CN114145843B - 一种新型颅内动脉瘤薄弱区评估方法 - Google Patents

一种新型颅内动脉瘤薄弱区评估方法 Download PDF

Info

Publication number
CN114145843B
CN114145843B CN202111304559.XA CN202111304559A CN114145843B CN 114145843 B CN114145843 B CN 114145843B CN 202111304559 A CN202111304559 A CN 202111304559A CN 114145843 B CN114145843 B CN 114145843B
Authority
CN
China
Prior art keywords
aneurysm
parameters
intracranial
intracranial aneurysm
unstable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111304559.XA
Other languages
English (en)
Other versions
CN114145843A (zh
Inventor
刘爱华
彭飞
牛昊
佟鑫
陈吉钢
夏嘉祥
何晓欣
许博雅
刘浪
陈谞戈
刘鸿仪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Neurosurgical Institute
Original Assignee
Beijing Neurosurgical Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Neurosurgical Institute filed Critical Beijing Neurosurgical Institute
Priority to CN202111304559.XA priority Critical patent/CN114145843B/zh
Publication of CN114145843A publication Critical patent/CN114145843A/zh
Application granted granted Critical
Publication of CN114145843B publication Critical patent/CN114145843B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/10Computer-aided planning, simulation or modelling of surgical operations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0033Features or image-related aspects of imaging apparatus classified in A61B5/00, e.g. for MRI, optical tomography or impedance tomography apparatus; arrangements of imaging apparatus in a room
    • A61B5/004Features or image-related aspects of imaging apparatus classified in A61B5/00, e.g. for MRI, optical tomography or impedance tomography apparatus; arrangements of imaging apparatus in a room adapted for image acquisition of a particular organ or body part
    • A61B5/0042Features or image-related aspects of imaging apparatus classified in A61B5/00, e.g. for MRI, optical tomography or impedance tomography apparatus; arrangements of imaging apparatus in a room adapted for image acquisition of a particular organ or body part for the brain
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/055Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves  involving electronic [EMR] or nuclear [NMR] magnetic resonance, e.g. magnetic resonance imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/48Other medical applications
    • A61B5/4842Monitoring progression or stage of a disease
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7235Details of waveform analysis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7235Details of waveform analysis
    • A61B5/7246Details of waveform analysis using correlation, e.g. template matching or determination of similarity
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/10Computer-aided planning, simulation or modelling of surgical operations
    • A61B2034/101Computer-aided simulation of surgical operations
    • A61B2034/105Modelling of the patient, e.g. for ligaments or bones
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/30Assessment of water resources

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Surgery (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Artificial Intelligence (AREA)
  • Psychiatry (AREA)
  • Physiology (AREA)
  • Signal Processing (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Neurology (AREA)
  • Robotics (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

本发明提供一种新型颅内动脉瘤薄弱区评估方法,涉及肿瘤学技术领域。该新型颅内动脉瘤薄弱区评估方法,包括如下具体方法:对颅内动脉瘤进行形态学参数提取:通过3D slicer进行逐级提取:子瘤、分叶状、瘤壁平坦度;对颅内动脉瘤进行血流动力学参数提取:通过4D‑flow MRI提取:血流模式、动脉瘤内流速和流量的参数。本发明通过对颅内动脉瘤建立颅内动脉瘤瘤壁厚度三维模型和颅内动脉瘤不稳定参数风险评估模型,可以有效的先对动脉瘤的不稳定参数进行研究,再对动脉瘤厚度建模,手术时规避薄弱区,避免动脉瘤破裂,且有效的定位动瘤位置,规避脑部神经,有效的增加了手术的成功率。

Description

一种新型颅内动脉瘤薄弱区评估方法
技术领域
本发明涉及肿瘤学技术领域,具体为一种新型颅内动脉瘤薄弱区评估方法。
背景技术
颅内动脉瘤多为发生在颅内动脉管壁上的异常膨出,是造成蛛网膜下腔出血的首位病因,在脑血管意外中,仅次于脑血栓和高血压脑出血,位居第三。任何年龄可发病,多数好发于40至60岁中老年女性。造成颅内动脉瘤的病因尚不甚清楚,多数学者认为颅内动脉瘤是在颅内动脉管壁局部的先天性缺陷和腔内压力增高的基础上引起,高血压、脑动脉硬化、血管炎与动脉瘤的发生与发展有关。颅内动脉瘤好发于脑底动脉环(Willis环)上,其中80%发生于脑底动脉环前半部。
在现有技术中颅内肿瘤手术过程复杂,需要的手术精度高,当出现一点失误时就可能会造成颅内动脉瘤破裂,或伤到颅内神经,给患者造成不可逆伤害。
发明内容
(一)解决的技术问题
针对现有技术的不足,本发明提供了一种新型颅内动脉瘤薄弱区评估方法,解决了颅内动脉瘤手术难的问题。
(二)技术方案
为实现以上目的,本发明通过以下技术方案予以实现:一种新型颅内动脉瘤薄弱区评估方法,包括如下具体方法:
步骤一.对颅内动脉瘤进行形态学参数提取:通过3D slicer进行逐级提取:子瘤、分叶状、瘤壁平坦度;
步骤二.对颅内动脉瘤进行血流动力学参数提取:通过4D-flow MRI提取:血流模式、动脉瘤内流速和流量的参数;
步骤三.对颅内动脉瘤进行瘤壁炎性参数提取:通过高分辨率磁共振序列进行瘤壁增强量化参数提取:参数包括了WEI、CRstalk、AER和AEI;
步骤四.对颅内动脉瘤进行瘤壁厚度参数提取:通过高分辨核磁共振的T1cube序列每层扫描的序列将动脉瘤瘤壁的厚度提取然后进行三维可视化,将三维的瘤壁通过二维平面展示出来,由红蓝渐变颜色表示动脉瘤壁厚度的改变;
步骤五.将步骤一至步骤四得到的动脉瘤参数进行综合建模,综合模型为双层模型结构,第一层为颅内动脉瘤瘤壁厚度三维模型,为步骤四参数所得、第二层为颅内动脉瘤不稳定参数风险评估模型,为步骤一到步骤三参数所得。
优选的,颅内动脉瘤不稳定参数风险评估模型得到诱发动脉瘤不稳定的参数,通过动脉瘤不稳定参数和颅内动脉瘤瘤壁厚度设定动脉瘤薄弱风险区。
优选的,所述颅内动脉瘤不稳定参数风险评估模型在建立前需要对颅内动脉瘤患者三个月内的颅内动脉瘤不稳定参数风险评估模型进行对比,等到风险变化规律。
优选的,颅内动脉瘤不稳定参数风险评估模型建立实验需要设定稳定组和不稳定组,设稳定组为A组,抽取10为患者为样本,设定不稳定组为B组,抽取10为患者为样本,稳定组为动脉瘤随访6个月未增大,不稳定组为动脉瘤随访6个月有增大超过1mm,患者有炸裂性头痛,颅神经麻痹的动脉瘤压迫症状,通过步骤一到步骤三的参数将稳定组与不稳定组对比,即可得到诱发动脉瘤不稳定的参数。
优选的,A组和B组在选取样本时女性和男性各5名,且样本的年纪控制在40-55之间,保证样本选取具有代表性。
(三)有益效果
本发明提供了一种新型颅内动脉瘤薄弱区评估方法。具备以下有益效果:
本发明通过对颅内动脉瘤建立颅内动脉瘤瘤壁厚度三维模型和颅内动脉瘤不稳定参数风险评估模型,可以有效的对动脉瘤位置和周围神经分布状况进行研究,研究动脉不稳定参数,再对动脉瘤厚度建模,手术时规避薄弱区,避免动脉瘤破裂,且有效的定位动瘤位置,规避脑部神经,有效的增加了手术的成功率。
附图说明
图1为本发明一种新型颅内动脉瘤薄弱区评估方法的结构示意图;
图2为本发明血流动力学模型示意图;
图3为本发明颅内动脉瘤瘤壁厚度三维模型图;
图4为本发明颅内动脉瘤形态学模型图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例一:
如图1-4所示,本发明实施例提供一种新型颅内动脉瘤薄弱区评估方法,包括清垢盘1,包括如下具体方法:
步骤一.对颅内动脉瘤进行形态学参数提取:通过3D slicer进行逐级提取:子瘤、分叶状、瘤壁平坦度;
步骤二.对颅内动脉瘤进行血流动力学参数提取:通过4D-flow MRI提取:血流模式、动脉瘤内流速和流量的参数;
步骤三.对颅内动脉瘤进行瘤壁炎性参数提取:通过高分辨率磁共振序列进行瘤壁增强量化参数提取:参数包括了WEI、CRstalk、AER和AEI;
步骤四.对颅内动脉瘤进行瘤壁厚度参数提取:通过高分辨核磁共振的T1cube序列每层扫描的序列将动脉瘤瘤壁的厚度提取然后进行三维可视化,将三维的瘤壁通过二维平面展示出来,由红蓝渐变颜色表示动脉瘤壁厚度的改变;
步骤五.将步骤一至步骤四得到的动脉瘤参数进行综合建模,综合模型为双层模型结构,第一层为颅内动脉瘤瘤壁厚度三维模型,为步骤四参数所得、第二层为颅内动脉瘤不稳定参数风险评估模型,为步骤一到步骤三参数所得。
颅内动脉瘤不稳定参数风险评估模型得到诱发动脉瘤不稳定的参数,通过动脉瘤不稳定参数和颅内动脉瘤瘤壁厚度设定动脉瘤薄弱风险区。
颅内动脉瘤不稳定参数风险评估模型在建立前需要对颅内动脉瘤患者三个月内的颅内动脉瘤不稳定参数风险评估模型进行对比,等到风险变化规律。
颅内动脉瘤不稳定参数风险评估模型建立实验需要设定稳定组和不稳定组,设稳定组为A组,抽取10为患者为样本,设定不稳定组为B组,抽取10为患者为样本,稳定组为动脉瘤随访6个月未增大,不稳定组为动脉瘤随访6个月有增大超过1mm,患者有炸裂性头痛,颅神经麻痹的动脉瘤压迫症状,通过步骤一到步骤三的参数将稳定组与不稳定组对比,即可得到诱发动脉瘤不稳定的参数。
A组和B组在选取样本时女性和男性各5名,且样本的年纪控制在40-55之间。
尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由所附权利要求及其等同物限定。

Claims (5)

1.一种新型颅内动脉瘤薄弱区评估方法,其特征在于,包括如下具体方法:
步骤一.对颅内动脉瘤进行形态学参数提取:通过3D slicer进行逐级提取:子瘤、分叶状、瘤壁平坦度;
步骤二.对颅内动脉瘤进行血流动力学参数提取:通过4D-flow MRI提取:血流模式、动脉瘤内流速和流量的参数;
步骤三.对颅内动脉瘤进行瘤壁炎性参数提取:通过高分辨率磁共振序列进行瘤壁增强量化参数提取:参数包括了WEI、CRstalk、AER和AEI;
步骤四.对颅内动脉瘤进行瘤壁厚度参数提取:通过高分辨核磁共振的T1cube序列每层扫描的序列将动脉瘤瘤壁的厚度提取然后进行三维可视化,将三维的瘤壁通过二维平面展示出来,由红蓝渐变颜色表示动脉瘤壁厚度的改变;
步骤五.将步骤一至步骤四得到的动脉瘤参数进行综合建模,综合模型为双层模型结构,第一层为颅内动脉瘤瘤壁厚度三维模型,为步骤四参数所得、第二层为颅内动脉瘤不稳定参数风险评估模型,为步骤一到步骤三参数所得。
2.根据权利要求1所述的一种新型颅内动脉瘤薄弱区评估方法,其特征在于,颅内动脉瘤不稳定参数风险评估模型得到诱发动脉瘤不稳定的参数,通过动脉瘤不稳定参数和颅内动脉瘤瘤壁厚度设定动脉瘤薄弱风险区。
3.根据权利要求1所述的一种新型颅内动脉瘤薄弱区评估方法,其特征在于,所述颅内动脉瘤不稳定参数风险评估模型在建立前需要对颅内动脉瘤患者三个月内的颅内动脉瘤不稳定参数风险评估模型进行对比,得到风险变化规律。
4.根据权利要求1所述的一种新型颅内动脉瘤薄弱区评估方法,其特征在于,颅内动脉瘤不稳定参数风险评估模型建立实验需要设定稳定组和不稳定组,设稳定组为A组,抽取10位患者为样本,设定不稳定组为B组,抽取10位患者为样本,稳定组为动脉瘤随访6个月未增大,不稳定组为动脉瘤随访6个月有增大超过1mm,患者有炸裂性头痛,颅神经麻痹的动脉瘤压迫症状,通过步骤一到步骤三的参数将稳定组与不稳定组对比,即可得到诱发动脉瘤不稳定的参数。
5.根据权利要求4所述的一种新型颅内动脉瘤薄弱区评估方法,其特征在于,A组和B组在选取样本时女性和男性各5名,且样本的年纪控制在40-55之间。
CN202111304559.XA 2021-11-05 2021-11-05 一种新型颅内动脉瘤薄弱区评估方法 Active CN114145843B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111304559.XA CN114145843B (zh) 2021-11-05 2021-11-05 一种新型颅内动脉瘤薄弱区评估方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111304559.XA CN114145843B (zh) 2021-11-05 2021-11-05 一种新型颅内动脉瘤薄弱区评估方法

Publications (2)

Publication Number Publication Date
CN114145843A CN114145843A (zh) 2022-03-08
CN114145843B true CN114145843B (zh) 2023-07-04

Family

ID=80459219

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111304559.XA Active CN114145843B (zh) 2021-11-05 2021-11-05 一种新型颅内动脉瘤薄弱区评估方法

Country Status (1)

Country Link
CN (1) CN114145843B (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203503219U (zh) * 2013-09-10 2014-03-26 高旭 持续血液循环的体外颅内动脉瘤模拟装置
CN109907732A (zh) * 2019-04-09 2019-06-21 广州新脉科技有限公司 一种颅内动脉瘤破裂风险的评估方法及系统
CN109961850A (zh) * 2019-03-19 2019-07-02 肖仁德 一种评估颅内动脉瘤破裂风险的方法、装置、计算机设备
CN110782993A (zh) * 2019-11-04 2020-02-11 北京理工大学 基于个体化病人建立的颅内动脉瘤生长破裂风险评估方法
CN110866914A (zh) * 2019-11-21 2020-03-06 北京冠生云医疗技术有限公司 脑动脉瘤血流动力学指标的评估方法、系统、设备及介质
CN111415321A (zh) * 2018-12-19 2020-07-14 上海联影医疗科技有限公司 动脉瘤破裂风险检测装置及设备
KR20210072952A (ko) * 2019-12-10 2021-06-18 한양대학교 에리카산학협력단 동맥류 파열 예측 장치 및 방법
CN113066574A (zh) * 2021-03-29 2021-07-02 昆明同心医联科技有限公司 基于神经网络的动脉瘤破裂预测方法、装置及存储介质
CN113066583A (zh) * 2021-03-30 2021-07-02 昆明同心医联科技有限公司 动脉瘤破裂风险预测方法、装置及存储介质

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8718944B2 (en) * 2007-05-22 2014-05-06 Worcester Polytechnic Institute Patient-specific image-based computational modeling and techniques for human heart surgery optimization

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203503219U (zh) * 2013-09-10 2014-03-26 高旭 持续血液循环的体外颅内动脉瘤模拟装置
CN111415321A (zh) * 2018-12-19 2020-07-14 上海联影医疗科技有限公司 动脉瘤破裂风险检测装置及设备
CN109961850A (zh) * 2019-03-19 2019-07-02 肖仁德 一种评估颅内动脉瘤破裂风险的方法、装置、计算机设备
CN109907732A (zh) * 2019-04-09 2019-06-21 广州新脉科技有限公司 一种颅内动脉瘤破裂风险的评估方法及系统
CN110782993A (zh) * 2019-11-04 2020-02-11 北京理工大学 基于个体化病人建立的颅内动脉瘤生长破裂风险评估方法
CN110866914A (zh) * 2019-11-21 2020-03-06 北京冠生云医疗技术有限公司 脑动脉瘤血流动力学指标的评估方法、系统、设备及介质
KR20210072952A (ko) * 2019-12-10 2021-06-18 한양대학교 에리카산학협력단 동맥류 파열 예측 장치 및 방법
CN113066574A (zh) * 2021-03-29 2021-07-02 昆明同心医联科技有限公司 基于神经网络的动脉瘤破裂预测方法、装置及存储介质
CN113066583A (zh) * 2021-03-30 2021-07-02 昆明同心医联科技有限公司 动脉瘤破裂风险预测方法、装置及存储介质

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
颅内动脉瘤破裂风险评估中CTA 的有效性及形态学特征分析;吴磊,沈龙山等;蚌埠医学院学报;第45卷(第9期);1261-1265 *
颅内动脉瘤破裂风险评估的研究进展;李茂桐,刘秀娟等;医学综述;第25卷(第18期);3663-3666 *

Also Published As

Publication number Publication date
CN114145843A (zh) 2022-03-08

Similar Documents

Publication Publication Date Title
Li et al. Influence of hemodynamics on recanalization of totally occluded intracranial aneurysms: a patient-specific computational fluid dynamic simulation study
Mut et al. Computational hemodynamics framework for the analysis of cerebral aneurysms
Geers et al. Wall shear stress at the initiation site of cerebral aneurysms
Hauerberg et al. The prognostic significance of intracerebral haematoma as shown on CT scanning after aneurysmal subarachnoid haemorrhage
Morales et al. A virtual coiling technique for image-based aneurysm models by dynamic path planning
Fan et al. Morphological-hemodynamic characteristics of intracranial bifurcation mirror aneurysms
Nakagawa et al. Detection of microbleeds associated with sentinel headache using MRI quantitative susceptibility mapping: pilot study
US11860187B2 (en) Modified method to fit cell elastic modulus based on Sneddon model
Vinogradov et al. Evolution of fractal structures in dislocation ensembles during plastic deformation
CN114145843B (zh) 一种新型颅内动脉瘤薄弱区评估方法
Verhoeven et al. Risk factors for cesarean delivery following labor induction in multiparous women
Joyce et al. In-vivo stretch of term human fetal membranes
Fitzgerald et al. Distal villous hypoplasia
Karmonik et al. Blood flow in cerebral aneurysms: comparison of phase contrast magnetic resonance and computational fluid dynamics-preliminary experience
Xu et al. Molecular dynamics study on void collapse in single crystal hcp-Ti under hydrostatic compression
JP5496067B2 (ja) 動脈瘤診断支援装置及び制御プログラム
Sadat et al. Utility of magnetic resonance imaging-based finite element analysis for the biomechanical stress analysis of hemorrhagic and non-hemorrhagic carotid plaques
Fu et al. Inflow Angle Impacts Morphology, Hemodynamics, and Inflammation of Side‐wall Intracranial Aneurysms
Crosby et al. Estimating coefficients of a flow generator for monotone samples of data
Gaidzik et al. Luminal enhancement in intracranial aneurysms: fact or feature?—A quantitative multimodal flow analysis
Autrusseau et al. Toward a 3d arterial tree bifurcation model for intra-cranial aneurysm detection and segmentation
Pritschet et al. Neuroanatomical changes observed over the course of a human pregnancy
Wright et al. First-trimester screening for trisomy 21 with adjustment for biochemical results of previous pregnancies
Millesi et al. Focal irregularities in 7-Tesla MRI of unruptured intracranial aneurysms as an indicator for areas of altered blood-flow parameters
Lu et al. Effect of proximal parent artery stenosis on the outcomes of posterior communicating artery aneurysms: a preliminary study based on case-specific hemodynamic analysis

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant