CN114167379A - 一种用于sar成像仿真的复杂目标散射特性快速计算方法 - Google Patents

一种用于sar成像仿真的复杂目标散射特性快速计算方法 Download PDF

Info

Publication number
CN114167379A
CN114167379A CN202111375664.2A CN202111375664A CN114167379A CN 114167379 A CN114167379 A CN 114167379A CN 202111375664 A CN202111375664 A CN 202111375664A CN 114167379 A CN114167379 A CN 114167379A
Authority
CN
China
Prior art keywords
target
ray tube
ray
node
sub
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111375664.2A
Other languages
English (en)
Inventor
张寅�
章琪琪
范君杰
闫钧华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Aeronautics and Astronautics
Original Assignee
Nanjing University of Aeronautics and Astronautics
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Aeronautics and Astronautics filed Critical Nanjing University of Aeronautics and Astronautics
Priority to CN202111375664.2A priority Critical patent/CN114167379A/zh
Publication of CN114167379A publication Critical patent/CN114167379A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/41Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/89Radar or analogous systems specially adapted for specific applications for mapping or imaging
    • G01S13/90Radar or analogous systems specially adapted for specific applications for mapping or imaging using synthetic aperture techniques, e.g. synthetic aperture radar [SAR] techniques
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T17/00Three dimensional [3D] modelling, e.g. data description of 3D objects
    • G06T17/005Tree description, e.g. octree, quadtree
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T17/00Three dimensional [3D] modelling, e.g. data description of 3D objects
    • G06T17/20Finite element generation, e.g. wire-frame surface description, tesselation

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Computer Graphics (AREA)
  • Geometry (AREA)
  • Software Systems (AREA)
  • Theoretical Computer Science (AREA)
  • Electromagnetism (AREA)
  • Image Generation (AREA)

Abstract

本发明涉及一种用于SAR成像仿真的复杂目标散射特性快速计算方法,所述方法通过建立空间数据结构和射线管分裂来改进弹跳射线算法,提高了计算复杂三维目标散射特性的效率。本文基于实际SAR成像仿真过程中复杂目标的电磁散射计算问题,提出一种针对此类目标的快速弹跳射线电磁计算方法,该方法中包含利用节点块八叉树空间数据结构,快速进行相交检测;通过三角剖分射线管自适应分裂,大幅减少了射线管的数量。实验表明,本发明方法在保证计算精度的同时,可以有效提高计算目标散射特性的效率。

Description

一种用于SAR成像仿真的复杂目标散射特性快速计算方法
技术领域
本发明涉及目标电磁散射特性快速计算技术,特别涉及SAR成像仿真过程中一种复杂三维目标的多次散射的快速算法。
背景技术
分析复杂三维目标的电磁散射特性是开展雷达成像仿真、目标侦察与识别、隐身性能评价等研究的基础,因此具有重要的军事应用价值。对于表面结构较为复杂的目标,在仿真其电磁散射特性时需要对目标表面的多次散射进行计算。雷达散射截面积(RadarCross Section,RCS)是一种反映目标的电磁散射特性的参数,其定义为目标在单位立体角内向雷达接收机处散射功率与入射波在目标上的功率密度之比的4π倍。Ling H等人于1989年提出了用于计算腔体雷达散射截面积的弹跳射线方法(Shooting and Bouncing Rays,SBR),适用于计算目标几何结构之间的多次散射,具有计算精度高、易于实现的优点。经过多年的发展,SBR方法已经成为一种广泛应用于复杂三维目标电磁散射特性计算的方法。SBR方法的基本思想是在垂直于入射波的雷达虚拟孔径面上均匀划分密集的矩形射线管,再使用射线追踪的方法追踪每一根射线管,最后利用几何光学法(Geometrical optics,GO)和物理光学法(Physical Optics,PO)计算目标的电磁散射场。为满足计算精度要求,SBR划分矩形射线管的横截面边长通常小于十分之一的波长,所以对于舰船、车辆等电大尺寸目标而言,SBR方法生成射线管的数目巨大,计算效率不高。
目前提高SBR方法计算效率的思路主要分为两种,第一种思路是利用空间数据结构进行加速计算,利用数据结构加速的方法对目标表面划分的面元建立Kd树或八叉树的空间数据结构,为每一个面元分配一个用于快速索引的空间地址,从而在进行射线管与面元相交检测时剔除大量不必要的相交检测,实现对相交面元的快速检索。这类方法适用于表面面元数量较多的电大尺寸目标,能有效提高SBR方法的计算效率,但仍然没有解决射线管数量庞大的本质问题。第二种提高SBR方法计算效率的思路是减少射线管的数量。减少射线管数量的方法主要利用射线管分裂的思想,首先在虚拟孔径面上均匀划分较大的射线管,当射线管打到目标上且需要分裂时再将射线管进行分裂,生成若干较小的子射线管。在剔除与目标不相交的子射线管后,对剩下的射线管进行射线追踪并迭代,直到射线管离开目标或射线管横截面小于一定阈值。其中,Asadi等人提出的自适应射线管分裂方法根据目标面元的划分,使用Sutherland-Hodegmam多边形裁剪算法自适应地将虚拟孔径分割成连续的子射线管,极大程度上减少了射线管的数量。然而,在使用Sutherland-Hodegmam算法进行射线管分裂时,由于要分别计算多个三角形的两两相交关系,计算量较大。
发明内容
为提高SAR成像仿真中计算复杂三维目标散射特性的效率,本发明提出了一种用于SAR成像仿真的复杂目标多次散射快速计算方法,使用节点块八叉树空间数据结构加快射线管与面元的相交检测速度,使用大射线管分裂的方法减少射线管数量。此外,在进行射线管分裂时,使用计算量较小的Delaunay三角形剖分算法代替Sutherland-Hodegmam多边形裁剪算法。
本发明提出的一种用于SAR成像仿真的复杂目标散射特性快速计算方法,通过建立空间数据结构和射线管分裂来改进弹跳射线算法,提高了计算复杂三维目标散射特性的效率;其具体过程为:
步骤1:输入目标的三角面元模型和观测参数,生成由波源射向目标的几何光学射线管以模拟入射电磁波;
步骤2:建立节点块八叉树数据结构,快速判断步骤1中的面元与射线管的相交情况;
步骤3:计算步骤2中面元与射线管的交点,利用Delaunay算法将射线管分裂为匹配目标面元边界的子三角形射线管,剔除与目标不相交的子射线管;
步骤4:利用几何光学法得到步骤3中与目标面元相交的子射线管在面元上的反射场,追踪所有相交子射线管的反射路径,以该反射射线管作为下一次反射或散射的入射射线管;
步骤5:重复步骤2~4,直至几何射线管最终离开目标表面进入自由空间或反射次数达到用户设定的上限,使用物理光学法计算该射线管发生最后一次反射的散射场;将射向目标的所有射线管产生的散射场相加,即可计算得到在该入射电磁波参数下目标的散射特性。
进一步的,所述步骤2具体为:
首先根据目标的尺寸确定最外层根节点的大小(根节点通常略大于目标尺寸),将根节点对应的空间等分为八个子节点,将目标结点信息分配到对应的子节点空间中,对每一个子节点空间按照同样的方式进行划分,直到划分的空间达到设定的最小尺寸或该子节点空间中不再含有任何目标结点;然后将射线管中心射线延伸到目标空间,判断中心射线与根节点是否相交,若相交则遍历其下一层的所有子节点,逐层地与射线管中心射线进行求交测试,最终确定与射线管中心射线相交的叶节点;接着确定得到的叶节点对应的空间块及其相邻空间块,提取这些空间块中包含的所有目标结点,并确定结点对应的所有面元的集合,这个面元集合包含了所有可能与射线管相交的面元。
更进一步的,所述步骤3具体为:
首先对面元分组,将包含相同节点的面元组成面元集合,在该集合内,任意一个面元与另外某一面元至少包含一个相同的结点,这一步中可能得到多个面元集合,选取离场源最近的一个作为反射曲面;然后根据射线管的入射方向,在离反射曲面几何中心一定距离(一般取1.5倍目标曲面包围球的半径)外且与入射方向垂直处建立射线管划分的虚拟孔径面,将步骤3.1中的面元集合投影到虚拟孔径面上;接着在虚拟孔径面上,计算面元边投影和射线管边界的交点并记为点集P1,射线管投影边界内的目标结点投影记为P2,将点集P1、P2和射线管投影的三个顶点组成二维点集P;最后使用Delaunay算法将二维点集P构造成三角形网格,这些三角形网格即为分裂后射线管的横截面,通过射线追踪,即可得到分裂后的射线管。
本发明采用以上技术方案,与现有技术相比,具有以下技术效果:
本发明适用于SAR成像仿真过程中的复杂三维目标的电磁散射特性计算问题,在保证计算精度的前提下,本发明方法计算效率相比基于Kd树空间结构的加速SBR方法(Kd-SBR)提升16倍以上,相比经典自适应射线管分裂的快速SBR方法(AP-SBR)提升3倍以上,计算效率显著提高。
附图说明
图1是本发明的总体流程图;
图2是待计算电磁散射特性的尼米兹级航母三角面元模型;
图3是节点块八叉树的建立示意图;
图4是三角剖分射线管自适应分裂示意图;
图5是本发明方法与经典自适应射线管分裂的快速SBR方法和基于Kd树空间结构的加速SBR方法在不同角度下对图2舰船单站RCS的计算结果的对比曲线图。
具体实施方式
下面结合附图对本发明的技术方案做进一步的详细说明:
本发明提出的用于SAR成像仿真的复杂目标多次散射快速计算方法,通过建立空间数据结构和射线管分裂来改进弹跳射线算法,提高了计算复杂三维目标散射特性的效率;其流程如图1所示。
所述用于计算复杂目标多次散射的快速弹跳射线算法的具体过程为:
步骤1:输入目标的三角面元模型和观测参数,生成由波源射向目标的几何光学射线管以模拟入射电磁波;
步骤2:首先根据目标的尺寸确定最外层根节点的大小(根节点通常略大于目标尺寸),将根节点对应的空间等分为八个子节点,将目标结点信息分配到对应的子节点空间中,对每一个子节点空间按照同样的方式进行划分,直到划分的空间达到设定的最小尺寸或该子节点空间中不再含有任何目标结点;然后将射线管中心射线延伸到目标空间,判断中心射线与根节点是否相交,若不相交则剔除该射线管以提高计算效率,若相交则遍历其下一层的所有子节点,逐层地与射线管中心射线进行求交测试,最终确定与射线管中心射线相交的叶节点,;接着确定得到的叶节点对应的空间块及其相邻空间块,提取这些空间块中包含的所有目标结点,并确定结点对应的所有面元的集合,这个面元集合包含了所有可能与射线管相交的面元;
步骤3:首先对面元分组,将包含相同节点的面元组成面元集合,在该集合内,任意一个面元与另外某一面元至少包含一个相同的结点,这一步中可能得到多个面元集合,选取离场源最近的一个作为反射曲面;然后根据射线管的入射方向,在离反射曲面几何中心一定距离外,本实施例中一般取1.5倍目标曲面包围球的半径,且与入射方向垂直处建立射线管划分的虚拟孔径面,将步骤3.1中的面元集合投影到虚拟孔径面上;接着在虚拟孔径面上,计算面元边投影和射线管边界的交点并记为点集P1,射线管投影边界内的目标结点投影记为P2,将点集P1、P2和射线管投影的三个顶点组成二维点集P;最后使用Delaunay算法将二维点集P构造成三角形网格,这些三角形网格即为分裂后射线管的横截面,通过射线追踪,即可得到分裂后的射线管,分裂后的射线管与面元形状相匹配,因此相比传统的均匀划分大量密集矩形射线管的方法,既大幅减少了射线管数量,又能保证计算精度;
步骤4:利用几何光学法得到步骤3中与目标面元相交的子射线管在面元上的反射场,追踪所有相交子射线管的反射路径,以该反射射线管作为下一次反射或散射的入射射线管;
步骤5:重复步骤2~4,直至几何射线管最终离开目标表面进入自由空间或反射次数达到用户设定的上限,使用物理光学法计算该射线管发生最后一次反射的散射场;将射向目标的所有射线管产生的散射场相加,即可计算得到在该入射电磁波参数下目标的散射特性。
具体电磁散射特性计算实例如下所示:
图2为尼米兹级航母的三角面元模型及坐标定义,其表面被剖分为多个三角形面元,现应用本发明方法计算该目标在给定入射参数(电磁波频率、入射角度等)下的RCS。
应用步骤一:输入目标的三角面元模型和观测参数,生成由波源射向目标的几何光学射线管以模拟入射电磁波。设入射波为线极化波,频率f=5GHz,方位角θ=90°,入射角Φ=0~180°。
应用步骤二:建立节点块八叉树数据结构,快速判断步骤一中的面元与射线管的相交情况。图3为对该舰船模型建立节点块八叉树的示意图。本发明方法通过逐层判断各节点是否与射线管相交,避免了逐面元相交检测产生的巨大计算量,对于该模型,未建立空间数据结构的传统SBR方法相交检测耗时为44.77分钟;而在建立节点块八叉树后,相交检测耗时减少为13.57分钟。
应用步骤三:计算步骤二中面元与射线管的交点,利用Delaunay算法将射线管分裂为匹配目标面元边界的子三角形射线管,剔除与目标不相交的子射线管。图4为射线管分裂过程示意图。三角剖分射线管自适应分裂方法相比均匀划分大量密集矩形射线管的传统SBR方法,射线管数量减少99.85%,计算效率大幅提升。
应用步骤四:利用几何光学法得到步骤3中与目标面元相交的子射线管在面元上的反射场,追踪所有相交子射线管的反射路径,以该反射射线管作为下一次反射或散射的入射射线管。
应用步骤五:重复步骤二至四,直至几何射线管最终离开目标表面进入自由空间或反射次数达到用户设定的上限,使用物理光学法计算该射线管发生最后一次反射的散射场,从而得到考虑多次散射情况下目标的RCS。
图5为本发明方法与经典自适应射线管分裂的快速SBR方法和基于Kd树空间结构的加速SBR方法在不同角度下对图2舰船单站RCS的计算结果的对比,从图中可以看出三种方法的计算精度相近,计算结果十分吻合。
下表1为三种方法计算图2舰船单站RCS的效率对比。本发明的计算效率是AP-SBR的3.08倍,是Kd-SBR的16.52倍。
表1 Kd-SBR、AP-SBR和本发明方法计算效率对比
Figure BDA0003363670640000051
以上所述的具体实施方式,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施方式而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (3)

1.一种用于SAR成像仿真的复杂目标散射特性快速计算方法,其特征在于,所述方法包括以下步骤:
步骤1:输入目标的三角面元模型和观测参数,生成由波源射向目标的几何光学射线管以模拟入射电磁波;
步骤2:建立节点块八叉树数据结构,识别步骤1中的面元与射线管的相交情况;
步骤3:计算步骤2中面元与射线管的交点,利用Delaunay算法将射线管分裂为匹配目标面元边界的子三角形射线管,剔除与目标不相交的子射线管;
步骤4:利用几何光学法得到步骤3中与目标面元相交的子射线管在面元上的反射场,追踪所有相交子射线管的反射路径,以该反射射线管作为下一次反射或散射的入射射线管;
步骤5:重复步骤2~4,直至几何射线管最终离开目标表面进入自由空间或反射次数达到用户设定的上限,使用物理光学法计算该射线管发生最后一次反射的散射场;将射向目标的所有射线管产生的散射场相加,得到在该入射电磁波参数下目标的散射特性。
2.根据权利要求1所述的一种用于SAR成像仿真的复杂目标散射特性快速计算方法,其特征在于,所述步骤2具体为:
步骤2.1,根据目标的尺寸确定最外层根节点的大小,将根节点对应的空间等分为若干个子节点,将目标结点信息分配到对应的子节点空间中,对每一个子节点空间按照同样的方式进行划分,直到划分的空间达到设定的最小尺寸或该子节点空间中不再含有任何目标结点;
步骤2.2,将射线管中心射线延伸到目标空间,判断中心射线与根节点是否相交,若相交则遍历其下一层的所有子节点,逐层地与射线管中心射线进行求交测试,最终确定与射线管中心射线相交的叶节点;
步骤2.3,确定步骤2.2得到的叶节点对应的空间块及其相邻空间块,提取这些空间块中包含的所有目标结点,并确定结点对应的所有面元的集合。
3.根据权利要求1所述的一种用于SAR成像仿真的复杂目标散射特性快速计算方法,其特征在于,所述步骤3具体为:
步骤3.1,对面元分组,将包含相同节点的面元组成面元集合,选取离场源最近的一个作为反射曲面;
步骤3.2,根据射线管的入射方向,在离反射曲面几何中心设定距离外且与入射方向垂直处建立射线管划分的虚拟孔径面,将步骤3.1中的面元集合投影到虚拟孔径面上;
步骤3.3,在所述虚拟孔径面上,计算面元边投影和射线管边界的交点并记为点集P 1 ,射线管投影边界内的目标结点投影记为P 2 ,将点集P 1 P 2 和射线管投影的三个顶点组成二维点集P
步骤3.4,使用Delaunay算法将二维点集构造成三角形网格,所述三角形网格即为分裂后射线管的横截面,通过射线追踪,即可得到分裂后的射线管。
CN202111375664.2A 2021-11-19 2021-11-19 一种用于sar成像仿真的复杂目标散射特性快速计算方法 Pending CN114167379A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111375664.2A CN114167379A (zh) 2021-11-19 2021-11-19 一种用于sar成像仿真的复杂目标散射特性快速计算方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111375664.2A CN114167379A (zh) 2021-11-19 2021-11-19 一种用于sar成像仿真的复杂目标散射特性快速计算方法

Publications (1)

Publication Number Publication Date
CN114167379A true CN114167379A (zh) 2022-03-11

Family

ID=80479776

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111375664.2A Pending CN114167379A (zh) 2021-11-19 2021-11-19 一种用于sar成像仿真的复杂目标散射特性快速计算方法

Country Status (1)

Country Link
CN (1) CN114167379A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116754847A (zh) * 2023-06-07 2023-09-15 中国人民解放军91977部队 海面复合目标远区电磁散射强度估计方法和装置
CN117115239A (zh) * 2023-06-07 2023-11-24 中国人民解放军91977部队 用于远区电磁散射强度估计的入射线交点获取方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116754847A (zh) * 2023-06-07 2023-09-15 中国人民解放军91977部队 海面复合目标远区电磁散射强度估计方法和装置
CN117115239A (zh) * 2023-06-07 2023-11-24 中国人民解放军91977部队 用于远区电磁散射强度估计的入射线交点获取方法
CN116754847B (zh) * 2023-06-07 2024-01-23 中国人民解放军91977部队 海面复合目标远区电磁散射强度估计方法和装置
CN117115239B (zh) * 2023-06-07 2024-02-23 中国人民解放军91977部队 用于远区电磁散射强度估计的入射线交点获取方法

Similar Documents

Publication Publication Date Title
Tao et al. KD-tree based fast ray tracing for RCS prediction
Fan et al. An improved backward SBR-PO/PTD hybrid method for the backward scattering prediction of an electrically large target
CN114167379A (zh) 一种用于sar成像仿真的复杂目标散射特性快速计算方法
CN110502782B (zh) 基于分区矢量输运的大体量箔条云电磁散射测定方法
CN107942309A (zh) 一种稀薄大气层内超高速目标电磁散射快速计算方法
CN110907901A (zh) 一种基于tdsbr的海战无源干扰计算及评估方法
CN109543358B (zh) Gpu上kd树的射线追踪加速系统及kd树输出方法
CN110580742A (zh) 基于gpu并行的sbr实现目标电磁散射特性建模与分析的方法
Dong et al. An accelerated SBR for EM scattering from the electrically large complex objects
CN111123225B (zh) 矢量输运理论计算海背景箔条云散射方法
Imai A survey of efficient ray-tracing techniques for mobile radio propagation analysis
CN109861775B (zh) 一种传播路径搜索方法以及装置
CN114219899A (zh) 一种基于改进叉树算法的网格生成方法及装置
CN116430350B (zh) 一种空间动态群目标属性散射中心的建模方法及系统
CN112859027A (zh) 一种基于一维距离像的诱饵阵列干扰效能分析方法
CN115205354B (zh) 基于ransac和icp点云配准的相控阵激光雷达成像方法
Huo et al. An accelerated PO for EM scattering from electrically large targets
CN110083904A (zh) 基于gpu加速的量子雷达散射截面计算方法
CN113066161B (zh) 一种城市电波传播模型的建模方法
CN113075659B (zh) 一种平坦场景网格模型自适应分区预处理方法和系统
CN115908541A (zh) 针对室内环境基于曲率信息的车载激光雷达点云聚类算法
CN115114767A (zh) 一种基于改进加速sbr的目标电磁散射仿真方法
Wei et al. A model for calculating electromagnetic scattering from target in evaporation duct
US6175815B1 (en) Storage reduction method for fast multipole field calculations
Cátedra et al. Efficient techniques for accelerating the ray-tracing for computing the multiple bounce scattering of complex bodies modeled by flat facets

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination