述连接执行所述配置动作。
20.根据权利要求19所述的非暂态计算机可读存储设备,其中所述配置动作包括将当前编解码器更改为新编解码器,所述当前编解码器与到所述无线通信网络的所述连接相关联。
21.根据权利要求20所述的非暂态计算机可读存储设备,其中所述新编解码器被配置为使用比所述当前编解码器更小的网络带宽。
22.根据权利要求16所述的非暂态计算机可读存储设备,其中所述连接是与涉及所述UE的电话呼叫相关联的语音连接。
23.根据权利要求16所述的非暂态计算机可读存储设备,其中所述连接是与涉及所述UE的电话呼叫相关联的长期演进语音承载(VoLTE)连接。
24.一种其上存储有指令的非暂态计算机可读存储设备,所述指令在由数据处理装置执行时使得所述数据处理装置执行包括以下项的操作:
无线通信网络的节点确定UE的新丢包率(PLR)阈值配置,所述UE具有到所述无线通信网络的连接;
响应于确定所述UE的所述新丢包率(PLR)阈值配置,生成包括所述UE的所述新丢包率(PLR)阈值配置的消息;以及
将所述消息传输到所述UE。
25.根据权利要求24所述的非暂态计算机可读存储介质,其中确定所述新PLR阈值配置包括:
确定PLR阈值和与所述PLR阈值相关联的配置动作。
26.根据权利要求25所述的非暂态计算机可读存储设备,其中所述PLR阈值定义所述UE将对到所述无线通信网络的所述连接执行所述配置动作的丢包率。
27.根据权利要求26所述的非暂态计算机可读存储设备,其中所述配置动作包括将当前编解码器更改为新编解码器,所述当前编解码器与所述UE到所述无线通信网络的所述连接相关联。
28.根据权利要求27所述的非暂态计算机可读存储设备,其中所述新编解码器被配置为使用比所述当前编解码器更小的网络带宽。
29.根据权利要求24所述的非暂态计算机可读存储设备,其中所述UE到所述无线通信网络的所述连接是与涉及所述UE的电话呼叫相关联的语音连接。
30.根据权利要求24所述的非暂态计算机可读存储设备,其中所述UE到所述无线通信网络的所述连接是与涉及所述UE的电话呼叫相关联的长期演进语音承载(VoLTE)连接。
31.一种系统,包括:
一个或多个处理器和一个或多个存储设备,所述一个或多个存储设备存储可操作的指令,所述指令在由所述一个或多个处理器执行时,使得所述一个或多个处理器执行包括以下项的操作:
与无线通信网络连接的UE接收来自所述无线通信网络中的节点的丢包率(PLR)阈值配置消息;
所述UE基于所述PLR阈值配置消息确定新PLR阈值配置;以及
响应于确定所述新PLR阈值配置,基于所述新PLR阈值配置选择性地调整与到所述无线通信网络的连接相关联的一个或多个配置设置。
32.根据权利要求31所述的系统,其中所述UE基于所述PLR阈值配置消息确定所述新PLR阈值配置包括:
确定PLR阈值和与所述PLR阈值相关联的配置动作。
33.根据权利要求32所述的系统,其中所述PLR阈值定义所述UE将对到所述无线通信网络的所述连接执行所述配置动作的丢包率。
34.根据权利要求33所述的系统,所述操作还包括:
响应于所述连接的所述丢包率超过所述UE将执行所述配置动作的所述丢包率,所述UE对到所述无线通信网络的所述连接执行所述配置动作。
35.根据权利要求34所述的系统,其中所述配置动作包括将当前编解码器更改为新编解码器,所述当前编解码器与到所述无线通信网络的所述连接相关联。
36.根据权利要求35所述的系统,其中所述新编解码器被配置为使用比所述当前编解码器更小的网络带宽。
37.根据权利要求31所述的系统,其中所述连接是与涉及所述UE的电话呼叫相关联的语音连接。
38.根据权利要求31所述的系统,其中所述连接是与涉及所述UE的电话呼叫相关联的长期演进语音承载(VoLTE)连接。
39.一种系统,包括:
一个或多个处理器和一个或多个存储设备,所述一个或多个存储设备存储可操作的指令,所述指令在由所述一个或多个处理器执行时,使得所述一个或多个处理器执行包括以下项的操作:
无线通信网络的节点确定UE的新丢包率(PLR)阈值配置,所述UE具有到所述无线通信网络的连接;
响应于确定所述UE的所述新丢包率(PLR)阈值配置,生成包括所述UE的所述新丢包率(PLR)阈值配置的消息;以及
将所述消息传输到所述UE。
40.根据权利要求39所述的系统,其中确定所述新PLR阈值配置包括:
确定PLR阈值和与所述PLR阈值相关联的配置动作。
41.根据权利要求40所述的系统,其中所述PLR阈值定义所述UE将对到所述无线通信网络的所述连接执行所述配置动作的丢包率。
42.根据权利要求41所述的系统,其中所述配置动作包括将当前编解码器更改为新编解码器,所述当前编解码器与所述UE到所述无线通信网络的所述连接相关联。
43.根据权利要求42所述的系统,其中所述新编解码器被配置为使用比所述当前编解码器更小的网络带宽。
44.根据权利要求39所述的系统,其中所述UE到所述无线通信网络的所述连接是与涉及所述UE的电话呼叫相关联的语音连接。
45.根据权利要求39所述的系统,其中所述UE到所述无线通信网络的所述连接是与涉及所述UE的电话呼叫相关联的长期演进语音承载(VoLTE)连接。
46.一种装置,包括:
电路,所述电路被配置为执行操作,所述操作包括:
与无线通信网络连接的UE接收来自所述无线通信网络中的节点的丢包率(PLR)阈值配置消息;
所述UE基于所述PLR阈值配置消息确定新PLR阈值配置;以及
响应于确定所述新PLR阈值配置,基于所述新PLR阈值配置选择性地调整与到所述无线通信网络的连接相关联的一个或多个配置设置。
47.根据权利要求46所述的装置,其中所述UE基于所述PLR阈值配置消息确定所述新PLR阈值配置包括:
确定PLR阈值和与所述PLR阈值相关联的配置动作。
48.根据权利要求47所述的装置,其中所述PLR阈值定义所述UE将对到所述无线通信网络的所述连接执行所述配置动作的丢包率。
49.根据权利要求48所述的装置,所述操作还包括:
响应于所述连接的所述丢包率超过所述UE将执行所述配置动作的所述丢包率,所述UE对到所述无线通信网络的所述连接执行所述配置动作。
50.根据权利要求49所述的装置,其中所述配置动作包括将当前编解码器更改为新编解码器,所述当前编解码器与到所述无线通信网络的所述连接相关联。
51.根据权利要求50所述的装置,其中所述新编解码器被配置为使用比所述当前编解码器更小的网络带宽。
52.根据权利要求46所述的装置,其中所述连接是与涉及所述UE的电话呼叫相关联的语音连接。
53.根据权利要求46所述的装置,其中所述连接是与涉及所述UE的电话呼叫相关联的长期演进语音承载(VoLTE)连接。
54.一种装置,包括:
电路,所述电路被配置为执行操作,所述操作包括:
无线通信网络的节点确定UE的新丢包率(PLR)阈值配置,所述UE具有到所述无线通信网络的连接;
响应于确定所述UE的所述新丢包率(PLR)阈值配置,生成包括所述UE的所述新丢包率(PLR)阈值配置的消息;以及
将所述消息传输到所述UE。
55.根据权利要求54所述的装置,其中确定所述新PLR阈值配置包括:
确定PLR阈值和与所述PLR阈值相关联的配置动作。
56.根据权利要求55所述的装置,其中所述PLR阈值定义所述UE将对到所述无线通信网络的所述连接执行所述配置动作的丢包率。
57.根据权利要求56所述的装置,其中所述配置动作包括将当前编解码器更改为新编解码器,所述当前编解码器与所述UE到所述无线通信网络的所述连接相关联。
58.根据权利要求57所述的装置,其中所述新编解码器被配置为使用比所述当前编解码器更小的网络带宽。
59.根据权利要求54所述的装置,其中所述UE到所述无线通信网络的所述连接是与涉及所述UE的电话呼叫相关联的语音连接。
60.根据权利要求54所述的装置,其中所述UE到所述无线通信网络的所述连接是与涉及所述UE的电话呼叫相关联的长期演进语音承载(VoLTE)连接。
CN202080054402.3A 2019-06-21 2020-06-19 基于丢包率(plr)的自适应的配置 Pending CN114175588A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310374203.6A CN116962162A (zh) 2019-06-21 2020-06-19 基于丢包率(plr)的自适应的配置

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201962865046P 2019-06-21 2019-06-21
US62/865,046 2019-06-21
PCT/US2020/038810 WO2020257704A1 (en) 2019-06-21 2020-06-19 Configuration of packet loss rate (plr) based adaptation

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN202310374203.6A Division CN116962162A (zh) 2019-06-21 2020-06-19 基于丢包率(plr)的自适应的配置

Publications (1)

Publication Number Publication Date
CN114175588A true CN114175588A (zh) 2022-03-11

Family

ID=71738277

Family Applications (2)

Application Number Title Priority Date Filing Date
CN202080054402.3A Pending CN114175588A (zh) 2019-06-21 2020-06-19 基于丢包率(plr)的自适应的配置
CN202310374203.6A Pending CN116962162A (zh) 2019-06-21 2020-06-19 基于丢包率(plr)的自适应的配置

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN202310374203.6A Pending CN116962162A (zh) 2019-06-21 2020-06-19 基于丢包率(plr)的自适应的配置

Country Status (3)

Country Link
US (2) US20220158920A1 (zh)
CN (2) CN114175588A (zh)
WO (1) WO2020257704A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107666366A (zh) * 2016-07-28 2018-02-06 华为技术有限公司 一种调整编码速率的方法、装置及系统
WO2018144928A1 (en) * 2017-02-03 2018-08-09 Kyocera Corporation Radio condition triggering of bitrate request for codec rate adaptation
US20190141598A1 (en) * 2017-11-08 2019-05-09 Qualcomm Incorporated Increasing network coverage using rate adaptation

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10574830B2 (en) * 2017-06-05 2020-02-25 Qualcomm Incoporated Methods for increasing VoIP network coverage
US11026147B2 (en) * 2018-02-13 2021-06-01 Apple Inc. Dynamic adaptation of maximum packet loss rate (PLR) for single radio voice call continuity (SRVCC) handover optimization using session description protocol (SDP)
US11509772B2 (en) * 2018-11-13 2022-11-22 Qualcomm Incorporated Methods for increasing Voice-over-Internet Protocol (VoIP) network coverage
US11133888B2 (en) * 2019-05-06 2021-09-28 Qualcomm Incorporated Codec configuration adaptation based on packet loss rate

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107666366A (zh) * 2016-07-28 2018-02-06 华为技术有限公司 一种调整编码速率的方法、装置及系统
WO2018144928A1 (en) * 2017-02-03 2018-08-09 Kyocera Corporation Radio condition triggering of bitrate request for codec rate adaptation
US20190141598A1 (en) * 2017-11-08 2019-05-09 Qualcomm Incorporated Increasing network coverage using rate adaptation

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
QUALCOMM INCORPORATED: "S4-180500 "pCR TR 26.959: Conclusions for eVoLP TR"", 3GPP TSG_SA\\WG4_CODEC, no. 4, 12 April 2018 (2018-04-12) *

Also Published As

Publication number Publication date
US20220158920A1 (en) 2022-05-19
US20230188444A1 (en) 2023-06-15
CN116962162A (zh) 2023-10-27
WO2020257704A1 (en) 2020-12-24

Similar Documents

Publication Publication Date Title
CN113906688A (zh) 用于波束故障恢复和其他信号的pucch的复用
CN113892296A (zh) 用于重复上行链路传输的资源分配
CN111800244A (zh) Nr-v2x的物理侧链路反馈信道的设计
CN113892287A (zh) 基于物理下行链路控制信道的唤醒信号
CN113826339A (zh) 在未许可频谱上操作的新无线电(nr)系统中复用配置授权(cg)传输
US11496915B2 (en) Radio link monitoring (RLM) for unicast sidelink (SL) communications
CN114026931A (zh) 控制平面和用户平面解决方案中的移动终止(mt)早期数据传输(edt)
US20220159616A1 (en) Avoiding paging collisions in a device with multiple subscriptions
CN113228810A (zh) 基于代码块组的重传配置的竞争窗口大小更新
CN114080854A (zh) 在未许可频谱上操作的nr系统的fbe框架
US20220345938A1 (en) Mutual Anchoring and Traffic Distribution in a Converged RAN Integrating NR and Wi-Fi Access
CN114270968A (zh) 用于控制平面和用户平面解决方案中的mt edt的方法、设备和系统
CN114051756A (zh) 用于在边缘计算环境中实现服务连续性的方法和装置
CN113940022A (zh) 跨时隙调度功率节省技术
CN113767587A (zh) 多trp操作中的物理资源块捆绑
CN113906784A (zh) 高速场景中的用户设备(ue)测量能力
CN114631351A (zh) 集成NR和Wi-Fi接入的汇聚RAN中的相互锚定和流量分布
CN113892281B (zh) 在处于ce的ue的连接模式下的etws/cmas的通知和获取
CN114026796A (zh) 用于第五代新空口(5g nr)中的波束切换的自适应上行链路(ul)定时调节
CN114175723A (zh) Pdcp重复增强
CN113796025A (zh) 5g nr中基于同步信号块(ssb)的波束测量和报告
CN113994758A (zh) 用于支持多个配置授权的增强信令
US20220158778A1 (en) Radio Link Monitoring Beam Management in NR for URLLC
US20220141707A1 (en) Data duplication over radio link control channels
CN112788663A (zh) 在双激活协议栈切换过程中丢弃转发的pdcp sdu

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination