CN114150027A - Method for synthesizing N-acetyl-5-methoxytryptamine by using 5-hydroxy beta-indolylalanine as substrate through biological method - Google Patents

Method for synthesizing N-acetyl-5-methoxytryptamine by using 5-hydroxy beta-indolylalanine as substrate through biological method Download PDF

Info

Publication number
CN114150027A
CN114150027A CN202111466077.4A CN202111466077A CN114150027A CN 114150027 A CN114150027 A CN 114150027A CN 202111466077 A CN202111466077 A CN 202111466077A CN 114150027 A CN114150027 A CN 114150027A
Authority
CN
China
Prior art keywords
acetyl
hydroxytryptamine
gene
methoxytryptamine
key enzyme
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111466077.4A
Other languages
Chinese (zh)
Inventor
赵云现
展全乐
杨志彬
崔金旺
胡江林
田皓博
刘婵
蒋硕生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hebei Weidakang Biotechnology Co ltd
Original Assignee
Hebei Weidakang Biotechnology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hebei Weidakang Biotechnology Co ltd filed Critical Hebei Weidakang Biotechnology Co ltd
Priority to CN202111466077.4A priority Critical patent/CN114150027A/en
Publication of CN114150027A publication Critical patent/CN114150027A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P17/00Preparation of heterocyclic carbon compounds with only O, N, S, Se or Te as ring hetero atoms
    • C12P17/10Nitrogen as only ring hetero atom
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/52Genes encoding for enzymes or proenzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1003Transferases (2.) transferring one-carbon groups (2.1)
    • C12N9/1007Methyltransferases (general) (2.1.1.)
    • C12N9/1011Catechol O-methyltransferase (2.1.1.6)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1025Acyltransferases (2.3)
    • C12N9/1029Acyltransferases (2.3) transferring groups other than amino-acyl groups (2.3.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y201/00Transferases transferring one-carbon groups (2.1)
    • C12Y201/01Methyltransferases (2.1.1)
    • C12Y201/01006Catechol O-methyltransferase (2.1.1.6)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y203/00Acyltransferases (2.3)
    • C12Y203/01Acyltransferases (2.3) transferring groups other than amino-acyl groups (2.3.1)
    • C12Y203/01005Arylamine N-acetyltransferase (2.3.1.5)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y203/00Acyltransferases (2.3)
    • C12Y203/01Acyltransferases (2.3) transferring groups other than amino-acyl groups (2.3.1)
    • C12Y203/01087Aralkylamine N-acetyltransferase (2.3.1.87)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

The invention provides a method for synthesizing N-acetyl-5-methoxytryptamine by a biological method by taking 5-hydroxy beta-indolylalanine as a substrate. The invention provides an N-acetyl-5-methoxytryptamine high-yield strain, which is used for a method for synthesizing N-acetyl-5-methoxytryptamine by a biological method by taking 5-hydroxy beta-indolylalanine as a substrate, and the synthetic yield of the N-acetyl-5-methoxytryptamine is high. Further, the yield of the biosynthetic N-acetyl-5-methoxytryptamine is remarkably improved by screening the key enzyme gene AANAT in the pathway of producing N-acetyl-5-hydroxytryptamine from 5-hydroxytryptamine and screening and combined screening the key enzyme gene COMT in the pathway of producing N-acetyl-5-methoxytryptamine from N-acetyl-5-hydroxytryptamine.

Description

Method for synthesizing N-acetyl-5-methoxytryptamine by using 5-hydroxy beta-indolylalanine as substrate through biological method
Technical Field
The invention relates to the technical field of biology, in particular to a novel method for synthesizing N-acetyl-5-methoxytryptamine and application thereof.
Background
N-acetyl-5-methoxytryptamine is mainly an important indole neurohormone secreted by the pineal gland of mammals, indole has its unique chemical structure, and has its body shadow in chemosynthesis medicines such as antihypertensive drugs, antihistamine drugs, antipyretic analgesics and the like, and many fields such as alkaloid, high-efficiency plant growth regulator, dye and the like are indole derivatives. The N-acetyl-5-methoxytryptamine can improve the sleep quality of animal organisms. The secretion of N-acetyl-5-methoxytryptamine gradually decreases with the age of the animal. More and more researches show that the N-acetyl-5-methoxytryptamine not only can treat insomnia, but also has various physiological functions of resisting oxidation, resisting aging, regulating immunity, resisting cancer and the like.
The N-acetyl-5-methoxy primary color amine is a natural drug product component, generates little side effect, and has obvious advantages in the aspects of toxic and side effects, dosage and addiction cutoff compared with the existing widely used sedative hypnotic. Therefore, the effect and the curative effect and the market value of the N-acetyl-5-methoxytryptamine are important and cannot be replaced.
Currently, two main categories of biological extraction and chemical synthesis are mainly obtained from N-acetyl-5-methoxytryptamine. Because the content of the N-acetyl-5-methoxytryptamine naturally existing in animals and plants is very low, the extraction raw material source is limited, the extraction cost is high, and the industrial application is limited.
Compared with chemical synthesis, biosynthesis has the advantages of environmental friendliness, low energy consumption, environmental friendliness and the like. With the development of synthetic biology, more and more compounds are achieving biological green production. The engineering bacteria and the synthesis method for biologically synthesizing the N-acetyl-5-methoxytryptamine with high yield have great significance.
Disclosure of Invention
The technical problem to be solved by the invention is to provide an N-acetyl-5-methoxytryptamine high-yield strain, a construction method and a method for synthesizing N-acetyl-5-methoxytryptamine by a biological method by taking 5-hydroxy beta-indolylalanine as a substrate.
In order to solve the technical problems, the technical scheme adopted by the invention is as follows:
provides a method for synthesizing N-acetyl-5-methoxytryptamine by a biological method by taking 5-hydroxy beta-indolylalanine as a substrate, which comprises the following steps:
1) the method comprises the steps of utilizing the recombinant genetic engineering bacteria for synthesizing the N-acetyl-5-methoxytryptamine protein coding gene or expressing and synthesizing the 5-hydroxy beta-indolylalanine protein coding gene to biologically ferment and synthesize the N-acetyl-5-methoxytryptamine by taking the 5-hydroxy beta-indolylalanine as a substrate, wherein the N-acetyl-5-methoxytryptamine protein coding gene capable of being expressed and synthesized comprises a 5-hydroxy beta-indolylalanine 5-hydroxytryptamine pathway key enzyme gene DDC; key enzyme genes AANAT and ACS of the process of producing N-acetyl-5-hydroxytryptamine by 5-hydroxytryptamine; key enzyme genes COMT and MAT of a pathway for producing N-acetyl-5-methoxytryptamine from N-acetyl-5-hydroxytryptamine;
2) separating the N-acetyl-5-methoxytryptamine from the system in the step 1).
According to the scheme, the nucleotide sequence of the key enzyme gene AANAT of the pathway of producing N-acetyl-5-hydroxytryptamine by 5-hydroxyl is shown as any sequence in SEQ ID NO. 2-10; the nucleotide sequence of the key enzyme gene COMT of the N-acetyl-5-methoxytryptamine production pathway of the N-acetyl-5-hydroxytryptamine is shown as any sequence in SEQ ID NO 12-18.
According to the scheme, the nucleotide sequence of the 5-hydroxytryptamine pathway key enzyme gene DDC produced by 5-hydroxy beta-indolylalanine is shown as SEQ ID NO. 1;
the nucleotide sequence of ACS (cytochrome C) which is a key enzyme gene in the process of producing N-acetyl-5-hydroxytryptamine by 5-hydroxytryptamine is shown as SEQ ID NO. 11;
the nucleotide sequence of MAT gene of key enzyme gene of the pathway for producing N-acetyl-5-methoxytryptamine by N-acetyl-5-hydroxytryptamine is shown as SEQ ID NO: 19, respectively.
Preferably, the nucleotide sequence of the key enzyme gene AANAT of the pathway of producing N-acetyl-5-hydroxytryptamine by 5-hydroxyl is shown as any one sequence of SEQ ID NO. 2, SEQ ID NO. 3, SEQ ID NO. 5, SEQ ID NO. 6 and SEQ ID NO. 10; the nucleotide sequence of the key enzyme gene COMT of the pathway of producing N-acetyl-5-methoxytryptamine by N-acetyl-5-hydroxytryptamine is shown as SEQ ID NO. 13 or SEQ ID NO. 18.
More preferably, the nucleotide sequence of the key enzyme gene AANAT in the pathway of producing N-acetyl-5-hydroxytryptamine from 5-hydroxyl is shown as any one of SEQ ID NO:10, and the nucleotide sequence of the key enzyme gene COMT in the pathway of producing N-acetyl-5-methoxytryptamine from N-acetyl-5-hydroxytryptamine is shown as SEQ ID NO: 13;
or the nucleotide sequence of the key enzyme gene AANAT in the pathway of producing N-acetyl-5-hydroxytryptamine from 5-hydroxyl is shown as any one sequence in SEQ ID NO. 10, and the nucleotide sequence of the key enzyme gene COMT in the pathway of producing N-acetyl-5-methoxytryptamine from N-acetyl-5-hydroxytryptamine is shown as SEQ ID NO. 18.
The invention also provides a recombinant vector containing the coding gene of all enzymes for synthesizing the N-acetyl-5-methoxytryptamine.
The invention also provides a recombinant gene engineering bacterium, which is a recombinant gene engineering bacterium comprising the recombinant vector, or a recombinant gene engineering bacterium obtained by integrating part of enzyme genes into the genome of a host cell for expression, and transferring the rest of the enzyme genes into the host cell after expression in a plasmid.
According to the scheme, 5-hydroxy beta-indole alanine 5-hydroxytryptamine pathway key enzyme gene DDC gene is expressed on the host cell genome, other target enzyme genes are transferred into the host cell with 5-hydroxy beta-indole alanine 5-hydroxytryptamine pathway key enzyme gene DDC gene expressed in the genome after being expressed in the plasmid.
Provides a construction method of recombinant gene engineering bacteria, which comprises the following steps:
transferring the recombinant vector comprising all enzyme coding genes for synthesizing the N-acetyl-5-methoxytryptamine into a host cell to obtain recombinant gene engineering bacteria;
or integrating a part of target enzyme genes into the genome of the host cell for expression, and transferring the rest target enzyme genes into the host cell after expression in a plasmid to obtain the recombinant gene engineering bacteria.
Specifically, the construction method of the recombinant gene engineering bacteria comprises the following steps:
putting key enzyme genes AANAT and ACS of a way of producing N-acetyl-5-hydroxytryptamine by 5-hydroxytryptamine into the same plasmid for serial expression; key enzyme genes COMT and MAT of the pathway of producing the N-acetyl-5-methoxytryptamine by the N-acetyl-5-hydroxytryptamine are put into the same plasmid for serial expression; the plasmids are jointly transformed into a host cell with a genome expressing DDC genes to obtain the recombinant gene engineering bacteria.
Further, the host cell is an escherichia coli host cell, preferably BL21(DE3), Δ trpr (ddc), Δ tnaA, Δ SPED escherichia coli host cell; that is, BL21(DE3) was used as a starting strain, the trpR gene on the genome was replaced with the DDC gene, and the tnaA gene and the SPED gene were knocked out.
The invention has the beneficial effects that:
the invention provides an N-acetyl-5-methoxytryptamine high-yield strain which is used for synthesizing N-acetyl-5-methoxytryptamine by a biological method by taking 5-hydroxy beta-indolylalanine as a substrate, and the synthetic yield of the N-acetyl-5-methoxytryptamine is high. Further, the yield of the biosynthetic N-acetyl-5-methoxytryptamine is remarkably improved by screening a key enzyme gene AANAT (aromatic amine-N-acetyltransferase) in the process of producing N-acetyl-5-hydroxytryptamine from 5-hydroxytryptamine and screening isozymes from different species of a key enzyme gene COMT (catechol-O-methyltransferase) in the process of producing N-acetyl-5-methoxytryptamine from N-acetyl-5-hydroxytryptamine and combining and screening.
The invention provides and optimizes a construction method of an N-acetyl-5-methoxytryptamine high-producing strain. Part of the target enzyme gene is integrated into the genome of a host cell for expression, and the partial enzyme gene is transferred into the host cell after being expressed in a plasmid to optimize and construct the N-acetyl-5-methoxytryptamine high-yield strain, which is beneficial to synthesizing the expression of the N-acetyl-5-methoxytryptamine protein coding gene and obtaining the high-yield N-acetyl-5-methoxytryptamine strain.
Drawings
In order to more clearly illustrate the embodiments of the present invention or the technical solutions in the prior art, the drawings needed in the embodiments will be briefly described below, and it is obvious that the drawings in the following description are only some embodiments of the present invention, and it is obvious for those skilled in the art to obtain other drawings without creative efforts.
FIG. 1: plasmid map for producing N-acetyl-5-hydroxytryptamine from 5-hydroxytryptamine
FIG. 2: plasmid map for producing N-acetyl-5-methoxytryptamine from N-acetyl-5-hydroxytryptamine
Detailed Description
Reference will now be made in detail to various exemplary embodiments of the invention, the detailed description should not be construed as limiting the invention but as a more detailed description of certain aspects, features and embodiments of the invention.
It is to be understood that the terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. Further, for numerical ranges in this disclosure, it is understood that each intervening value, between the upper and lower limit of that range, is also specifically disclosed. Every smaller range between any stated value or intervening value in a stated range and any other stated or intervening value in a stated range is encompassed within the invention. The upper and lower limits of these smaller ranges may independently be included or excluded in the range.
Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Although only preferred methods and materials are described herein, any methods and materials similar or equivalent to those described herein can be used in the practice or testing of the present invention.
It will be apparent to those skilled in the art that various modifications and variations can be made in the specific embodiments of the present disclosure without departing from the scope or spirit of the disclosure. Other embodiments will be apparent to those skilled in the art from consideration of the specification. The specification and examples are exemplary only.
As used herein, the terms "comprising," "including," "having," "containing," and the like are open-ended terms that mean including, but not limited to.
Escherichia coli is used as a host for exogenous gene expression, the genetic background is clear, the technical operation is simple, the culture condition is simple, and large-scale fermentation is economical and is emphasized. At present, Escherichia coli is the most widely and successfully applied expression system and is often the first choice for high-efficiency expression. The method starts from escherichia coli, and realizes the high-efficiency large-scale industrial production of the N-acetyl-5-methoxytryptamine by a fermentation method through transforming the escherichia coli.
EXAMPLE 1 construction of plasmid
Construction of plasmid for producing N-acetyl-5-hydroxytryptamine from 5-hydroxytryptamine
Tandem expression of key enzyme genes AANAT and ACS of a pathway for producing N-acetyl-5-hydroxytryptamine from 5-hydroxytryptamine.
Selecting 9 AANAT genes from different sources, and artificially synthesizing the genes through codon optimization to obtain A1-A9 which are respectively and sequentially shown as SEQ ID NO. 2, SEQ ID NO. 3, SEQ ID NO. 4, SEQ ID NO. 5, SEQ ID NO. 6, SEQ ID NO. 7, SEQ ID NO. 8, SEQ ID NO. 9 and SEQ ID NO. 10. A1-A9 and ACS gene are inserted between NcoI and AflII sites of pACYCDuet plasmid to obtain pACYCDuet-A1, pACYCDuet-A2, pACYCDuet-A3, pACYCDuet-A4, pACYCDuet-A5, pACYCDuet-A6, pACYCDuet-A7, pACYCDuet-A8, pACYCDuet-A9 and pACYCDuet-ACS plasmid (shown in figure 1).
Cloning pACYCDuet-ACS-F primers, pACYCDuet-ACS-R primers and pACYCDuet-ACS plasmids serving as templates to obtain pACYCDuet plasmid vectors containing ACS genes; A1-A9 gene segments are obtained by cloning with primers A1-F, A1-R, A2-F, A2-R, A3-F, A3-R, A4-F, A4-R, A5-F, A5-R, A6-F, A6-R, A7-F, A7-R, A8-F, A8-R and A9-F, A9-R as templates and plasmids pACYCDuet-A1, pACYCDuet-A2, pACYCDuet-A3, pACYCDuet-A4, pACYCDuet-A5, pACYCDuet-A6, pACYCDuet-A7, pACYCDuet-A8 and pACYCDuet-A9, respectively.
The A1-A9 gene fragment is respectively connected with pACYCDuet plasmid vector fragments containing ACS genes through a seamless cloning kit to form plasmids pACYCDuet-A1-ACS, pACYCDuet-A2-ACS, pACYCDuet-A3-ACS, pACYCDuet-A4-ACS, pACYCDuet-A5-ACS, pACYCDuet-A6-ACS, pACYCDuet-A7-ACS, pACYCDuet-A8-ACS and pACYCDuet-A9-ACS.
TABLE 1 primer sequences 1
Figure BDA0003391526170000051
Figure BDA0003391526170000061
Figure BDA0003391526170000071
Construction of plasmid for producing N-acetyl-5-methoxytryptamine from N-acetyl-5-hydroxytryptamine
The tandem expression of key enzyme genes COMT and MAT of the pathway of producing N-acetyl-5-methoxytryptamine from N-acetyl-5-hydroxytryptamine.
Selecting COMT genes from different sources, artificially synthesizing by codon optimization to obtain C1-C7, wherein the nucleotide sequences are respectively shown as SEQ ID NO 12, SEQ ID NO 13, SEQ ID NO 14, SEQ ID NO 15, SEQ ID NO 16, SEQ ID NO 17 and SEQ ID NO 18 in sequence. The C1-C7 and MAT genes were inserted between the NcoI and AflII sites of plasmid pETDuet to obtain plasmids pETDuet-C1, pETDuet-C2, pETDuet-C3, pETDuet-C4, pETDuet-C5, pETDuet-C6, pETDuet-C7 and pETDuet-MAT.
pETDuet-MAT-F, pETDuet-MAT-R is used as a primer, and pETDuet-MAT plasmid is used as a template to clone and obtain pETDuet plasmid vector containing MAT gene; C1-F, C1-R, C2-F, C2-R, C3-F, C3-R, C4-F, C4-R, C5-F, C5-R, C6-F, C6-R and C7-F, C7-R are used as primers, and plasmids pETDuet-C1, pETDuet-C2, pETDuet-C3, pETDuet-C4, pETDuet-C5, pETDuet-C6 and pETDuet-C7 are used as templates to clone and obtain a C1-C9 gene fragment.
C1-C9 gene fragment and pETDuet plasmid vector containing MAT gene are connected together through seamless cloning kit to form plasmid pETDuet-C1-MAT, pETDuet-C2-MAT, pETDuet-C3-MAT, pETDuet-C4-MAT, pETDuet-C5-MAT, pETDuet-C6-MAT and pETDuet-C7-MAT.
TABLE 2 primer sequences 2
Figure BDA0003391526170000072
Figure BDA0003391526170000081
Figure BDA0003391526170000091
EXAMPLE 2 engineering of host bacteria
the tNAA gene is knocked out, the genome expression of a key enzyme DDC of a 5-hydroxytryptamine pathway produced by 5-hydroxy beta-indolylalanine and the knocking out of an SPED gene.
The upstream fragment of the tnaA gene and the downstream fragment of the tnaA gene are obtained by respectively using tnaAup-F, tnaAup-R, tnaAdown-F and tnaAdown-R as primers and BL21(DE3) genome as a template. The two fragments are connected by fusion PCR with tnaAup-F, tnaAdown-R as primers to obtain a delta tnaA fragment. The fragment is electrically transferred into BL21(DE3) competence to replace the gene tnaA of the genome, and positive clones are screened by PCR. Designated HP 114.
The DDC gene is codon-optimized, has a sequence shown as SEQ ID No.1, and is inserted between NdeI and XhoI sites of pET28a (+) plasmid to obtain pET28a-DDC plasmid.
DDC/trpR-F and DDC/trpR-R are used as primers, and plasmid pET28a-DDC is used as a template to obtain a DDC gene fragment with trpR upstream and downstream homologous arms. The fragment was electroporated into HP114 competence to replace the genomic trpR gene, and positive clones were PCR-selected. Designated HP 115.
SPEDup-F, SPEDup-R, SPEDdown-F and SPEDdown-R are used as primers and BL21(DE3) genome is used as a template to obtain an upstream fragment and a downstream fragment of the SPED gene. The two fragments were ligated by fusion PCR using SPEDup-F, SPEDdown-R as a primer to obtain a.DELTA.SPED fragment. The fragment is electrically transferred into HP115 competence to replace the gene tnaA of the genome, and positive clones are screened out by PCR. Designated as HP 116.
TABLE 3 primer sequences 3
Figure BDA0003391526170000092
Figure BDA0003391526170000101
EXAMPLE 3 construction and screening of 5-Hydroxybeta-Indolylalanine-producing strains
(1) The construction of engineering bacteria producing N-acetyl-5-hydroxytryptamine by 5-hydroxytryptamine and the screening of key gene AANAT: plasmids pACYCDuet-A1-ACS, pACYCDuet-A2-ACS, pACYCDuet-A3-ACS, pACYCDuet-A4-ACS, pACYCDuet-A5-ACS, pACYCDuet-A6-ACS, pACYCDuet-A7-ACS, pACYCDuet-A8-ACS and pACYCDuet-A9-ACS are electrically transformed into strains HP116 to obtain engineering bacteria HP116-A1, HP116-A2, HP116-A3, HP116-A4, HP116-A5, HP116-A6, HP116-A7, HP116-A8 and HP 116-A9. Respectively culturing engineering bacteria HP116-A1, HP116-A2, HP116-A3, HP116-A4, HP116-A5, HP116-A6, HP116-A7, HP116-A8 and HP116-A9 in a seed culture medium containing 34 mu g/mL chloramphenicol antibiotic to obtain a seed solution, wherein OD of the seed solution is600The seed culture medium (mass percent) is 1% of tryptone, 1% of sodium chloride and 0.5% of yeast extract, and the culture conditions of the seed liquid are 37 ℃ and 225 rpm; inoculating 2% of the above seed solution to a solution containing 1.2% tryptone, 2.4% yeast extract, 0.5% glycerol, and 0.231% KH2PO4And 1.64% K2HPO4·3H2Performing fermentation culture in a fermentation culture medium (in percentage by mass) of O; fermenting and culturing for 2h, adding 1mM IPTG for induction expression at 30 deg.C for 10h, stopping fermentation, and adding final concentrationThe conversion time is 10 hours when the content is 6g/L of 5-hydroxytryptamine, and the yield of the N-acetyl-5-hydroxytryptamine is detected by utilizing high performance liquid chromatography.
The results are shown in table 4, where: the engineering bacteria HP116-A1, HP116-A2, HP116-A4, HP116-A5 and HP116-A9 have higher N-acetyl-5-hydroxytryptamine producing capability than other strains, namely genes with numbers of A1, A2, A4, A5 and A9.
Table 4: comparison of yields of different AANAT strains producing N-acetyl-5-hydroxytryptamine from 5-hydroxytryptamine
Figure BDA0003391526170000111
(2) The construction of the engineering bacteria producing the N-acetyl-5-methoxytryptamine by the N-acetyl-5-hydroxy-tryptamine and the screening of the key gene COMT: plasmids pETDuet-C1-MAT, pETDuet-C2-MAT, pETDuet-C3-MAT, pETDuet-C4-MAT, pETDuet-C5-MAT, pETDuet-C6-MAT and pETDuet-C7-MAT are electrically transformed into strain HP116 competence to obtain engineering bacteria HP116-C1, HP116-C2, HP116-C3, HP116-C4, HP116-C5, HP116-C6 and HP 116-C7. Culturing the engineering bacteria in seed culture medium containing 100 μ g/mL ampicillin for 10 hr to obtain seed solution, OD of the seed solution600The seed culture medium (mass percent) is 1% of tryptone, 1% of sodium chloride and 0.5% of yeast extract, and the culture conditions of the seed liquid are 37 ℃ and 225 rpm; inoculating 2% of the above seed solution to a solution containing 1.2% tryptone, 2.4% yeast extract, 0.5% glycerol, and 0.231% KH2PO4And 1.64% K2HPO4·3H2Performing fermentation culture in a fermentation culture medium (in percentage by mass) of O; after 2h of fermentation culture, adding 1mM IPTG for induction expression, wherein the temperature of the induction expression is 30 ℃, stopping the fermentation after 10h of the induction expression, adding N-acetyl-5-hydroxy-tryptamine with the final concentration of 6g/L, simultaneously supplementing methionine, keeping the concentration of the methionine at about 0.5g/L all the time, converting for 10h, and detecting the N-acetyl-5-methoxytryptamine by using high performance liquid chromatography.
The results are shown in table 5, where: the engineering bacteria HP116-C2 and HP116-C7 have higher capability of producing N-acetyl-5-hydroxytryptamine than other strains, namely genes with numbers of C2 and C7 have higher capability of producing N-acetyl-5-methoxytryptamine.
Table 5: comparison of yields of N-acetyl-5-methoxytryptamine from N-acetyl-5-hydroxytryptamine with respect to COMT strains
Figure BDA0003391526170000121
(3) Construction and screening of engineering bacteria producing N-acetyl-5-methoxytryptamine from 5-hydroxytryptamine
Further, the excellent key gene AANAT for producing N-acetyl-5-hydroxytryptamine from 5-hydroxytryptamine and the key gene COMT for producing N-acetyl-5-methoxytryptamine from N-acetyl-5-hydroxytryptamine are combined, the effect of synthesizing N-acetyl-5-methoxytryptamine by screening engineering bacteria of different gene combinations is evaluated, typically,
plasmids pACYCDuet-A1-ACS, pACYCDuet-A2-ACS, pACYCDuet-A4-ACS, pACYCDuet-A5-ACS and pACYCDuet-A9-ACS which produce N-acetyl-5-hydroxytryptamine from 5-hydroxy beta-indolylalanine and plasmids which produce N-acetyl-5-methoxytryptamine from 5-hydroxytryptamine are combined and electrically transformed into strains HP116 competence according to the table 4 to obtain the engineering bacteria HP116-A1C2, HP116-A2C2, HP116-A4C2, HP116-A5C2, HP116-A9C2, HP116-A1C7, HP116-A2C7, HP116-A4C7, HP116-A5C7 and HP116-A9C 7. Culturing the engineering bacteria in a seed culture medium containing 34 mu g/mL chloramphenicol and 100 mu g/mL ampicillin for 10h respectively to obtain a seed solution, wherein the OD600 of the seed solution is 5, the seed culture medium (in percentage by mass) comprises 1% tryptone, 1% sodium chloride and 0.5% yeast extract, and the culture conditions of the seed solution are 37 ℃ and 225 rpm; inoculating 2% of the above seed solution into a fermentation medium (mass percent) containing 1.2% tryptone, 2.4% yeast extract, 0.5% glycerol, 0.231% KH2PO4 and 1.64% K2HPO 4.3H2O, and performing fermentation culture; and after 2h of fermentation culture, adding 1mM IPTG (isopropyl-beta-D-thiogalactoside) for induction expression, wherein the temperature of induction expression is 30 ℃, stopping fermentation after 16h of induction expression, adding 5-hydroxy beta-indolylalanine with the final concentration of 6g/L, converting for 10h, and detecting the yield of the N-acetyl-5-methoxytryptamine by using high performance liquid chromatography.
As shown in Table 6, the yield of N-acetyl-5-methoxytryptamine synthesized by engineering bacteria provided by different genome combinations is more than 2.41(g/L), and most preferably, the yield is the highest as 4.5g/L for the strain HP116-A9C2, namely, the effect of synthesizing N-acetyl-5-methoxytryptamine by AANAT with the number of A9 and COMT with the number of C2 is the best.
Table 6: comparison of yields of different combination strains of N-acetyl-5-methoxytryptamine from 5-hydroxy beta-indolylalanine
Figure BDA0003391526170000131
The invention produces 5-hydroxytryptamine pathway key enzyme gene DDC through 5-hydroxy beta-indolylalanine; key enzyme genes AANAT and ACS of the process of producing N-acetyl-5-hydroxytryptamine by 5-hydroxytryptamine; the engineering strain for synthesizing the N-acetyl-5-methoxytryptamine by a biological method by taking 5-hydroxy beta-indolylalanine as a substrate is obtained by matching and constructing key enzyme genes COMT and MAT in the process of producing the N-acetyl-5-methoxytryptamine by the N-acetyl-5-hydroxytryptamine, is used for synthesizing the N-acetyl-5-methoxytryptamine by a biological method by taking 5-hydroxy beta-indolylalanine as a substrate, and has the following synthetic process: 5-hydroxy β -indolylalanine → 5-hydroxytryptamine → N-acetyl-5-methoxytryptamine.
Further, the yield of the biosynthetic N-acetyl-5-methoxytryptamine is remarkably improved by screening the key enzyme gene AANAT in the pathway of producing N-acetyl-5-hydroxytryptamine from 5-hydroxytryptamine and screening and combined screening the key enzyme gene COMT in the pathway of producing N-acetyl-5-methoxytryptamine from N-acetyl-5-hydroxytryptamine. Provides conditions for the efficient large-scale industrial production of the N-acetyl-5-methoxytryptamine.
SEQUENCE LISTING
<110> Hebei Weidakang Biotech Co., Ltd
<120> method for synthesizing N-acetyl-5-methoxytryptamine by using 5-hydroxy beta-indolylalanine as substrate through biological method
And uses thereof
<130> 1
<160> 19
<170> PatentIn version 3.3
<210> 1
<211> 1428
<212> DNA
<213> Artificial sequence
<400> 1
atggaagcca accagtttaa agattttgcc aaagagatga tcgattacgt tagcggctat 60
ctggaaaata ttcgtgatcg tcgtgttctg ccgaccgttg aaccgggtta tctgcgtccg 120
ctgattccgg caaccgcacc gcagaaaccg gataaatggg aagatgttat ggcagatatt 180
gaacgcgtta ttatgcctgg tgttacccat tggcatagtc cgcgttttca tgcatatttt 240
ccgaccgcaa atagctatcc ggcaattgtt gcagatattc tgagcggtgc aattgcctgt 300
attggtttta gctggattgc aagtccggca tgtaccgaac tggaagttgt tatgctggat 360
tggctgggta aaatgattgg tctgccggaa gattttctgg catgtagcgg tggtaaaggt 420
ggtggtgtta ttcagggcac cgcaagcgaa gcaaccctgg ttgcactgct gggtgcaaaa 480
gcacgtatga ttgatcgtgt gaaaaaagaa aaaccggaaa tgagcgatag cgaaattgtt 540
gccaaactgg tggcatatac cagcgcacag agccatagca gcgttgaacg tgcaggtctg 600
ttaggtggtg tgaaaatgcg tggtctgcag ccggatgata ataatcgtct gcgtggtgaa 660
accctggaag tggcaattaa agaagatcgc gaagcaggtc tgattccgtt ttatgttgtt 720
gcgaccctgg gtacaaccag cagctgtacc tttgataatc tggaagaact gggtcctgtt 780
tgcaacagca ataacatttg gctgcatgtt gatgcagcct atgcaggtag cagctttatt 840
tgtccggaat ttcgttatct gatgaaaggt attgatcgcg cagatagctt taactttaat 900
ccgcataaat ggctgctggt gaattttgat tgtagcacca tgtggctgaa agatccgagc 960
tggctggtta atgcatttaa tgttgatccg ctgtatctga aacatgaaca gcagggtgca 1020
gcaccggatt atcgtcattg gcagattccg ctgggtcgtc gttttcgtgc actgaaactg 1080
tggtttgttc tgcgtctgta tggtattgaa aatctgcagg cctttattcg caaacatgtt 1140
gaactggccc attattttga aagcctggtt cgtggtgatg aacgctttga aattaccgaa 1200
gaagttgttc tgggtttagt ttgctttcgt ctgaaagcca gcaacgaaat taatgaagca 1260
ctgctgaaac gtctgaatgg tcgtggtgtg attcatctgg ttccgagcaa aattcgtgat 1320
gtgtattttc tgcgcctggc aatttgtagc cgttttaccg aaaaagccga tattgacatt 1380
agctggaaag aagttaaaga agcagcagac gaggtcctga aaaaataa 1428
<210> 2
<211> 624
<212> DNA
<213> Artificial sequence
<400> 2
atgtccactc cgtctgttca ctgcctgaaa ccgagcccgc tgcacctgcc gtccggcatc 60
ccaggctctc cgggtcgtca gcgtcgtcac accctgccgg cgaacgaatt tcgttgcctg 120
accccggaag atgcggcggg tgttttcgaa atcgaacgtg aagcgttcat ctctgtttcc 180
ggtaactgcc cgctgaacct ggatgaagtt cagcacttcc tgaccctgtg cccggaactg 240
agcctgggct ggttcgttga aggccgtctg gttgcgttca tcatcggctc actgtgggat 300
gaagaacgtc tgacccagga atcactggcg ctgcaccgtc cgcgtggcca cagcgcgcac 360
ctgcacgcgc tggcggttca ccgtagcttc cgtcagcagg gcaaaggcag cgttctgctg 420
tggcgttacc tgcaccacgt tggcgcgcag ccggcggttc gtcgtgcggt tctgatgtgc 480
gaagatgcgc tggttccgtt ctatcagcgt ttcggcttcc acccggctgg cccgtgcgcg 540
atcgttgttg gtagcctgac cttcaccgaa atgcactgca gcctgcgtgg ccacgcggcg 600
ctgcgtcgta acagcgatcg ttaa 624
<210> 3
<211> 624
<212> DNA
<213> Artificial sequence
<400> 3
atgagcaccc agagcaccca cccgctgaaa ccggaagcgc cgcgtctgcc gccgggcatc 60
ccggaatctc cgtcttgcca gcgtcgtcac accctgccgg cgtctgagtt ccgttgcctg 120
accccggaag atgcggttag cgcgttcgaa atcgaacgtg aagcgttcat cagcgttctg 180
ggtgtttgcc cgctgtacct ggatgaaatc cgtcacttcc tgaccctgtg cccggaactg 240
agcctgggct ggttcgaaga aggctgcctg gttgcgttca tcatcggcag cctgtgggat 300
aaagaacgtc tgatgcagga aagcctgacc ctgcaccgta gcggcggcca catcgcgcac 360
ctgcacgttc tggcggttca ccgtgcgttc cgtcagcagg gtcgtggccc gatcctgctg 420
tggcgttacc tgcaccacct gggctcccag ccggcggttc gtcgtgcggc gctgatgtgc 480
gaagatgcgc tggttccgtt ctacgaacgt ttcagcttcc acgcggttgg tccgtgcgcg 540
atcaccgttg gcagcctgac cttcatggaa ctgcactgca gcctgcgtgg ccacccgttc 600
ctgcgtcgta atagcggttg ctaa 624
<210> 4
<400> 4
<211> 618
<212> DNA
<213> Artificial sequence
atgacccagc aggttagcgg tagcccgttc ttcaaaccgt tcttcctgaa aaccccggtt 60
agcctgctgc gtcagcgtcg tcacaccctg ccggcgagcg aatttcgtaa cctgaccccg 120
caggatgcga tcagcgtttt cgaaatcgaa cgtgaagcgt tcgttagcgt tagcggtgaa 180
tgcccgctga ccctggatga agttctgaac ttcctgggcc agtgcccgga actgagcctg 240
ggctggttcg aagaaggcca gctggttgcg ttcatcatcg gtagcggctg gggtaaagaa 300
cgcctgagcc aggaagcgat gacccagcac gtgccggatt ctccggcggt gcacatccac 360
gttctgagcg ttcaccgtca ctgccgtcag cagggcaaag gcagcatcct gctgtggcgt 420
ttcctgcagt acctgcgttg catcccaggc ctgcgtcgtg cgctgctgat ctgcgaagaa 480
tatctggttc cgttctacca gaaagcgggc ttcaaagaaa aaggtccgag cgcgatcagc 540
atctctaaca tgcagttcca ggaaatggaa tacaccatcg gtggccaggc gtacacccgt 600
cgtaactctg gttgctaa 618
<210> 5
<211> 723
<212> DNA
<213> Artificial sequence
<400> 5
atggaagatg cgctgaccgt tagcggcaaa ccggcggcgt gcccggttga tcaggattgc 60
ccgtacacca tcgaactgat ccagccggaa gatggcgaag cggttatcgc gatgctgaaa 120
accttcttct tcaaagatga accgctgaac accttcctgg atctgggcga atgcaaagaa 180
ctggaaaaat acagcctgaa accgctgccg gataactgca gctacaaagc ggttaacaaa 240
aaaggtgaaa tcatcggcgt tttcctgaac ggcctgatgc gtcgtccgtc cccggatgat 300
gttccggaaa aagcggcgga ttcttgcgaa cacccgaaat tcaagaaaat cctgagcctg 360
atggatcacg ttgaagaaca gttcaacatc ttcgatgttt acccggatga agaactgatc 420
ctggatggta aaatcctgag cgttgatacc aactaccgtg gtctgggcat cgctggtcgt 480
ctgaccgaac gtgcgtacga atacatgcgt gaaaacggta tcaacgttta ccacgttctg 540
tgctcttctc actactctgc gcgtgttatg gaaaaactgg gcttccacga agttttccgt 600
atgcagttcg cggattacaa accgcagggt gaagttgttt tcaaaccggc ggcgccgcac 660
gttggcatcc aggttatggc gaaagaagtt ggcccggcga aagcggcgca gaccaaactg 720
taa 723
<210> 6
<211> 549
<212> DNA
<213> Artificial sequence
<400> 6
atgaacacct tccgtaccgc gaccgcgcgt gatctgccgg atgttgcggc gaccctgacc 60
gaagcgttcg cggcggatcc gccgacccag tgggttttcc cggatggcgc ggcggcggtt 120
agccgtttct tcttcggcgt tgctgatcgt gcgcgtgaag cgggtggcat cgttgaactg 180
ctgccgggta ccgcggcgat gatcgcgctg ccgccgcacg ttcgtctgcc ggatgcgccg 240
gcgtgcggcc gccaggcgga aatgcagcgt cgcctgggcg aacgtcgtcc gcgtaccccg 300
cactactacc tgctgttcta cggcgttcgt accgcgcacc agagcagcgg cctgggtggt 360
cgtatgctga gcgatctgat cagcttggcg gatcgtgatc gtgttggcac ctacaccgaa 420
gcgagcacct ggcgtggtgc gcgtctgatg ctgcgtcacg gcttccacac cgcgcagccg 480
ctgcgtctgc cgcacggtcc tccgatgttc ccgctgtggc gtgacccgat tcatgatcat 540
tgtgattaa 549
<210> 7
<211> 984
<212> DNA
<213> Artificial sequence
<400> 7
atggaatctg aagatgatct gaccttccag ctggttgcgg ctgatcagat ctctagcgcg 60
cacgaaattg aagttaaatc tttcccgccg gatgaagcgg gcagcctgga agcgttccgt 120
gaacgtcagc gtcagtgccc gagcctgttc ctgggcgcgt tcaccaaaag cgatagcgcg 180
ctgatcggct acatctgcgc tacccgtagc agcgcggaaa gcctggacca cgattccatg 240
agcaccaacg acccgaccgg ccgtagcgtt tgcatccacg cggttgcggt ttctccgccg 300
ttccgtaaac gcggcgttgc gagcgcgctg atgcgtaact acgttgaacg tatgcagacc 360
gaaccggatg ttgatcgtct gctgctgatc tgccatgacg acctggtgca gttctacgaa 420
cagtgcggct tcaaatacgt tggtaaaagc cacgttgttc acggtgcgcg tgcgtggttc 480
gaaatgtgcc tggaaatctc tacctctacc gcgccgcagt ctatctcccc ggaagttttc 540
gcggcgctga aaaaaccggc gccgcagcac ccgctgcgtt acctggatag cttcagcagc 600
ctgagcgcgg ttcgtgacag ctccggtctg aacgcacacg acctgatctg cccgcgtgtg 660
ggttgcggct ctatcatcct gaaatccggc gttgcggacc tggcgatccc gagcccggaa 720
ccgcagctgc cgccggaact gccgcgtctg ccggatccgt ggaccggtct gaatgctaac 780
catgaagaat ggtggctgat taccccgagc ccgatgagct ttgaaaacgt tagcttcagc 840
aaaccgaccc aatctcaggg tggttctagc accccgatca aatatctggg ctgtgctgaa 900
tgcgatctgg gcccgctggg ttggtgtaaa gcaaccggtg gtgaattttg gctggcaccg 960
agccgtgttg gctacaaagt ttaa 984
<210> 8
<211> 501
<212> DNA
<213> Artificial sequence
<400> 8
atgcacagca gcctgacctt ccgtagcgcg accccgagcg ataccgatcg ttgcttccag 60
atcgaacagg aaggctacgc gggcgatgaa gcggcgaccc gtgaaaaaat ccagcagcgt 120
atcgaaacct acccggaagg cttcctggtt ctggaaaaag aaagccagat catcggcttc 180
atcaactgcg gcgcgtgctt cgatgttagc ctgagcgatg aagaatttaa agaactgatc 240
ggccacgatc cgatcggccc gaacctggtt gttatgagcg ttgttgttca cccggacttc 300
cagcaccagg gctacgcgac cgcgctgatg catgaattta tcgctatgat gcaggctatg 360
cagaaatctg cgatgtacct gatctgccag gaagaactgg ttggcttcta ccagcagttc 420
ggtttcgttg atgatggtac cagcgaatct agccacggtg gcctgcgttg gaacgatatg 480
cacctggttc tgagcaacta a 501
<210> 9
<211> 1029
<212> DNA
<213> Artificial sequence
<400> 9
atgaacacct tccgtaccgc gaccgcgcgt gatatcccgg atgttgcggc gaccctgacc 60
gaagcgttcg cgaccgatcc gccgacccag tgggttttcc cggatggtac cgcggcggtt 120
agccgcttct tcacccacgt tgcggatcgt gttcacaccg cgggtggcat cgttgaactg 180
ctgccggacc gtgcggctat gatcgcactg ccgccgcacg ttcgtctgcc gggtgaagcg 240
gcggatggcc gtcaggcgga aatccagcgc cgtctggctg accgtcaccc gctgaccccg 300
cactactacc tgctgttcta cggcgttcgt accgcgcacc agggtagcgg cctgggcggc 360
cgtatgctgg cgcgcctgac cagccgtgcg gatcgtgatc gtgttggtac ctacaccgaa 420
gcgtccacct ggcgtggcgc gcgtctgatg ctgcgtcacg gcttccacgc gacccgtccg 480
ctgcgtctgc cggatggccc gagcatgttc ccgttatggc gtgatccgat ccacgatcac 540
agcgattaa 549
<210> 10
<211> 549
<212> DNA
<213> Artificial sequence
<400> 10
atgagcacca ccagcggcgt tttcttcgat ggtctgaccg aagaagaagt tctggcggct 60
caccgtatcg aaaccgaagg cttcccggcg gatgaagcgg gcagcctgga ggctttccag 120
taccgtcaca cccacgcgcc ggaactgttt ctgggcggct tcgaaccggc gagcgctccg 180
gacgcgggtc gtaccctgat cgcttacgtt aacgctaccc gttctacctc tgacgcgctg 240
acccacgcgt ctatgtccac ccacgaaccg ggtggccgta gcgcgtgcat tcacgcggtt 300
tgtgtgcgtg gcgatcacaa acgtaaaggc atcgcaagcg cgctgctgaa agaatacctg 360
gcgcgcctgg cagcaaccaa cgcggttgat cgcgcgctgc tgatcaccca tgaagaactg 420
cgtccgttct atgaaggcac cggcttccag tggatcggtc cgtctgccgt tcagcatggc 480
tctcgcccgt ggttcgaaat gcgctgggat gcgccgacct ccgcgctggc gccgtctggc 540
ccgtcccagc agcagatctt cgaagcactg caggcgtcgt cccgcaaacc gcgtgcgacc 600
ggccagctgt tgagcgaaat gaacggcggc atcgctgaag cgagcctggt ggatgaaaaa 660
tctggccgta cccgcaacgc gcatgacctg ctgtgcccgc gttctggctg tggctctgtg 720
atcctgcgta aaaacaccgc gtccctggaa cagcgtgaag cggttgatct ggacccgccg 780
accggtaaaa gcccggatct ggctgcgctg ccatctccgc cggcgtctgc agattggtgg 840
ctggttgaac cgagcccgat ggaatttgaa aacatcggtt tctcccgtcc ggtggctccg 900
accgcggaag gtaaaaaaca gctgaaactg ctgatctgcg cggattgcga tctgggtccg 960
ctgggttaca gcgaagttgg tggcacccag ttctggctgg cggcgaaccg tatccgttac 1020
cgtgcgtaa 1029
<210> 11
<211> 1959
<212> DNA
<213> Artificial sequence
<400> 11
atgagccaga ttcataaaca taccattccg gcgaacattg cggatcgctg cctgattaac 60
ccgcagcagt atgaagcgat gtatcagcag agcattaacg tgccggatac cttttggggc 120
gaacagggca aaattctgga ttggattaaa ccgtatcaga aagtgaaaaa caccagcttt 180
gcgccgggca acgtgagcat taaatggtat gaagatggca ccctgaacct ggcggcgaac 240
tgcctggatc gccatctgca ggaaaacggc gatcgcaccg cgattatttg ggaaggcgat 300
gatgcgagcc agagcaaaca tattagctat aaagaactgc atcgcgatgt gtgccgcttt 360
gcgaacaccc tgctggaact gggcattaaa aaaggcgatg tggtggcgat ttatatgccg 420
atggtgccgg aagcggcggt ggcgatgctg gcgtgcgcgc gcattggcgc ggtgcatagc 480
gtgatttttg gcggctttag cccggaagcg gtggcgggcc gcattattga tagcaacagc 540
cgcctggtga ttaccagcga tgaaggcgtg cgcgcgggcc gcagcattcc gctgaaaaaa 600
aacgtggatg atgcgctgaa aaacccgaac gtgaccagcg tggaacatgt ggtggtgctg 660
aaacgcaccg gcggcaaaat tgattggcag gaaggccgcg atctgtggtg gcatgatctg 720
gtggaacagg cgagcgatca gcatcaggcg gaaaaaatga acgcggaaga tccgctgttt 780
attctgtata ccagcggcag caccggcaaa ccgaaaggcg tgctgcatac caccggcggc 840
tatctggtgt atgcggcgct gacctttaaa tatgtgtttg attatcatcc gggcgatatt 900
tattggtgca ccgcggatgt gggctgggtg accggccata gctatctgct gtatggcccg 960
ctgacctgcg gcgcgaccac cctgatgttt gaaggcgtgc cgaactggcc gaccccggcg 1020
cgcatggcgc aggtggtgga taaacatcag gtgaacattc tgtataccgc gccgaccgcg 1080
attcgcgcgc tgatggcgga aggcgataaa gcgattgaag gcaccgatcg cagcagcctg 1140
cgcattctgg gcagcgtggg cgaaccgatt aacccggaag cgtgggaatg gtattggaaa 1200
aaaattggca acgaaaaatg cccggtggtg gatacctggt ggcagaccga aaccggcggc 1260
tttatgatta ccccgctgcc gggcgcgacc gaactgaaag cgggcagcgc gacccgcccg 1320
ttttttggcg tgcagccggc gctggtggat aacgaaggca acccgctgga aggcgcgacc 1380
gaaggcagcc tggtgattac cgatagctgg ccgggccagg cgcgcaccct gtttggcgat 1440
catgaacgct ttgaacagac ctattttagc acctttaaaa acatgtattt tagcggcgat 1500
ggcgcgcgcc gcgatgaaga tggctattat tggattaccg gccgcgtgga tgatgtgctg 1560
aacgtgagcg gccatcgcct gggcaccgcg gaaattgaaa gcgcgctggt ggcgcatccg 1620
aaaattgcgg aagcggcggt ggtgggcatt ccgcataaca ttaaaggcca ggcgatttat 1680
gcgtatgtga ccctgaacca tggcgaagaa ccgagcccgg aactgtatgc ggaagtgcgc 1740
aactgggtgc gcaaagaaat tggcccgctg gcgaccccgg atgtgctgca ttggaccgat 1800
agcctgccga aaacccgcag cggcaaaatt atgcgccgca ttctgcgcaa aattgcggcg 1860
ggcgatacca gcaacctggg cgataccagc accctggcgg atccgggcgt ggtggaaaaa 1920
ctgctggaag aaaaacaggc gattgcgatg ccgagctaa 1959
<210> 12
<211> 1083
<212> DNA
<213> Artificial sequence
<400> 12
atgggtagca ccgcggaaac ccagctgacc ccggttcagg ttaccgatga tgaagcggcg 60
ctgttcgcga tgcagctggc tagcgcgagc gttctgccga tggctctgaa aagcgcgctg 120
gaactggatc tgctggaaat catggcgaaa aacggctctc cgatgagccc gaccgaaatc 180
gcgagcaaac tgccgaccaa aaacccggaa gcaccggtta tgctggatcg tatcctgcgt 240
ctgctgacca gctatagcgt tctgacctgc tctaaccgta aactgtctgg tgatggcgtt 300
gaacgtatct acggtctggg cccggtgtgc aaatacctga ccaaaaacga agatggtgtt 360
tccatcgctg cgctgtgcct gatgaaccag gacaaagttc tgatggaatc ctggtaccac 420
ctgaaagatg caattctgga cggtggcatt ccgttcaaca aagcatacgg tatgtctgcg 480
ttcgaatacc acggcaccga tccgcgtttc aacaaagttt ttaacaacgg tatgagcaac 540
cactctacca tcaccatgaa gaaaatcctg gaaacctaca aaggcttcga aggcctgacc 600
agcctggttg acgttggtgg tggtatcggc gcgaccctga aaatgatcgt ttctaaatac 660
ccgaacctga aaggtatcaa ctttgatctg ccgcacgtta tcgaagatgc gccgagccac 720
ccaggtatcg aacacgtggg cggcgatatg ttcgttagcg ttccgaaagg tgatgcgatc 780
ttcatgaaat ggatctgcca cgactggagc gatgaacact gcgttaaatt cctgaaaaac 840
tgctacgaaa gcctgccgga agatggtaaa gttattctgg cggagttcat cctgccggaa 900
accccggata gcagcctgag caccaaactg gttgtgcaca ccgattgcat catgctggcg 960
cacaatccgg gtggtaaaga acgtaccgaa aaagaatttg aagcgctggc gaaagcatct 1020
ggcttcaaag gcatcaaagt tgtttgcgat gcgttcggcg ttaacctgat cgaactgctg 1080
aaaaaactgt aa 1092
<210> 13
<211> 1092
<212> DNA
<213> Artificial sequence
<400> 13
atgggtagca ccgcggcgga tatggcggcg tctgcggatg aagaagcgtg catgttcgcg 60
ctgcagctgg cgagctccag cattctgccg atgaccctga aaaacgcgat cgaactgggc 120
ctgctggaaa tcctggttgc ggcgggcggt aaaagcctga ccccgaccga agttgcggcg 180
aaactgccga gcgcggcaaa cccggaagcg ccggatatgg ttgaccgcat gctgcgtctg 240
ctggcaagct acaacgttgt gtcctgcctg gtggaagaag gtaaagacgg tcgtctgagc 300
cgtagctacg gtgcagcgcc ggtttgcaaa ttcctgaccc cgaacgaaga tggtgtgtct 360
atggcggcgc tggcgctgat gaaccaggac aaagttctga tggaatcttg gtactacctg 420
aaagatgcgg ttctggacgg tggcatcccg ttcaacaaag cgtacggtat gtctgcgttc 480
gaataccacg gtaccgatcc gcgtttcaac cgtgtgttca acgaaggcat gaaaaaccac 540
agcatcatca tcaccaaaaa actgctggaa ctgtaccacg gcttccaggg cctgggcacc 600
ctggtggatg ttggcggcgg cgttggcgct actgttgctg cgatcaccgc gcactacccg 660
gcgatcaaag gtgttaactt tgacctgccg cacgttatct ctgaagcgcc gccgtttccg 720
ggcgttaccc acgttggtgg cgatatgttc aaagaagttc cgtctggtga tgcgattctg 780
atgaaatgga tcctgcacga ttggtctgat cagcactgtg cgaccctgct gaaaaactgc 840
tatgatgcgc tgccggccca cggtaaagtt gttctggttg aatgcatcct gccggttaac 900
ccggaagcga aaccgtcctc tcagggtgtt ttccacgttg atatgatcat gctggcgcac 960
aacccaggtg gtcgtgaacg ttacgaacgt gaatttgaag cgctggcgcg tggcgcgggc 1020
tttaccggcg ttaaatctac ctacatctac gcgaacgcgt gggcgattga gttcaccaaa 1080
taa 1083
<210> 14
<211> 1095
<212> DNA
<213> Artificial sequence
<400> 14
atgggtagca ccggtgaaac ccagatgtct ccggcgcaga tcctggatga agaagcgaac 60
ttcgcgctgc agctgatctc tagcagcgtt ctgccgatgg ttctgaaaac cgcgatcgaa 120
ctggatctgc tggaaatcat ggcgaaagcg ggtccgggcg cgctgctgcc gccgagcgat 180
atcgcgagcc acctgccgac caaaaacccg aacgcgccgg ttatgctgga tcgtatcctg 240
cgtctgctgg cgagctactc tatcctgatc tgcagcctgc gtgatctgcc ggatggtaaa 300
gttgaacgtc tgtacggtct ggctagcgtt tgcaaattcc tgacccgtaa cgaagatggt 360
gtttctgtta gcccgctgtg cctgatgaac caggataaag ttctgatgga aagctggtac 420
cacctgaaag atgcgatcct ggaaggcggc atcccgttca acaaagcata cggcatgacc 480
gcgttcgaat accacggtac cgatccgcgt ttcaacaaag tgttcaacaa aggtatgagc 540
gttcacagca aaatggcgat gaaaaagatc ctggaaacct acaaaggctt cgaaggtctg 600
gcgagcctgg ttgatgttgg cggtggcacc ggtgcagttg tgtctaccat cgtttctaaa 660
tacccgagca tcaaaggtat caacttcgat ctgccgcacg tgatcgctga tgcgccggct 720
ttccctggtg ttgaaaacgt tggtggcgat atgttcgtta gcgttccgaa agctgatgcg 780
gttttcatga aatggatctg ccacgattgg agcgatgaac actgcctgac cttcctgaaa 840
aactgctacg atgcgctgcc ggaaaacggt aaagttatcc tggttgaatg catcctgccg 900
gttgcgccgg acacctctct ggctaccaaa ggtgttatgc acgttgatgt tatcatgctg 960
gcgcacaacc ctggcggtaa agaacgtacc gatcgtgaat ttgaaagcct ggcgcgtggc 1020
gcgggcttca aaggtttcga agttatgtgc tgcgcgttca acacccacgt tatcgaattt 1080
cgtaaaaaag cgtaa 1095
<210> 15
<211> 1095
<212> DNA
<213> Artificial sequence
<400> 15
atgggcagca ccgcggctga tatggcggcg gttgcggatg aagaagcgtg catgtacgcg 60
ctgcagctgg cgagcagcag catcctgccg atgaccctga aaaacgctat cgaactgggc 120
ctgctggatg ttctggaagc ggcgcgtaaa tctgcggccg cttctctggc gccggaagaa 180
gttgttgctc gtctgccggt tgcgccgcgt aacccggatg cgccggttat ggtggatcgt 240
atgctgcgtc tgctggcgtc ttacgaaatc gttaaatgcg aaatggaaga aggcaaagat 300
ggcaaatact ctcgccgtta cgcggcggcg ccggtttgca aatggctgac cccgaacgaa 360
gatggcgtta gcatggcggc gctggcgctg atgaaccagg ataaagttct gatggaaagc 420
tggtactacc tgaaagatgc ggttctggat ggtggcatcc cgttcaacaa agcgtacggt 480
atgaccgcgt tcgaatacca cggtaccgac ccgcgtttca accgtgtttt caacgaaggc 540
atgaaaaacc acagcgtgat catcaccaaa aaactgctgg agttctacac cggcttcgaa 600
ggtatcggta ccctggttga tgttggcggc ggcgttggcg cgaccctgca cgcgatcacc 660
agccaccacc cgcagatcaa aggtgttaac ttcgatctgc cgcacgttat cagcgaagcg 720
ccgccgttcc caggcgttga acacgttggc ggtgatatgt tcaaatctgt gccgtctggt 780
gatgcgatcc tgatgaaatg gatcctgcac gattggtctg atgcgcactg cgcgaccctg 840
ctgaaaaact gctacgatgc gctgccggcg cacggcaaag tgatcgttgt tgaatgcatc 900
ctgccggttg atccggaagc gaccccgaaa gcgcagggcg tgttccacgt tgatatgatc 960
atgctggctc acaatccggg tggcaaagaa cgttacgaaa aagaatttga agatctggcg 1020
cgtggcgcgg gtttcgcggg cgttaaagcg acctacatct acgcgaacgc gtgggcgatc 1080
gagttcacca aataa 1095
<210> 16
<211> 1095
<212> DNA
<213> Artificial sequence
<400> 16
atgggtagca ccgcgggtga tgttgcggcg gtggttgatg aagaagcgtg catgtacgcg 60
atgcagctgg cgagctctag catcctgccg atgaccctga aaaacgcgat cgaactgggc 120
ctgctggaag ttctgcagaa agaagcgggt ggtggtaaag cggcgctggc gccggaagaa 180
gtggttgcgc gtatgccggc tgcgccgtct gatccgaccg ctgcggcggt tatggttgat 240
cgtatgctgc gtctgctggc gtcttacgat gttgttcgct gccagatgga agatcgtgat 300
ggtcgttacg aacgtcgtta ctctgcggcg ccggtgtgca aatggctgac cccgaacgaa 360
gatggtgtga gcatggctgc gctggcgctg atgaaccagg ataaagttct gatggaaagc 420
tggtactacc tgaaagatgc ggttctggat ggcggtatcc cgttcaacaa agcgtacggt 480
atgaccgcgt tcgaatacca cggtaccgat ccgcgtttca accgtgtttt caacgaaggc 540
atgaaaaacc actctgtgat catcaccaaa aaactgctgg atttctacac cggtttcgaa 600
ggcgttagca ccctggttga tgttggcggt ggtgtgggtg ctaccctgca cgcgatcacc 660
tcccgccacc cgcacatttc tggtgttaac ttcgatctgc cgcacgttat cagcgaaacc 720
ccgccgtttc cgggtgttcg tcacgttggc ggtgatatgt tcgcgagcgt gccggcgggt 780
gatgcgatcc tggttaaatg gatcctgcac gattggagcg acgcgcactg cgcgaccctg 840
ctgaaaaact gctacgatgc gctgccggaa aacggtaaag ttattgttgt tgaatgcgtt 900
ctgccggtta acaccgaagc gaccccgaaa gcgcagggcg tgttccacgt tgatatgatc 960
atgctggcgc acaacccagg cggcaaagaa cgttacgaac gtgaatttcg tgaactggcg 1020
aaaggtgcgg gtttcagcgg tttcaaagcg acctacatct acgcgaacgc gtgggcgatc 1080
gaatttatta aataa 1095
<210> 17
<211> 1083
<212> DNA
<213> Artificial sequence
<400> 17
atgggtagca ccgcggcgga tatggcggcg tctgcggatg aagaagcgtg catgttcgcg 60
ctgcagctgg cgagctccag cattctgccg atgaccctga aaaacgcgat cgaactgggc 120
ctgctggaaa tcctggttgc ggcgggcggt aaaagcctga ccccgaccga agttgcggcg 180
aaactgccga gcgcggcaaa cccggaagcg ccggatatgg ttgaccgcat gctgcgtctg 240
ctggcaagct acaacgttgt gtcctgcctg gtggaagaag gtaaagacgg tcgtctgagc 300
cgtagctacg gtgcagcgcc ggtttgcaaa ttcctgaccc cgaacgaaga tggtgtgtct 360
atggcggcgc tggcgctgat gaaccaggac aaagttctga tggaatcttg gtactacctg 420
aaagatgcgg ttctggacgg tggcatcccg ttcaacaaag cgtacggtat gtctgcgttc 480
gaataccacg gtaccgatcc gcgtttcaac cgtgtgttca acgaaggcat gaaaaaccac 540
agcatcatca tcaccaaaaa actgctggaa ctgtaccacg gcttccaggg cctgggcacc 600
ctggtggatg ttggcggcgg cgttggcgct actgttgctg cgatcaccgc gcactacccg 660
gcgatcaaag gtgttaactt tgacctgccg cacgttatct ctgaagcgcc gccgtttccg 720
ggcgttaccc acgttggtgg cgatatgttc aaagaagttc cgtctggtga tgcgattctg 780
atgaaatgga tcctgcacga ttggtctgat cagcactgtg cgaccctgct gaaaaactgc 840
tatgatgcgc tgccggccca cggtaaagtt gttctggttg aatgcatcct gccggttaac 900
ccggaagcga aaccgtcctc tcagggtgtt ttccacgttg atatgatcat gctggcgcac 960
aacccaggtg gtcgtgaacg ttacgaacgt gaatttgaag cgctggcgcg tggcgcgggc 1020
tttaccggcg ttaaatctac ctacatctac gcgaacgcgt gggcgattga gttcaccaaa 1080
taa 1083
<210> 18
<211> 1038
<212> DNA
<213> Artificial sequence
<400> 18
atgggtagca gcgaagatca ggcgtaccgt ctgctgaacg attacgcgaa cggtttcatg 60
gttagccagg ttctgttcgc ggcgtgcgaa ctgggtgttt tcgatctgct ggcggaagcg 120
ccgggtccgc tggatgttgc ggcggttgcg gcgggcgttc gtgcgtccgc tcacggcacc 180
gaactgctgc tggatatctg cgtgagcctg aaactgctga aagttgaaac ccgtggcggt 240
aaagcgttct accgtaacac cgaactgagc tctgattacc tgaccaccgt ttctccgacc 300
agccagtgca gcatgctgaa atacatgggc cgtaccagct accgttgctg gggccacctg 360
gcggatgcgg ttcgtgaagg ccgtaaccag tacctggaaa ccttcggcgt tccggctgaa 420
gaactgttca ccgcaatcta ccgcagcgaa ggtgaacgtc tgcagttcat gcaggcgctg 480
caggaagttt ggtctgttaa cggccgtagc gttctgaccg cgttcgacct gagcgttttc 540
ccgctgatgt gcgatctggg cggtggcgcg ggtgcgctgg cgaaagaatg catgagcctg 600
tatccgggct gcaaaatcac cgttttcgat atcccggaag ttgtttggac cgcgaaacag 660
cacttcagct tccaggaaga agaacagatc gatttccagg aaggtgattt cttcaaagat 720
ccgctgccgg aagcggatct gtacatcctg gcgcgtgttc tgcacgattg ggaagatggc 780
aaatgcagcc acctgctgga acgtatctac cacacctgca aaccgggtgg tggtatcctg 840
gttatcgaat ctctgctgga tgaagatcgt cgtggtccgc tgctgaccca gctgtactcc 900
ctgaacatgc tggttcagac cgaaggccag gaacgtaccc cgacccacta ccacatgctg 960
ctgtctagcg cgggtttccg tgatttccag ttcaagaaaa ccggcgcgat ctacgatgcg 1020
atcctggcgc gtaaataa 1038
<210> 19
<211> 1179
<212> DNA
<213> Artificial sequence
<400> 19
atggaaacct ttctattcac atccgagtca gtgaacgagg gccaccccga caaactatgc 60
gatcagatct ctgatgcggt gctcgatgcc tgccttgagc aggacccaga cagcaaggtt 120
gcttgcgaga catgtacaaa gaccaacatg gtcatggtct ttggagagat caccaccaag 180
ggcaagatag actatgaaaa gattgttcgt gacacatgcc gtaacattgg atttatttct 240
gatgatgttg gtcttgatgc tgacaagtgc aaagtcttgg ttaacattga gcagcagagc 300
cctgatattg ctcagggtgt ccacggtcac tttaccaagc ggccagagga gattggtgct 360
ggtgaccagg gccatatgtt tggttatgcc accgatgaga cccctgagta tatgcctttg 420
agccatgtac ttgccaccaa gctcggggct cgcctcactg aagttaggaa gaatggcacc 480
tgcccttggc taagacctga tggcaagact caggttactg ttgaatacta caatgacaac 540
ggtgcaatgg tccctgtccg tgtccacact gttctcatct ccactcagca tgatgagact 600
gtcacaaatg atgcaattgc tgctgatcta aaggagcatg tcatcaagcc tgtcatccct 660
gagaagtacc ttgatgagaa aactatcttc cacctaaacc catctggccg ttttgttatt 720
ggtggccctc atggtgatgc aggtctcact ggacgcaaga tcattattga cacctacggt 780
ggctggggag cccatggtgg tggtgctttc tcagggaagg acccaactaa ggtggataga 840
agtggtgctt acattgttag gcaggctgcc aagagcatcg tagcaaatgg tcttgctcgt 900
aggtgcattg tgcaagtctc ctatgctatt ggtgtacccg agcctttgtc tgtctttgtg 960
gacacctacg gcactggaaa aattcctgac aaggagattc ttaagattgt gaaggagaac 1020
tttgacttta ggcctggaat gatgaccatc aacctggatc tcaagagggg tggcaatagg 1080
ttcttgaaga cagccgcata cggacatttt ggaagggatg acccagactt cacctgggag 1140
gttgtcaagc ccctcaaatg ggagaagccc caagcttaa 1179

Claims (10)

1. A method for synthesizing N-acetyl-5-methoxytryptamine by a biological method by taking 5-hydroxy beta-indolylalanine as a substrate is characterized by comprising the following steps: the method comprises the following steps:
1) the method comprises the steps of utilizing the recombinant genetic engineering bacteria for synthesizing the N-acetyl-5-methoxytryptamine protein coding gene or expressing and synthesizing the 5-hydroxy beta-indolylalanine protein coding gene to biologically ferment and synthesize the N-acetyl-5-methoxytryptamine by taking the 5-hydroxy beta-indolylalanine as a substrate, wherein the N-acetyl-5-methoxytryptamine protein coding gene capable of being expressed and synthesized comprises a 5-hydroxy beta-indolylalanine 5-hydroxytryptamine pathway key enzyme gene DDC; key enzyme genes AANAT and ACS of the process of producing N-acetyl-5-hydroxytryptamine by 5-hydroxytryptamine; key enzyme genes COMT and MAT of a pathway for producing N-acetyl-5-methoxytryptamine from N-acetyl-5-hydroxytryptamine;
2) separating the N-acetyl-5-methoxytryptamine from the system in the step 1).
2. The method of claim 1, wherein: the nucleotide sequence of 5-hydroxyl N-acetyl-5-hydroxytryptamine production pathway key enzyme gene AANAT is shown in any sequence of SEQ ID NO. 2-10; the nucleotide sequence of the key enzyme gene COMT of the N-acetyl-5-methoxytryptamine production pathway of the N-acetyl-5-hydroxytryptamine is shown as any sequence in SEQ ID NO 12-18.
3. The method of claim 1, wherein: the nucleotide sequence of 5-hydroxytryptamine pathway key enzyme gene DDC produced by 5-hydroxy beta-indolylalanine is shown in SEQ ID NO 1;
the nucleotide sequence of ACS (cytochrome C) which is a key enzyme gene in the process of producing N-acetyl-5-hydroxytryptamine by 5-hydroxytryptamine is shown as SEQ ID NO. 11;
the nucleotide sequence of MAT gene of key enzyme gene of the pathway for producing N-acetyl-5-methoxytryptamine by N-acetyl-5-hydroxytryptamine is shown as SEQ ID NO: 19, respectively.
4. The method of claim 1, wherein: the nucleotide sequence of 5-hydroxyl N-acetyl-5-hydroxytryptamine production pathway key enzyme gene AANAT is shown as any one sequence of SEQ ID NO. 2, SEQ ID NO. 3, SEQ ID NO. 5, SEQ ID NO. 6 and SEQ ID NO. 10; the nucleotide sequence of the key enzyme gene COMT of the pathway of producing N-acetyl-5-methoxytryptamine by N-acetyl-5-hydroxytryptamine is shown as SEQ ID NO. 13 or SEQ ID NO. 18.
5. The method of claim 1, wherein: the nucleotide sequence of a key enzyme gene AANAT in the pathway of producing N-acetyl-5-hydroxytryptamine from 5-hydroxyl is shown as any one of SEQ ID NO. 10, and the nucleotide sequence of a key enzyme gene COMT in the pathway of producing N-acetyl-5-methoxytryptamine from N-acetyl-5-hydroxytryptamine is shown as SEQ ID NO. 13;
or the nucleotide sequence of the key enzyme gene AANAT in the pathway of producing N-acetyl-5-hydroxytryptamine from 5-hydroxyl is shown as any one sequence in SEQ ID NO. 10, and the nucleotide sequence of the key enzyme gene COMT in the pathway of producing N-acetyl-5-methoxytryptamine from N-acetyl-5-hydroxytryptamine is shown as SEQ ID NO. 18.
6. A recombinant vector comprising all enzyme encoding genes for synthesizing N-acetyl-5-methoxytryptamine, wherein the encoding genes for synthesizing N-acetyl-5-methoxytryptamine protein comprise 5-hydroxy beta-indolylalanine 5-hydroxytryptamine pathway key enzyme genes DDC; key enzyme genes AANAT and ACS of the process of producing N-acetyl-5-hydroxytryptamine by 5-hydroxytryptamine; key enzyme genes COMT and MAT of the pathway for producing N-acetyl-5-methoxytryptamine from N-acetyl-5-hydroxytryptamine.
7. A recombinant gene engineering bacterium, the recombinant gene engineering bacterium comprises the recombinant vector of claim 6, or is a recombinant gene engineering bacterium obtained by integrating part of the enzyme genes in the synthetic N-acetyl-5-methoxytryptamine protein coding gene into the genome of a host cell for expression, and transferring the rest of the enzyme genes into the host cell after expression in a plasmid, wherein the synthetic N-acetyl-5-methoxytryptamine protein coding gene comprises a 5-hydroxy beta-indolylalanine 5-hydroxytryptamine pathway key enzyme gene DDC; key enzyme genes AANAT and ACS of the process of producing N-acetyl-5-hydroxytryptamine by 5-hydroxytryptamine; key enzyme genes COMT and MAT of the pathway for producing N-acetyl-5-methoxytryptamine from N-acetyl-5-hydroxytryptamine.
8. The recombinant gene engineering bacteria of claim 7, wherein the 5-hydroxytryptamine pathway key enzyme gene DDC gene produced by 5-hydroxy beta-indolylalanine is expressed on the genome of the host cell, and other target enzyme genes are transferred into the host cell with the genome expressing the 5-hydroxytryptamine pathway key enzyme gene DDC gene produced by 5-hydroxy beta-indolylalanine after being expressed in the plasmid.
9. The method for constructing a recombinant genetically engineered bacterium according to claim 8, wherein:
transferring the recombinant vector comprising all enzyme coding genes for synthesizing the N-acetyl-5-methoxytryptamine into a host cell to obtain recombinant gene engineering bacteria;
or integrating a part of target enzyme genes into the genome of a host cell for expression, and transferring the rest target enzyme genes into the host cell after expression in a plasmid to obtain the recombinant gene engineering bacteria, wherein the recombinant gene engineering bacteria comprise the following steps: putting key enzyme genes AANAT and ACS of a way of producing N-acetyl-5-hydroxytryptamine by 5-hydroxytryptamine into the same plasmid for serial expression; key enzyme genes COMT and MAT of the pathway of producing the N-acetyl-5-methoxytryptamine by the N-acetyl-5-hydroxytryptamine are put into the same plasmid for serial expression; the plasmids are jointly transformed into a host cell with a genome expressing DDC genes to obtain the recombinant gene engineering bacteria.
10. The method for constructing a recombinant genetically engineered bacterium according to claim 9, wherein: the host cell is an Escherichia coli host cell, preferably BL21(DE3), delta trpR (DDC), delta tnaA, delta SPED Escherichia coli host cell; that is, BL21(DE3) was used as a starting strain, the trpR gene on the genome was replaced with the DDC gene, and the tnaA gene and the SPED gene were knocked out.
CN202111466077.4A 2021-12-03 2021-12-03 Method for synthesizing N-acetyl-5-methoxytryptamine by using 5-hydroxy beta-indolylalanine as substrate through biological method Pending CN114150027A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111466077.4A CN114150027A (en) 2021-12-03 2021-12-03 Method for synthesizing N-acetyl-5-methoxytryptamine by using 5-hydroxy beta-indolylalanine as substrate through biological method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111466077.4A CN114150027A (en) 2021-12-03 2021-12-03 Method for synthesizing N-acetyl-5-methoxytryptamine by using 5-hydroxy beta-indolylalanine as substrate through biological method

Publications (1)

Publication Number Publication Date
CN114150027A true CN114150027A (en) 2022-03-08

Family

ID=80456143

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111466077.4A Pending CN114150027A (en) 2021-12-03 2021-12-03 Method for synthesizing N-acetyl-5-methoxytryptamine by using 5-hydroxy beta-indolylalanine as substrate through biological method

Country Status (1)

Country Link
CN (1) CN114150027A (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102329263A (en) * 2011-10-17 2012-01-25 上海化学试剂研究所 Preparation method of N-acetyl-5-methoxytryptamine
CN106497858A (en) * 2016-12-02 2017-03-15 江南大学 A kind of colibacillus engineering of 5 amino-laevulic acids of production
WO2017167866A1 (en) * 2016-03-31 2017-10-05 Danmarks Tekniske Universitet Optimized microbial cells for production of melatonin and other compounds
US20190119663A1 (en) * 2016-03-31 2019-04-25 Danmarks Tekniske Universitet Optimized Microbial Cells for Production of Melatonin and Other Compounds
CN113528411A (en) * 2021-06-29 2021-10-22 河北维达康生物科技有限公司 Genetic engineering bacterium for producing N-acetyl-5-methoxytryptamine, construction method and application
CN113604521A (en) * 2021-06-30 2021-11-05 河北维达康生物科技有限公司 Method for enhancing yield of N-acetyl-5-hydroxytryptamine

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102329263A (en) * 2011-10-17 2012-01-25 上海化学试剂研究所 Preparation method of N-acetyl-5-methoxytryptamine
WO2017167866A1 (en) * 2016-03-31 2017-10-05 Danmarks Tekniske Universitet Optimized microbial cells for production of melatonin and other compounds
US20190119663A1 (en) * 2016-03-31 2019-04-25 Danmarks Tekniske Universitet Optimized Microbial Cells for Production of Melatonin and Other Compounds
CN106497858A (en) * 2016-12-02 2017-03-15 江南大学 A kind of colibacillus engineering of 5 amino-laevulic acids of production
CN113528411A (en) * 2021-06-29 2021-10-22 河北维达康生物科技有限公司 Genetic engineering bacterium for producing N-acetyl-5-methoxytryptamine, construction method and application
CN113604521A (en) * 2021-06-30 2021-11-05 河北维达康生物科技有限公司 Method for enhancing yield of N-acetyl-5-hydroxytryptamine

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
于金龙等: "大肠杆菌色氨酸生物合成途径关键酶的调控研究", 生物工程学报, vol. 24, no. 05, pages 844 - 850 *
甘永平, 马淳安, 张文魁, 黄辉, 李美超: "N-乙酰基-5-甲氧基色胺的合成研究", 浙江工业大学学报, vol. 29, no. 01, pages 9 - 13 *

Similar Documents

Publication Publication Date Title
CN100582220C (en) E.coli mutant containing mutant genes related with tryptophan biosynthesis and production method of tryptophan by using the same
CN108795916B (en) Lysine decarboxylase mutant, coding gene thereof, expression and application thereof
CN106957850B (en) Genetically engineered bacterium for producing phospholipase D and construction method and application thereof
CN111019878B (en) Recombinant escherichia coli with improved L-threonine yield as well as construction method and application thereof
CN113564193B (en) Microorganism gene expression fate community and construction method and application thereof
CN113652385B (en) Construction method and application of microorganism for high-yield lactoyl-N-tetraose
CN106520715B (en) A kind of short-chain dehydrogenase and its gene, recombinant expression carrier, genetic engineering bacterium and its application in the synthesis of astaxanthin chiral intermediate
CN114672525B (en) Biosynthesis method and application of N-acetyl-5-methoxy tryptamine
CN118086167B (en) Genetically engineered bacterium for producing L-tryptophan and construction method and application thereof
CN111748535B (en) Alanine dehydrogenase mutant and application thereof in fermentation production of L-alanine
WO2024140379A1 (en) Enzyme, strain for producing salidroside, and production method
CN114277046A (en) Tri-gene tandem expression vector for synthesizing tetrahydropyrimidine and application thereof
CN107099497B (en) Plasmid and cell for promoting biotin synthesis and promoting method thereof
WO2004081216A1 (en) Alcohol dehydrogenase gene of acetic acid bacterium
KR102473375B1 (en) Recombinant microorganisms, their preparation methods and their use in the production of coenzyme Q10
CN114854659B (en) Ergothioneine production process and application thereof
CN117511831A (en) Construction method of ergothioneine-producing escherichia coli
CN114150027A (en) Method for synthesizing N-acetyl-5-methoxytryptamine by using 5-hydroxy beta-indolylalanine as substrate through biological method
CN114908129A (en) Dehydrogenase for preparing (R) -4-chloro-3-hydroxybutanoate ethyl ester
CN109762801B (en) Halogen alcohol dehalogenase mutant and application thereof in synthesizing chiral drug intermediate
CN107109357A (en) The microorganism of O succinyl homoserines or butanedioic acid can be produced and butanedioic acid or O succinyl homoserine methods is produced with it
CN110241062A (en) New escherichia expression system
CN114606170B (en) CRISPR-Cas 9-based ergothioneine biosynthesis method and application
CN109402188A (en) A kind of ω-transaminase from bacillus pumilus and the application in biological amination
BR112019027919A2 (en) microorganism with stabilized copy number of functional dna sequence and associated methods

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
CB03 Change of inventor or designer information

Inventor after: Zhao Yunxian

Inventor after: Show all music

Inventor after: Yang Zhibin

Inventor after: Cui Jinwang

Inventor after: Hu Jianglin

Inventor before: Zhao Yunxian

Inventor before: Show all music

Inventor before: Yang Zhibin

Inventor before: Cui Jinwang

Inventor before: Hu Jianglin

Inventor before: Tian Haobo

Inventor before: Liu Chan

Inventor before: Jiang Shuosheng

CB03 Change of inventor or designer information
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination