CN114153135A - Locking method of cesium beam atomic clock - Google Patents
Locking method of cesium beam atomic clock Download PDFInfo
- Publication number
- CN114153135A CN114153135A CN202111577426.XA CN202111577426A CN114153135A CN 114153135 A CN114153135 A CN 114153135A CN 202111577426 A CN202111577426 A CN 202111577426A CN 114153135 A CN114153135 A CN 114153135A
- Authority
- CN
- China
- Prior art keywords
- frequency
- microwave
- signal
- power
- microwave power
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- TVFDJXOCXUVLDH-UHFFFAOYSA-N caesium atom Chemical compound [Cs] TVFDJXOCXUVLDH-UHFFFAOYSA-N 0.000 title claims abstract description 32
- 229910052792 caesium Inorganic materials 0.000 title claims abstract description 31
- 238000000034 method Methods 0.000 title claims abstract description 27
- 238000012545 processing Methods 0.000 abstract description 9
- 238000001914 filtration Methods 0.000 abstract description 3
- 230000004069 differentiation Effects 0.000 abstract 1
- 230000010354 integration Effects 0.000 abstract 1
- 238000001514 detection method Methods 0.000 description 20
- 230000007704 transition Effects 0.000 description 9
- 230000003287 optical effect Effects 0.000 description 8
- 238000005070 sampling Methods 0.000 description 8
- 238000010586 diagram Methods 0.000 description 6
- 230000004044 response Effects 0.000 description 4
- 230000007774 longterm Effects 0.000 description 3
- 230000001105 regulatory effect Effects 0.000 description 3
- 230000003595 spectral effect Effects 0.000 description 3
- 238000007796 conventional method Methods 0.000 description 2
- 230000000875 corresponding effect Effects 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000004891 communication Methods 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005283 ground state Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000009191 jumping Effects 0.000 description 1
- 238000007885 magnetic separation Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 230000002269 spontaneous effect Effects 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G04—HOROLOGY
- G04F—TIME-INTERVAL MEASURING
- G04F5/00—Apparatus for producing preselected time intervals for use as timing standards
- G04F5/14—Apparatus for producing preselected time intervals for use as timing standards using atomic clocks
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Stabilization Of Oscillater, Synchronisation, Frequency Synthesizers (AREA)
Abstract
The invention discloses a locking method of a cesium beam atomic clock, which comprises the following steps: step 1, microwave frequency modulation: modulating the microwave frequency; step 2, microwave frequency scanning: inputting microwaves into a cesium-beam tube to obtain atomic signals; step 3, frequency error signal demodulation: demodulating the atomic signal with the frequency modulated signal and low pass filtering to produce a frequency error signal eω(t); setting the microwave frequency at eω(t) at the maximum, the microwave power b is changed and an error signal e is recordedω(t) microwave power b at maximum1(ii) a Step 4, microwave power modulation: at microwave power b1Modulating the microwave power near the point; step 5, microwave frequency-power combined locking: for error signal eω(t) carrying out proportional-integral-derivative (PID) processing and feeding back to a microwave frequency setting end to realize frequency locking; to eωAnd (t) demodulating and low-pass filtering by using the power modulation signal to obtain a microwave power error signal, and carrying out PID (proportion integration differentiation) processing on the microwave power error signal and feeding back the microwave power error signal to a microwave power control end to realize power closed-loop locking.
Description
Technical Field
The invention relates to the field of atomic frequency standards, in particular to a locking method of a cesium beam atomic clock.
Background
An atomic clock is a timing device that utilizes atomic transitions as a standard. It is currently the most accurate time and frequency standard, and therefore its range of application is extremely wide: from precise basic scientific measurement, such as physical constant determination and theoretical physical verification, to engineering application directly serving daily production and life of people, such as a global navigation satellite system and the like. The cesium-beam atomic clock has the characteristics of high accuracy, good long-term stability and the like, is core equipment for establishing and maintaining a high-precision and high-stability time-keeping system, and has wide application in the fields of time keeping, time service, communication, electric power, time frequency measurement and the like.
The long-term frequency stability of cesium-beam atomic clocks is affected by various frequency-shifting factors, one of the major frequency shifts being microwave power frequency shift. In order to avoid long-term drift of the output frequency of the atomic clock caused by the drift of the microwave power, the microwave power and the frequency are usually required to be jointly locked.
The existing microwave power locking method of the cesium-beam atomic clock mainly comprises the steps of slowly modulating microwave power, directly demodulating an output signal of a cesium-beam tube, generating an error signal and feeding the error signal back to the microwave power, and locking the microwave power at the maximum position of the output signal of the cesium-beam tube. This method has two major disadvantages:
first, ideally, the relationship between the microwave power and the amplitude of the output signal of the cesium-beam tube is as shown in fig. 2, but actually, due to the influence of adjacent transition lines under large microwave power, the signal amplitude is larger when the microwave power is increased, as shown in fig. 2, so that the microwave power may be unlocked when locking is performed by using a conventional method;
secondly, the stability of the cesium atomic clock is positively correlated with the amplitude of the frequency locking error signal, and usually, the maximum value of the signal and the maximum value of the error signal are not at the same microwave power point, so that the traditional method is difficult to achieve the optimal stability performance index of the atomic clock;
therefore, the invention provides a novel locking method of the cesium beam atomic clock, which can stably lock the microwave power at the maximum point of an error signal, can obtain a better stability index compared with the traditional scheme, and has better robustness.
Disclosure of Invention
In order to realize the purpose of the invention, the following technical scheme is adopted for realizing the purpose:
a locking method of a cesium beam atomic clock comprises the following steps: step 1, modulating microwave frequency; step 2, microwave frequency scanning is carried out to obtain a frequency error signal of frequency locking; step 3, scanning the microwave power; step 4, modulating microwave power; and 5, locking the microwave frequency-power combination.
The locking method of the cesium beam atomic clock comprises the following steps of 1:
let the original microwave signal be y (t) ═ bcos (ω)0t), where b is the microwave signal amplitude, ω0For atomic resonance frequency, the modulated microwave signal is expressed as:
wherein,modulating amplitude to omega for microwave frequencymModulation period of TωFrequency modulation signal with average value of 0; adopting square wave to perform microwave frequency modulation, namely:
The locking method of the cesium beam atomic clock comprises the following steps of:
2.1 feeding the microwave signal modulated in the step 1 into a cesium beam tube to obtain an atomic optical detection signal r (t), and modulating a square wave by using frequencyDemodulation generation for frequencyLocked frequency error signal eω(t):
2.2 constant microwave power b, at resonance point ω0Changing the microwave frequency nearby, finding the maximum value of the frequency error signal, and recording the microwave frequency as omega1。
The locking method of the cesium beam atomic clock comprises the following steps of:
setting the microwave frequency at omega1Varying the microwave power b to obtain a frequency error signal eω(t) microwave power b at maximum1。
The locking method of the cesium beam atomic clock comprises the following steps of: at microwave power b1The microwave power is modulated near the point, and the modulated signal is expressed as:
wherein,modulating amplitude b for microwave powermModulation period of TbAnd the power modulation signal with the average value of 0 adopts square waves to perform microwave power modulation, namely:
The locking method of the cesium beam atomic clock comprises the following steps of:
5.1 pairs of frequency error signals eω(t) performing a proportional-integral-derivative process to obtain a frequencyRate control signal cω(t), namely:
in the complex frequency domain it can be expressed as:
wherein Kωp,Kωi,KωdFor PID gain, the frequency control signal cω(t) feeding back to the microwave frequency adjusting end;
5.2 Simultaneous with step 5.1, for the frequency error signal eω(t) modulation with PowerDemodulating and low-pass filtering to obtain microwave power error signal eb(t) that is
PID processing is carried out on the microwave power error signal to obtain a power control signal cb(t), namely:
wherein Kbp,Kbi,KbdIs the PID gain;
the power control signal cbAnd (t) feeding back to the microwave power regulation end.
A locking method of a cesium beam atomic clock comprises the following steps:
step 1, modulating the microwave frequency, and setting an original microwave signal as y (t) or b cos (ω)0t), the modulated microwave signal is expressed as:
wherein the signal is modulatedIs generated by a digital chip and converted into an analog signal by a DAC, and the corresponding digital signal is set asSampling rate of Fs;
2.1 feeding the microwave signal modulated in the step 1 into a cesium beam tube to obtain an atomic optical detection signal r (t), and performing sampling by an ADC (analog to digital converter) at a sampling rate FsSampling the analog signal r (t) and converting it into digital signal r [ n ]]And r [ n ] is paired in FPGA]Using frequency-modulated square wavesDemodulated and digitally low-pass filtered to produce a frequency error signal e for frequency lockingω[n]:
2.2 constant microwave power b, at resonance point ω0By varying the frequency of the microwaves in the vicinity, i.e. at ω0Repeating the step 2.1 from the minimum frequency to the maximum frequency in the frequency interval of the left and right sides by a predetermined frequency step to obtain a frequency error signal eω[n]Finding the maximum value of the frequency error signal, and recording the microwave frequency as omega1;
Step 4. microwave power modulation
At microwave power b1The microwave power is modulated near the point, and the modulated signal is expressed as:
wherein,to modulate amplitude bmModulation period of TbThe power modulation signal with the average value of 0 adopts square wave to modulate the microwave rate,generated by a digital chip FPGAAnd generated by a DAC;
step 5, microwave frequency-power combined locking
5.1 pairs of frequency error signals eω[n]Performing digital proportional-integral-derivative processing to obtain frequency control signal cω[n]Namely:
selecting PID gain Kωp,Kωi,KωdTo adjust the loop gain and bandwidth, the frequency control signal cω[n]Converted into analog signal c by DACω(t) feeding back to a microwave frequency adjusting end to realize closed-loop locking of microwave frequency;
5.2 Simultaneous with step 5.1, for the frequency error signal eω(t) modulating the signal with powerPerforms demodulation and digital low-pass filteringThe filtered signal is used as microwave power error signal eb[n]I.e. by
PID processing is carried out on the microwave power error signal, and proper gain K is selectedbp,Kbi,KbdObtaining a power control signal cb[n]Namely:
the power control signal cb[n]Converted into analog signal c by DACbAnd (t) feeding back to a microwave power regulating end to realize closed-loop locking of microwave power.
Has the advantages that: due to the influence of adjacent transition lines in an actual situation, atomic signals are improved when the microwave power is large (see fig. 2), and the condition of losing lock is easy to occur when the microwave power is locked by using a traditional method; in contrast, the invention locks the microwave power by using the frequency error signal, has unique peak value, is not easy to lose lock, and can obtain better frequency stability.
Drawings
FIG. 1 is a block diagram of a method for locking a cesium beam atomic clock according to the present invention;
FIG. 2 is a graph of microwave power versus atomic signal amplitude;
FIG. 3 is a graph of the response of a frequency error signal to microwave power;
FIG. 4 is a structural diagram of a magnetic separation state-optical detection cesium beam atomic clock;
fig. 5 is a demodulated microwave frequency lock error signal.
Detailed Description
The following description will explain embodiments of the present invention in detail with reference to fig. 1 to 5 by taking a magnetic selection state-light detection type cesium atomic clock as an example.
As shown in fig. 4, which is a schematic block diagram of a magnetic state-optical detection cesium beam atomic clock, the current cesium beam atomic clock has three forms including a magnetic state-electron multiplier detection, an optical pumping-optical detection, and a magnetic state-optical detection, and the precision control method of the cesium beam atomic clock is described in this embodiment by taking the magnetic state-optical detection as an example, but the present embodiment is not limited thereto, and is also applicable to other forms of cesium beam atomic clocks.
As shown in fig. 4, the atoms are sprayed out through a cesium furnace, and state preparation is realized after state selection is carried out through a state selection magnet, and atoms with | F ═ 3> are generally selected in the process of a magnetic state. And then, the atoms enter the U-shaped microwave cavity and interact with microwaves twice to realize Ramsey interference, the frequency of the microwaves in the U-shaped microwave cavity is generated by voltage-controlled crystal oscillator frequency doubling, and when the frequency of the microwaves is consistent with the frequency of the atoms, the probability of the atoms jumping to a state | F ═ 4> is the maximum. The atoms after transition enter a detection area, laser generated by a distributed feedback laser (DFB) irradiates the detection area, the atoms after transition are detected by a photodetection circuit, and the atoms with | F ═ 4> are circularly transited in states with | F ═ 4> and | F' ═ 5> by utilizing the interaction of the laser and the atoms, thereby generating fluorescence. The photodiode of the light detection circuit can convert the fluorescence of the spontaneous radiation of the atoms into an electric signal which is used as an output signal of the cesium-beam tube light detection.
The basic principle of the cesium beam atomic clock is to realize transition between cesium atom ground states by utilizing the interaction of microwaves and atoms. Since the atomic transition probability is related to the microwave power, in order to ensure that the output frequency of the cesium beam atomic clock is disturbed as little as possible, the shift of the microwave power needs to be suppressed, and the microwave power of the cesium beam atomic clock needs to be locked. The existing servo locking method for microwave power is mainly based on the locking of atomic beam response to different microwave powers, and the basic idea is as shown in fig. 2, after the crystal oscillator has been servo-locked, the microwave frequency is fixed, and a slow modulation (e.g. 10) on the microwave power is output-2Hz), because the microwave transition spectral line has a certain response to the microwave power, the modulation information of the microwave power can be embodied in the detection signal. After the detection signal is demodulated, an error signal about the microwave power can be obtained. After closed-loop locking, the difference value of the spectral line signals at the two power points is 0, and therefore microwave power locking is achieved.
However, this method has certain drawbacks in cesium beam atomic clocks. Fig. 2 compares the theoretical optical detection signal with the experimentally measured optical detection signal versus microwave power, and the experimental results show that at high power, an increase in the amplitude of the fluorescence signal occurs, due to the superposition of other line spectra (mainly adjacent sigma transition lines) at the central spectral line at high microwave power. This effect causes a distortion of the microwave power response curve of the signal, and the locking point of the microwave power deviates from the ideal two-level assumption (only considering | m |)F=0>Atom) of about 1dB at the position of maximum microwave power. In addition, there is a certain risk of false locking due to the linear variation at high microwave power.
In order to lock the microwave power, the invention proposes to lock the microwave power by using the amplitude of the error signal, and the implementation scheme of the method is described by taking analog locking as an example.
Step 1, firstly, the microwave frequency needs to be modulated, and the original microwave signal is set as y (t) ═ b cos (ω)0t), where b is the microwave signal amplitude, ω0At the atomic resonance frequency, about 2 π · 9192631770Hz, the modulated microwave signal can be written as:
wherein,is of amplitude omegamModulation period of TωAnd the average value is 0, the invention adopts square wave to modulate the microwave frequency, namely:
2.1 feeding the microwave signal modulated in the step 1 into a cesium beam tube to obtain an atomic optical detection signal r (t). Using frequency-modulated square wavesDemodulated and low-pass filtered (LPF, not shown in fig. 1), producing a frequency error signal e for frequency lockingω(t):
2.2 constant microwave power b, at resonance point ω0By varying the frequency of the microwaves in the vicinity, i.e. at ω0Repeating the above step 2.1 with predetermined frequency steps from the minimum frequency to the maximum frequency in the left and right frequency intervals to obtain the frequency error signal e as shown in fig. 5ω(t) scanning the graph to find the maximum value of the frequency error signal, and recording the microwave frequency as omega1。
Step 4. microwave power modulation
At microwave power b1The microwave power is modulated near the point, and the modulated signal can be written as:
wherein,is of amplitude bmModulation period of TbAnd the average value is a power modulation signal of 0, and the square wave is adopted in the scheme for microwave power modulation, namely:
in order to avoid that the microwave power modulation has an influence on the short-term frequency stability of the atomic clock, the modulation is usually realized by a low-frequency signal,is 10-2In the Hz range.
Step 5, microwave frequency-power combined locking
5.1 pairs of frequency error signals eω(t) performing proportional-integral-derivative (PID) processing to obtain a frequency control signal cω(t), namely:
in the complex frequency domain can be written as
Selecting PID gain Kωp,Kωi,KωdTo adjust the loop gain and bandwidth, the frequency control signal cωAnd (t) feeding back to the microwave frequency adjusting end to realize the closed-loop locking of the microwave frequency.
5.2 Simultaneous with step 5.1, for the frequency error signal eω(t) modulating the signal with powerDemodulated and low-pass filtered (LPF, not shown in fig. 1), the filtered signal being the microwave power error signal eb(t) that is
PID processing is carried out on the microwave power error signal, and proper gain K is selectedbp,Kbi,KbdObtaining a power control signal cb(t), namely:
the power control signal cb(t) feeding back to the microwave power regulating end to realize the closed loop locking of the microwave power, wherein the microwave power is locked at the maximum point of the error signal determined by the atomic beam. According to the locking principle, assuming that the amplitude-frequency gain of the microwave power is A(s), according to the control principle, the frequency domain representation of the microwave power signal noise can be written as
Where d(s) is the power noise of the microwave circuit itself, and η(s) is the noise of the atomic signal itself, then the in-band noise is mainly determined by the atomic signal, and the power drift of the microwave circuit can be suppressed.
In the method, firstly, the microwave power is locked at the position where the error signal is maximum, and the short-term frequency stability is optimized (the improvement value can reach 5%), and secondly, the observation of the actually measured curve can find that the error signal cannot be monotonically increased so as to exceed the peak value when the microwave power is larger, so that the microwave power cannot be mistakenly locked at the position of large microwave power. In addition, the modulation frequency for generating the error signal is increased from 1Hz to 10 Hz in the conventional method2Hz, the influence of low-frequency noise of the optical detection circuit is reduced. The contrast and the signal-to-noise ratio of the locked microwave power are higher, and the performance of microwave power locking is improved.
The present invention can also be realized by digital locking, and the implementation scheme of the method is described below by taking digital locking as an example.
Step 1, modulating the microwave frequency, and setting an original microwave signal as y (t) or b cos (ω)0t), the modulated microwave signal can be written as:
wherein the signal is modulatedIs generated by a digital chip, such as FPGA, singlechip, etc., and converted into an analog signal by DAC, and the corresponding digital signal is set asSampling rate of Fs。
2.1 feeding the microwave signal modulated in the step 1 into a cesium beam tube to obtain an atomic optical detection signal r (t), and performing sampling by an ADC (analog to digital converter) at a sampling rate FsSampling the analog signal r (t) and converting it into digital signal r [ n ]]And r [ n ] is paired in FPGA]Using frequency-modulated square wavesDemodulated and digitally low-pass filtered (LPF, not shown in fig. 1), producing a frequency error signal e for frequency lockingω[n]:
2.2 constant microwave power b, at resonance point ω0By varying the frequency of the microwaves in the vicinity, i.e. at ω0Repeating the step 2.1 from the minimum frequency to the maximum frequency in the frequency interval of the left and right sides by a predetermined frequency step to obtain a frequency error signal eω[n]Scanning the graph to find the maximum value of the frequency error signal, and recording the microwave frequency as omega1。
Step 4. microwave power modulation
At microwave power b1The microwave power is modulated near the point, and the modulated signal can be written as:
wherein,to modulate amplitude bmModulation period of TbThe average value is 0, the scheme adopts square wave to modulate the microwave power,generated by a digital chip FPGAAnd is generated via a DAC.
Step 5, microwave frequency-power combined locking
5.1 pairs of frequency error signals eω[n]Performing digital proportional-integral-derivative (PID) processing to obtain frequency control signal cω[n]Namely:
selecting PID gain Kωp,Kωi,KωdTo adjust the loop gain and bandwidth, the frequency control signal cω[n]ThroughConversion of DAC into analog signal cωAnd (t) feeding back to the microwave frequency adjusting end to realize the closed-loop locking of the microwave frequency.
5.2 Simultaneous with step 5.1, for the frequency error signal eω(t) modulating the signal with powerDemodulated and digitally low-pass filtered (LPF, not shown in fig. 1), the filtered signal being the microwave power error signal eb[n]I.e. by
PID processing is carried out on the microwave power error signal, and proper gain K is selectedbp,Kbi,KbdObtaining a power control signal cb[n]Namely:
the power control signal cb[n]Converted into analog signal c by DACb(t) feeding back to the microwave power regulating end to realize the closed loop locking of the microwave power, wherein the microwave power is locked at the maximum point of the error signal determined by the atomic beam.
Finally, it is noted that there are many implementations of the microwave power locking scheme used by the present invention. The locking period, modulation frequency, analog/digital locking scheme, etc. do not constitute a limitation of the present invention.
Claims (2)
1. A locking method of a cesium beam atomic clock is characterized by comprising the following steps: step 1, modulating microwave frequency; step 2, microwave frequency scanning is carried out to obtain a frequency error signal of frequency locking; step 3, scanning the microwave power; step 4, modulating microwave power; and 5, locking the microwave frequency-power combination.
2. The method for locking cesium beam atomic clocks according to claim 1, characterized by step 1 comprising:
let the original microwave signal be y (t) ═ b cos (ω)0t), where b is the microwave signal amplitude, ω0For atomic resonance frequency, the modulated microwave signal is expressed as:
wherein,modulating amplitude to omega for microwave frequencymModulation period of TωFrequency modulation signal with average value of 0; adopting square wave to perform microwave frequency modulation, namely:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111577426.XA CN114153135B (en) | 2021-12-22 | 2021-12-22 | Locking method of cesium beam atomic clock |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111577426.XA CN114153135B (en) | 2021-12-22 | 2021-12-22 | Locking method of cesium beam atomic clock |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114153135A true CN114153135A (en) | 2022-03-08 |
CN114153135B CN114153135B (en) | 2022-08-09 |
Family
ID=80451688
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111577426.XA Active CN114153135B (en) | 2021-12-22 | 2021-12-22 | Locking method of cesium beam atomic clock |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114153135B (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115097711A (en) * | 2022-05-24 | 2022-09-23 | 电子科技大学 | Cesium atomic clock microwave signal power stabilizing system based on cesium atomic ratiometric resonance |
CN115118280A (en) * | 2022-07-04 | 2022-09-27 | 成都同相科技有限公司 | Rubidium atomic clock digital servo system and method based on second-order integration |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6304517B1 (en) * | 1999-06-18 | 2001-10-16 | Telefonaktiebolaget Lm Ericsson (Publ) | Method and apparatus for real time clock frequency error correction |
TW580612B (en) * | 2002-09-09 | 2004-03-21 | Ind Tech Res Inst | Fully-optical excited laser ex-modulated atomic clock device |
US20090256638A1 (en) * | 2008-03-28 | 2009-10-15 | Michael Rosenbluh | Atomic frequency standard based on enhanced modulation efficiency semiconductor lasers |
CN203151469U (en) * | 2013-01-31 | 2013-08-21 | 江汉大学 | System capable of narrowing atomic energy level transition dynamic detection frequency range of atomic clock |
CN103823356A (en) * | 2014-03-07 | 2014-05-28 | 中国科学院武汉物理与数学研究所 | PXI (PCI eXtensions for Instrumentation) system-based passive CPT (Coherent Population Trapping) atomic clock experimental facility and method |
CN110515290A (en) * | 2019-07-17 | 2019-11-29 | 北京大学 | A kind of laser frequency stabiliz ation method and optical system improving optical pumping cesium-beam atomic clock performance |
CN110780585A (en) * | 2019-10-11 | 2020-02-11 | 北京大学 | Optical pumping cesium atomic clock applying axisymmetric multistage magnets and implementation method |
CN110784217A (en) * | 2019-10-11 | 2020-02-11 | 浙江法拉第激光科技有限公司 | Cesium microwave atomic clock based on microwave-optical frequency modulation transfer technology and implementation method |
CN112383306A (en) * | 2020-12-21 | 2021-02-19 | 武汉光谷航天三江激光产业技术研究院有限公司 | Atomic clock frequency control method and equipment |
-
2021
- 2021-12-22 CN CN202111577426.XA patent/CN114153135B/en active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6304517B1 (en) * | 1999-06-18 | 2001-10-16 | Telefonaktiebolaget Lm Ericsson (Publ) | Method and apparatus for real time clock frequency error correction |
TW580612B (en) * | 2002-09-09 | 2004-03-21 | Ind Tech Res Inst | Fully-optical excited laser ex-modulated atomic clock device |
US20090256638A1 (en) * | 2008-03-28 | 2009-10-15 | Michael Rosenbluh | Atomic frequency standard based on enhanced modulation efficiency semiconductor lasers |
CN203151469U (en) * | 2013-01-31 | 2013-08-21 | 江汉大学 | System capable of narrowing atomic energy level transition dynamic detection frequency range of atomic clock |
CN103823356A (en) * | 2014-03-07 | 2014-05-28 | 中国科学院武汉物理与数学研究所 | PXI (PCI eXtensions for Instrumentation) system-based passive CPT (Coherent Population Trapping) atomic clock experimental facility and method |
CN110515290A (en) * | 2019-07-17 | 2019-11-29 | 北京大学 | A kind of laser frequency stabiliz ation method and optical system improving optical pumping cesium-beam atomic clock performance |
CN110780585A (en) * | 2019-10-11 | 2020-02-11 | 北京大学 | Optical pumping cesium atomic clock applying axisymmetric multistage magnets and implementation method |
CN110784217A (en) * | 2019-10-11 | 2020-02-11 | 浙江法拉第激光科技有限公司 | Cesium microwave atomic clock based on microwave-optical frequency modulation transfer technology and implementation method |
CN112383306A (en) * | 2020-12-21 | 2021-02-19 | 武汉光谷航天三江激光产业技术研究院有限公司 | Atomic clock frequency control method and equipment |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115097711A (en) * | 2022-05-24 | 2022-09-23 | 电子科技大学 | Cesium atomic clock microwave signal power stabilizing system based on cesium atomic ratiometric resonance |
CN115097711B (en) * | 2022-05-24 | 2023-03-07 | 电子科技大学 | Cesium atomic clock microwave signal power stabilizing system based on cesium atomic ratiometric resonance |
CN115118280A (en) * | 2022-07-04 | 2022-09-27 | 成都同相科技有限公司 | Rubidium atomic clock digital servo system and method based on second-order integration |
Also Published As
Publication number | Publication date |
---|---|
CN114153135B (en) | 2022-08-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN114153135B (en) | Locking method of cesium beam atomic clock | |
CN112305899B (en) | CPT phase modulation and demodulation method and system | |
CN111082873B (en) | Ultra-long-distance optical fiber high-precision radio frequency signal transmission system and method | |
US6909732B2 (en) | Method and apparatus for controlling optical wavelength based on optical frequency pulling | |
CN108768539B (en) | Photon type microwave frequency-halving method and photon type microwave frequency-halving device | |
CN107919913B (en) | Optical phase-locked loop device and phase-locking method based on direct digital frequency synthesizer | |
US9158137B1 (en) | Spread-spectrum bias control | |
JPH10163756A (en) | Automatic frequency controller | |
CN110530355B (en) | High-bandwidth signal detection method for integrated optical waveguide gyroscope resonant frequency tracking | |
CN103579896A (en) | Pound-Drever-Hall laser frequency stabilizing system without phase shifter | |
CN113281778A (en) | Coherent laser radar system based on optical phase lock | |
CN118156949A (en) | Phase domain mode locking photo-generated microwave device and method | |
CN106788426B (en) | A kind of CPT atomic frequency standard laser frequency modulation index locking device and method | |
JPH022728A (en) | Controller for local oscillator of phase deviation keying type optical homodyne or heterodyne receiver | |
Liu et al. | Study of multistage composite loop control based on optical phase-locked loop technology | |
CN109004930B (en) | Circuit system for directly demodulating frequency modulation signal based on phase-locked loop and control method | |
CN116260038A (en) | Stable-state tunable dual-wavelength generation method based on laser phase locking | |
CN111044946B (en) | Multimodal closed-loop non-directional blind area CPT magnetometer system | |
CN115480417A (en) | Bias control circuit system of electro-optical modulator | |
US20220400039A1 (en) | Device and method for transmitting data | |
JP2011146908A (en) | Synchronous circuit of optical homodyne receiver and optical homodyne receiver | |
CN118472787B (en) | Laser-based temperature control system and method | |
CN213659093U (en) | Real-time active optical phase lock system | |
CN110989325B (en) | Digital servo device and using method | |
RU2579766C1 (en) | Coherent superheterodyne electron paramagnetic resonance spectrometer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |