CN114163190B - 一种既有整毛石墙体加固uhpc材料及其加固方法 - Google Patents

一种既有整毛石墙体加固uhpc材料及其加固方法 Download PDF

Info

Publication number
CN114163190B
CN114163190B CN202111512546.1A CN202111512546A CN114163190B CN 114163190 B CN114163190 B CN 114163190B CN 202111512546 A CN202111512546 A CN 202111512546A CN 114163190 B CN114163190 B CN 114163190B
Authority
CN
China
Prior art keywords
reinforcing
existing
rubble wall
wall body
uhpc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111512546.1A
Other languages
English (en)
Other versions
CN114163190A (zh
Inventor
吴应雄
朱远浩
黄伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuzhou University
Original Assignee
Fuzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuzhou University filed Critical Fuzhou University
Priority to CN202111512546.1A priority Critical patent/CN114163190B/zh
Publication of CN114163190A publication Critical patent/CN114163190A/zh
Application granted granted Critical
Publication of CN114163190B publication Critical patent/CN114163190B/zh
Priority to US18/075,879 priority patent/US11732492B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/04Portland cements
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G23/00Working measures on existing buildings
    • E04G23/02Repairing, e.g. filling cracks; Restoring; Altering; Enlarging
    • E04G23/0203Arrangements for filling cracks or cavities in building constructions
    • E04G23/0211Arrangements for filling cracks or cavities in building constructions using injection
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/04Silica-rich materials; Silicates
    • C04B14/06Quartz; Sand
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/04Silica-rich materials; Silicates
    • C04B14/14Minerals of vulcanic origin
    • C04B14/16Minerals of vulcanic origin porous, e.g. pumice
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/26Carbonates
    • C04B14/28Carbonates of calcium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/30Oxides other than silica
    • C04B14/306Zirconium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/12Waste materials; Refuse from quarries, mining or the like
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G23/00Working measures on existing buildings
    • E04G23/02Repairing, e.g. filling cracks; Restoring; Altering; Enlarging
    • E04G23/0218Increasing or restoring the load-bearing capacity of building construction elements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00034Physico-chemical characteristics of the mixtures
    • C04B2111/00146Sprayable or pumpable mixtures
    • C04B2111/00155Sprayable, i.e. concrete-like, materials able to be shaped by spraying instead of by casting, e.g. gunite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2201/00Mortars, concrete or artificial stone characterised by specific physical values
    • C04B2201/50Mortars, concrete or artificial stone characterised by specific physical values for the mechanical strength
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Architecture (AREA)
  • Ceramic Engineering (AREA)
  • Structural Engineering (AREA)
  • Civil Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Mechanical Engineering (AREA)
  • Mining & Mineral Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Working Measures On Existing Buildindgs (AREA)
  • Revetment (AREA)

Abstract

本发明公开了一种既有整毛石墙体加固UHPC材料及其加固方法,属于墙体加固技术领域,该既有整毛石墙体加固UHPC材料包括:硅酸盐水泥550~600kg/m3、白硅灰180~200kg/m3、石灰石粉510~530kg/m3、石英砂715~735kg/m3、铁矿石尾矿颗粒60~75kg/m3、浮石颗粒50~60kg/m3、聚羧酸系减水剂15~30kg/m3、水230~255kg/m3和POM纤维25~35kg/m3;本发明采用改进的新型UHPC增大截面法和钢筋绑带法相结合对既有整毛石墙体进行加固,可增加整毛石墙体厚度,提高其稳定性;显著提高抗震性能和耐久性,且施工方便,可广泛应用于整毛石墙体抗震加固。

Description

一种既有整毛石墙体加固UHPC材料及其加固方法
技术领域
本发明涉及墙体加固技术领域,具体涉及到一种既有整毛石墙体加固UHPC材料及其加固方法。
背景技术
整毛石墙体具有耐久性好、易于取材、价格低廉等优点被福建省沿海的闽南地区广泛运用。闽南石砌结构民居采用横墙承重体系,墙体为整毛石墙体。所谓整毛石,指的是经过人工用专业工具粗加工的长条石,截面宽度和高度约210mm。部分墙体单薄,仅用单皮料石砌筑,墙厚约210mm(如图1所示),不满足《福建省石砌体结构加固技术规程》240mm的要求。同时,墙体作为承重墙,不仅需要承受墙体自身重量,还要承受梁板传递来的荷载,单薄的墙体将削弱墙体抗震性能。
现有整毛石墙体采用的是有垫片的干砌甩浆法砌筑。石墙体采用红黏土砂浆,强度低且风化严重;水平和竖向灰缝高度不一,干砌甩浆法造成砂浆饱满度不足(如图2所示)。所谓干砌甩浆,指先在下皮整毛石的四角摆好主石垫片后放上上皮整毛石,经撬棒挪动上皮整毛石并调整主石垫片来达到调平的目的,待砌体砌筑完毕,再用“甩浆”的方法,即用专门工具往其两侧石缝甩满砂浆并同时加入辅助石垫片(如图3所示)。另外需要说明的是,采用有垫片干砌甩浆法砌筑也是不属于国家和福建省规范规程的允许范围。
石砌结构房屋作为一种刚性结构,墙体是抵抗地震作用的主要抗侧力构件,震害调查结果表明,历次地震中石砌体结构均遭到严重的破坏,地震中石砌体结构发生开裂甚至倒塌的主要原因是砌体墙的抗剪和抗弯承载力不足。因此对既有石砌体墙进行抗震加固,提高墙体抗震性能和耐久性并改善石砌结构房屋的整体性,是当下亟待解决的问题。
发明内容
针对上述的不足,本发明的目的是提供一种既有整毛石墙体加固UHPC材料及其加固方法。本发明采用改进的新型UHPC(超高性能混凝土)增大截面法和钢筋绑带法相结合对既有整毛石墙体进行加固,可增加整毛石墙体厚度,提高其稳定性;显著提高抗震性能和耐久性,且施工方便,可广泛应用于整毛石墙体抗震加固。
为达上述目的,本发明采取如下的技术方案:
一种既有整毛石墙体加固UHPC材料,按照单方用量计,其包括:硅酸盐水泥550~600kg/m3、白硅灰180~200kg/m3、石灰石粉510~530kg/m3、石英砂715~735kg/m3、铁矿石尾矿颗粒60~75kg/m3、浮石颗粒50~60kg/m3、聚羧酸系减水剂15~30kg/m3、水230~255kg/m3和POM纤维25~35kg/m3
进一步地,上述既有整毛石墙体加固UHPC材料中各原料按照单方用量计,优选为:硅酸盐水泥580kg/m3、白硅灰193.3kg/m3、石灰石粉515.6kg/m3、石英砂725.7kg/m3、铁矿石尾矿颗粒70kg/m3、浮石颗粒55kg/m3、聚羧酸系减水剂20kg/m3、水249.9kg/m3和POM纤维28.2kg/m3
进一步地,浮石颗粒和铁矿石尾矿颗粒的平均粒径均为2~8mm;优选为3~6mm;最优选为5mm。
进一步地,POM纤维的直径为0.1~0.3mm;优选为0.2mm。
进一步地,白硅灰优选为氧化锆硅灰。
需要说明的是,本发明中上述既有整毛石墙体加固UHPC材料若无特殊限定,可选用本领域的常规市售产品,如浮石颗粒、聚羧酸系减水剂、POM纤维等;同时本发明中既有整毛石墙体加固UHPC材料可按照本领域常规方法搅拌混合制得。
本发明提供一种既有整毛石墙体加固方法,采用上述既有整毛石墙体加固UHPC材料作为加固材料。
进一步地,上述既有整毛石墙体加固方法,包括以下步骤:
步骤(1):对待加固既有整毛石墙体进行预处理,包括:保留上下皮整毛石间的主垫片并清理灰缝;
步骤(2):采用钢筋绑带法对经步骤(1)预处理后的既有整毛石墙体以水平和竖向的方式进行拉紧加固;
步骤(3):采用人工挤浆方式将制备好的既有整毛石墙体加固UHPC材料注入灰缝,形成UHPC加固嵌缝层;
步骤(4):采用喷射工艺对经步骤(3)处理后的既有整毛石墙体进行喷射制备好的既有整毛石墙体加固UHPC材料,形成UHPC加固面层;
步骤(5):养护。
进一步地,步骤(1)中预处理过程还包括:清理灰缝后,在待加固既有整毛石墙体表面涂抹一层水泥净浆或界面粘结剂。
通过涂抹一层水泥净浆或界面粘结剂,可进一步增强墙体与后续UHPC加固面层的界面粘结性能;需要说明的是,本发明中的界面粘结剂可采用本领域常用的市售产品。
进一步地,步骤(2)中采用钢筋绑带法进行拉紧加固的具体过程为:用钢筋穿过墙体灰缝(通常为25~35mm),对整毛石进行捆绑(每3-4皮为一捆,上下捆之间搭接一皮整毛石),竖向绑带间隔距离为s;每隔h设置一条水平钢筋,与竖向钢筋绑带焊接连接;其中,s不大于400mm;h不大于500mm;钢筋直径不小于10mm。
进一步地,步骤(4)中UHPC加固面层的平均厚度为25~35mm,优选为30mm。
需要说明的是,本发明中既有整毛石墙体加固方法若无特殊限定,可采用本领域的常规步骤操作,如养护可采用常用的湿水养护28天等。
综上所述,本发明具有以下优点:
1、本发明为了让所使用的UHPC材料能更好的适用于既有整毛石墙体的加固,相较于常规UHPC材料的配方进行了优化,在选用白硅灰、石灰石粉和石英砂作为细骨料的基础上,还添加了铁矿石尾矿颗粒和浮石颗粒;主要包括以下内容:
1)利用浮石颗粒具有多孔、轻质和吸水的特性,将其作为本发明中UHPC材料的内部养护材料,能够促进UHPC早期水化和如白硅灰、石灰石粉和石英砂等细骨料的二次水化作用,从而提高UHPC材料的力学性能;更为重要的是,浮石颗粒通过水的缓释作用来延缓UHPC的自干燥,在吸水和释放过程中具有较佳的体积稳定性,增加了UHPC材料的流动性和适应性,使得喷射UHPC材料和既有整毛石墙体有了更好的粘结性;
2)本发明中浮石颗粒和聚羧酸系减水剂的用量比(50~60:15~30)适宜,可有效避免聚羧酸系减水剂的引入导致UHPC的密实度产生的如孔隙率增加等负面影响,从而提高了UHPC的耐久性,使得加固后的既有整毛石墙体饱满度佳;
3)铁矿石尾矿颗粒的适量加入,一方面,配合如白硅灰、石灰石粉和石英砂等细骨料,增强外加矿物间的水化协同作用,可提高既有整毛石墙体的的抗剪和抗弯承载力,从而提高既有整毛石墙体的抗震性能;同时铁矿石尾矿颗粒、白硅灰、石灰石粉和石英砂等细骨料的用量比适宜,使得UHPC材料力学性能与未风化的石块(抗压强度通常超过80MPa)相当,提高了石砌结构房屋的整体稳定性。
2、本发明提供了一种既有整毛石墙体加固方法,采用改进的新型UHPC(超高性能混凝土)增大截面法和钢筋绑带法相结合对既有整毛石墙体进行加固,可增加整毛石墙体厚度,提高其稳定性;显著提高抗震性能和耐久性,且施工方便,可广泛应用于整毛石墙体抗震加固;具体过程为:
1)所使用UHPC材料力学性能与未风化的石头(抗压强度通常超过80MPa)相当,又整毛石表面粗糙(表面凹凸不平处于±15mm之间,整毛石上下皮关系如图4),UHPC材料能够与整毛石能较好地协同工作,实现高度的材结融合;UHPC材料具有良好的流动性可以与上下皮整毛石表面充分接触使得受力和传力可靠,UHPC与石材有优异的界面粘结性能;
2)钢筋绑带能将整毛石墙体各部分紧密拉结,以水平和竖向的方式拉紧加固,使墙体上下皮石头更稳定;同时钢筋绑带形成钢筋骨架,使得墙体和钢筋绑带能够共同受力;
3)改进配方的UHPC增大截面法和钢筋绑带法加固既有整毛石墙体,UHPC加固面层、UHPC加固嵌缝层、钢筋绑带和原石墙体有机结合,形成一种新型的厚度满足规范要求、刚度大、承载能力高、抗剪能力强及整体性好的组合结构。
附图说明
图1为本发明中现有整毛石墙体的厚度图;
图2为本发明中现有整毛石墙体的示意图(灰缝饱满度差);
图3为本发明中现有整毛石墙体的石墙体砌筑过程图;
图4为本发明中整毛石上下皮关系示意图;
图5为本发明中钢筋绑带法的过程示意图;
图6为本发明中既有整毛石墙体的双面加固截面示意图;
图7为本发明中试验试件及试验加载装置示意图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明,即所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。
因此,以下对提供的本发明的实施例的详细描述并非旨在限制要求保护的本发明的范围,而是仅仅表示本发明的选定实施例。基于本发明的实施例,本领域技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
本例提供了一种既有整毛石墙体加固方法,包括以下步骤:
步骤(1):对待加固既有整毛石墙体进行预处理,包括:确定主垫片位置,保护好主垫片,用凿子)取出若干辅助石垫片(保留难以取出的辅助石垫片),掏出灰缝中部分红土砂浆;清理灰缝内灰尘,在待加固墙体表面涂抹一层水泥净浆,用于增强墙体与加固面层的界面粘结性能;
步骤(2):采用钢筋绑带法对经步骤(1)预处理后的既有整毛石墙体以水平和竖向的方式进行拉紧加固;具体过程为:以水平和竖向的方式拉紧加固。用钢筋(钢筋直径为15mm)穿过墙体灰缝,对整毛石进行捆绑(每3-4皮为一捆,上下捆之间搭接一皮整毛石),竖向绑带间隔s(s为400mm)。每隔h(h为500mm)设置一条水平钢筋,与竖向钢筋绑带焊接连接(如图5所示);
步骤(3):制备既有整毛石墙体加固UHPC材料;具体过程为:将硅酸盐水泥(42.5R)580kg/m3、白硅灰(具体为氧化锆硅灰)193.3kg/m3、石灰石粉515.6kg/m3、石英砂725.7kg/m3、铁矿石尾矿颗粒(平均粒径为5mm)70kg/m3、浮石颗粒(平均粒径为5mm)55kg/m3、聚羧酸系减水剂20kg/m3和水249.9kg/m3加入强制式搅拌机中继续搅拌15分钟,然后将POM纤维(直径为0.2mm)28.2kg/m3分多次加入强制式搅拌机内继续搅拌10分钟,即可;
步骤(4):采用人工挤浆方式将制备好的既有整毛石墙体加固UHPC材料注入灰缝,形成UHPC加固嵌缝层;
步骤(5):采用喷射工艺对经步骤(3)处理后的既有整毛石墙体进行喷射制备好的既有整毛石墙体加固UHPC材料,形成平均厚度为30mm的UHPC加固面层;
步骤(6):湿水养护28天。
采用本例中既有整毛石墙体加固方法加固后的既有整毛石墙体的双面加固截面图如图6所示;本例中若无特殊限定的原料,可直接选用市售产品或本领域的常规方法制得;本例中若无特殊限定的步骤,可采用本领域的常规操作步骤,不作重复陈述。
实施例2
本例提供一种既有整毛石墙体加固方法,与实施例1的区别仅在于:所使用的既有整毛石墙体加固UHPC材料,按照单方用量计,其包括:硅酸盐水泥550kg/m3、白硅灰200kg/m3、石灰石粉530kg/m3、石英砂735kg/m3、铁矿石尾矿颗粒75kg/m3、浮石颗粒60kg/m3、聚羧酸系减水剂30kg/m3、水255kg/m3和POM纤维25kg/m3;其余步骤及参数均相同。
实施例3
本例提供一种既有整毛石墙体加固方法,与实施例1的区别仅在于:所使用的既有整毛石墙体加固UHPC材料,按照单方用量计,其包括:硅酸盐水泥600kg/m3、白硅灰180kg/m3、石灰石粉510kg/m3、石英砂715kg/m3、铁矿石尾矿颗粒60kg/m3、浮石颗粒50kg/m3、聚羧酸系减水剂15kg/m3、水230kg/m3和POM纤维35kg/m3;其余步骤及参数均相同。
对比例1
本例提供一种既有整毛石墙体加固方法,与实施例1的区别仅在于:所使用的既有整毛石墙体加固UHPC材料中不含有浮石颗粒;其余步骤及参数均相同。
对比例2
本例提供一种既有整毛石墙体加固方法,与实施例1的区别仅在于:所使用的既有整毛石墙体加固UHPC材料中不含有铁矿石尾矿颗粒;其余步骤及参数均相同。
对比例3
本例提供一种既有整毛石墙体加固方法,与实施例1的区别仅在于:所使用的既有整毛石墙体加固UHPC材料的制备过程为:将硅酸盐水泥(42.5R)580kg/m3、白硅灰(具体为氧化锆硅灰)193.3kg/m3、石灰石粉515.6kg/m3、石英砂725.7kg/m3、铁矿石尾矿颗粒(平均粒径为5mm)70kg/m3、浮石颗粒(平均粒径为5mm)55kg/m3、聚羧酸系减水剂40kg/m3和水249.9kg/m3加入强制式搅拌机中继续搅拌15分钟,然后将POM纤维(直径为0.2mm)28.2kg/m3分多次加入强制式搅拌机内继续搅拌10分钟,即可;其余步骤及参数均相同。
对比例4
本例提供一种既有整毛石墙体加固方法,与实施例1的区别仅在于:所使用的既有整毛石墙体加固UHPC材料的制备过程为:将硅酸盐水泥(42.5R)580kg/m3、白硅灰(具体为氧化锆硅灰)193.3kg/m3、矿渣灰515.6kg/m3、石英砂725.7kg/m3、铁矿石尾矿颗粒(平均粒径为5mm)70kg/m3、浮石颗粒(平均粒径为5mm)55kg/m3、聚羧酸系减水剂40kg/m3和水249.9kg/m3加入强制式搅拌机中继续搅拌15分钟,然后将POM纤维(直径为0.2mm)28.2kg/m3分多次加入强制式搅拌机内继续搅拌10分钟,即可;其余步骤及参数均相同。
实验例
本例采用力-位移混合控制的加载方式对实施例1-3和对比例1-4加固后的整毛石墙体的水平低周反复试验,(墙体尺寸为2160×1200×210mm(长×高×厚),每个试件由钢筋混凝土地梁、加固后整毛石砌筑墙体,钢筋混凝土顶梁组成,试验加载装置示意图见图7),测试结果如表1所示。
表1
编号 开裂荷载 开裂位移 极限荷载 极限位移 延性系数
实施例1 175KN 0.51mm 421KN 8.21mm 22.34
实施例2 170KN 0.57mm 405KN 7.94mm 21.58
实施例3 172KN 0.50mm 411KN 8.01mm 21.03
对比例1 103KN 0.33mm 305KN 8.06mm 15.13
对比例2 97KN 0.29mm 287KN 7.67mm 15.78
对比例3 100KN 0.31mm 293KN 8.11mm 14.63
对比例4 95KN 0.25mm 280KN 7.93mm 14.39
由表1可知,本发明提供了一种既有整毛石墙体加固方法,所使用的UHPC材料能更好的适用于既有整毛石墙体的加固,相较于常规UHPC材料的配方进行了优化,在选用白硅灰、石灰石粉和石英砂作为细骨料的基础上,还添加了铁矿石尾矿颗粒和浮石颗粒;使得UHPC材料力学性能与未风化的石头(抗压强度通常超过80MPa)相当,又整毛石表面粗糙(表面凹凸不平处于±15mm之间,整毛石上下皮关系如图4),UHPC材料能够与整毛石能较好地协同工作,实现高度的材结融合;UHPC材料具有良好的流动性可以与上下皮整毛石表面充分接触使得受力和传力可靠,UHPC与石材有优异的界面粘结性能,更能适用于既有整毛石墙体的加固。其中,当UHPC材料中未添加铁矿石尾矿颗粒(对比例2)、未添加浮石颗粒(对比例1)、浮石颗粒和聚羧酸系减水剂的用量比改变(对比例3)和所使用的细骨料组分改变(对比例4)时,均会影响制得的UHPC材料对既有整毛石墙体的适用性以及两者间的协同性,从而降低加固效果。
综上所述,本发明采用改进的新型UHPC(超高性能混凝土)增大截面法和钢筋绑带法相结合对既有整毛石墙体进行加固,可增加整毛石墙体厚度,提高其稳定性;显著提高抗震性能和耐久性,且施工方便,可广泛应用于整毛石墙体抗震加固。
以上内容仅仅是对本发明结构所作的举例和说明,所属本领域的技术人员不经创造性劳动即对所描述的具体实施例做的修改或补充或采用类似的方式替代仍属本专利的保护范围。

Claims (7)

1.一种既有整毛石墙体加固方法,其特征在于,采用既有整毛石墙体加固UHPC材料作为加固材料,包括以下步骤:
步骤(1):对待加固既有整毛石墙体进行预处理,包括:保留上下皮整毛石间的主垫片并清理灰缝;
步骤(2):采用钢筋绑带法对经步骤(1)预处理后的既有整毛石墙体以水平和竖向的方式进行拉紧加固;
步骤(3):采用人工挤浆方式将制备好的既有整毛石墙体加固UHPC材料注入灰缝,形成UHPC加固嵌缝层;
步骤(4):采用喷射工艺对经步骤(3)处理后的既有整毛石墙体进行喷射制备好的既有整毛石墙体加固UHPC材料,形成UHPC加固面层;
步骤(5):养护;
所述既有整毛石墙体加固UHPC材料,按照单方用量计,包括:硅酸盐水泥550~600kg/m3、白硅灰180~200kg/m3、石灰石粉510~530kg/m3、石英砂715~735kg/m3、铁矿石尾矿颗粒60~75kg/m3、浮石颗粒50~60kg/m3、聚羧酸系减水剂15~30kg/m3、水230~255kg/m3和POM纤维25~35kg/m3
2.如权利要求1所述的既有整毛石墙体加固方法,其特征在于,按照单方用量计,包括:硅酸盐水泥580kg/m3、白硅灰193.3kg/m3、石灰石粉515.6kg/m3、石英砂725.7kg/m3、铁矿石尾矿颗粒70kg/m3、浮石颗粒55kg/m3、聚羧酸系减水剂20kg/m3、水249.9kg/m3和POM纤维28.2kg/m3
3.如权利要求1或2所述的既有整毛石墙体加固方法,其特征在于,所述浮石颗粒和铁矿石尾矿颗粒的平均粒径均为2~8mm。
4.如权利要求1或2所述的既有整毛石墙体加固方法,其特征在于,所述POM纤维的直径为0.1~0.3mm。
5.如权利要求1所述的既有整毛石墙体加固方法,其特征在于,所述步骤(1)中预处理过程还包括:清理灰缝后,在待加固既有整毛石墙体表面涂抹一层水泥净浆或界面粘结剂。
6.如权利要求1所述的既有整毛石墙体加固方法,其特征在于,所述步骤(2)中采用钢筋绑带法进行拉紧加固的具体过程为:用钢筋穿过墙体灰缝,对整毛石进行捆绑,竖向绑带间隔距离为s;每隔h设置一条水平钢筋,与竖向钢筋绑带焊接连接;其中,s不大于400mm;h不大于500mm;钢筋直径不小于10mm。
7.如权利要求1所述的既有整毛石墙体加固方法,其特征在于,所述步骤(4)中UHPC加固面层的平均厚度为25~35mm。
CN202111512546.1A 2021-12-08 2021-12-08 一种既有整毛石墙体加固uhpc材料及其加固方法 Active CN114163190B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202111512546.1A CN114163190B (zh) 2021-12-08 2021-12-08 一种既有整毛石墙体加固uhpc材料及其加固方法
US18/075,879 US11732492B2 (en) 2021-12-08 2022-12-06 UHPC material for reinforcing existing stone masonry wall and reinforcing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111512546.1A CN114163190B (zh) 2021-12-08 2021-12-08 一种既有整毛石墙体加固uhpc材料及其加固方法

Publications (2)

Publication Number Publication Date
CN114163190A CN114163190A (zh) 2022-03-11
CN114163190B true CN114163190B (zh) 2022-07-22

Family

ID=80485708

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111512546.1A Active CN114163190B (zh) 2021-12-08 2021-12-08 一种既有整毛石墙体加固uhpc材料及其加固方法

Country Status (2)

Country Link
US (1) US11732492B2 (zh)
CN (1) CN114163190B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114856239A (zh) * 2022-05-16 2022-08-05 上海建工五建集团有限公司 既有毛石墙体的加固方法及结构
CN115521108A (zh) * 2022-09-23 2022-12-27 福州大学 一种清水整毛石墙体加固uhpc材料及其加固方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6293121B1 (en) * 1988-10-13 2001-09-25 Gaudencio A. Labrador Water-mist blower cooling system and its new applications
US5624493A (en) * 1995-04-19 1997-04-29 The United States Of America As Represented By The Department Of Energy Quick-setting concrete and a method for making quick-setting concrete
US6851235B2 (en) * 1997-05-08 2005-02-08 Robert A. Baldwin Building block with a cement-based attachment layer
US6845594B2 (en) * 2000-04-12 2005-01-25 Jerome A. Harber Pre-manufactured joist and beam support for concrete walls
US8989905B2 (en) * 2007-06-19 2015-03-24 Verifi Llc Method and system for calculating and reporting slump in delivery vehicles
US8844227B1 (en) * 2013-03-15 2014-09-30 Romeo Ilarian Ciuperca High performance, reinforced insulated precast concrete and tilt-up concrete structures and methods of making same
CN107965153B (zh) * 2017-09-18 2020-01-07 山东农业大学 干砌毛石墙体抗震加固与节能改造一体化方法
KR20190050409A (ko) * 2017-11-03 2019-05-13 한국철도기술연구원 5㎜급 선별골재를 구비한 초고성능 콘크리트 조성물, 이를 이용하여 제조된 철도용 초고성능 콘크리트 침목
US10766817B2 (en) * 2018-02-03 2020-09-08 Surface Tech LLC. Chemical substitutions for portland cement mixtures and applications therefor
US10669201B2 (en) * 2018-05-03 2020-06-02 King Fahd University Of Petroleum And Minerals Structural lightweight concrete comprising waste plastics
CA3136509C (en) * 2019-04-12 2022-07-05 Carbicrete Inc. Production of wet-cast slag-based concrete products
US11358304B2 (en) * 2019-12-10 2022-06-14 Carbicrete Inc Systems and methods for curing a precast concrete product
CN112592132A (zh) * 2020-12-24 2021-04-02 中铁第四勘察设计院集团有限公司 一种桥梁拼接缝早强uhpc材料及其制备方法
CN113372082B (zh) * 2021-07-16 2022-07-12 天津水泥工业设计研究院有限公司 一种耐磨超高性能混凝土及其制备方法

Also Published As

Publication number Publication date
US20230175275A1 (en) 2023-06-08
US11732492B2 (en) 2023-08-22
CN114163190A (zh) 2022-03-11

Similar Documents

Publication Publication Date Title
CN114163190B (zh) 一种既有整毛石墙体加固uhpc材料及其加固方法
Ghannam et al. Experimental study of concrete made with granite and iron powders as partial replacement of sand
Kamal et al. Experimental investigation on the behavior of normal strength and high strength self-curing self-compacting concrete
CA2944599C (en) Concrete materials with modified rheology, methods of making, and uses thereof
Peyvandi et al. Enhancement of the structural efficiency and performance of concrete pipes through fiber reinforcement
JP2004507431A (ja) 超高強度と延性を有する繊維含有コンクリート
Karmegam et al. Utilization of granite sawing waste in self compacting concrete
Kenai et al. Mechanical properties and durability of concrete made with coarse and fine recycled aggregates
CN104891900A (zh) 一种c35低胶材自密实增强混凝土及其制备方法
KR101209282B1 (ko) 초고성능 섬유보강 콘크리트 및 이의 제조방법
CN109437740A (zh) 一种高透水耐磨型透水混凝土及其制备方法
CN104891884A (zh) 一种c35低胶材自密实混凝土及其制备方法
CN109080234A (zh) 一种高强度轻质混凝土预制板
CN104891902A (zh) 一种c35低胶材自密实耐蚀混凝土及其制备方法
JP2009007925A (ja) 鋼橋用床版
CN109057822A (zh) 一种含高活性材料的混凝土管片及其制作方法
JP4926387B2 (ja) ポリマーセメントモルタル硬化体
CN104891883A (zh) 一种c35低胶材自密实耐水混凝土及其制备方法
Verma et al. The Influence of Lime as Partial Replacement of Cement on Strength Characteristics of Mortar and Concrete Mixes
hamid El Semary et al. Effect of using green building masonary mortar on the behaviour of masonary walls
CN113213874A (zh) 一种节能抗裂混凝土
KR0118630B1 (ko) 온돌용 미장 마감재의 균열방지 모르타르
Ali et al. Effect of Polyester Fiber on Workability Property of High Strength Concrete
CN104891901A (zh) 一种c35低胶材自密实耐磨混凝土及其制备方法
Hammadi et al. Rheological Properties and Mechanical Strength of Recycled Concrete Aggregate SCC

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant