CN114142482A - 一种计及线路阻抗的多虚拟同步机并联无功功率-电压精确下垂控制方法 - Google Patents

一种计及线路阻抗的多虚拟同步机并联无功功率-电压精确下垂控制方法 Download PDF

Info

Publication number
CN114142482A
CN114142482A CN202110964822.1A CN202110964822A CN114142482A CN 114142482 A CN114142482 A CN 114142482A CN 202110964822 A CN202110964822 A CN 202110964822A CN 114142482 A CN114142482 A CN 114142482A
Authority
CN
China
Prior art keywords
voltage
control
line
impedance
reactive power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110964822.1A
Other languages
English (en)
Inventor
颜湘武
马宏斌
贾焦心
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Baoding Shangyuan Power Technology Co ltd
North China Electric Power University
Original Assignee
Baoding Shangyuan Power Technology Co ltd
North China Electric Power University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Baoding Shangyuan Power Technology Co ltd, North China Electric Power University filed Critical Baoding Shangyuan Power Technology Co ltd
Priority to CN202110964822.1A priority Critical patent/CN114142482A/zh
Publication of CN114142482A publication Critical patent/CN114142482A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/12Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load
    • H02J3/16Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load by adjustment of reactive power
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/388Islanding, i.e. disconnection of local power supply from the network
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

本发明公开了一种计及线路阻抗的多虚拟同步机并联无功功率‑电压精确下垂控制方法,属于低压微电网逆变器控制领域。该方法依据本地信息控制量,补偿线路阻抗压降,确保多虚拟同步机并联运行时控制电压的一致性,实现了无功功率精确分配和公共连接点电压的精确下垂控制;同时引入虚拟负阻抗控制,改变等效输出阻抗特性,实现功率解耦。本发明所提供的方法不仅可以有效的解决线路阻抗不匹配时无功功率的精确分配的问题,还可以在发生负荷扰动时实现功率解耦及用户侧的无功功率‑电压的精确下垂控制,优化了公共连接点电压,提高了系统电压控制的鲁棒性。

Description

一种计及线路阻抗的多虚拟同步机并联无功功率-电压精确 下垂控制方法
技术领域
本发明涉及分布式发电微电网逆变器控制领域,特别是涉及一种计及线路阻抗的多虚拟同步机并联无功功率-电压精确下垂控制方法。
背景技术
随着新能源发电技术的日益成熟,微电网技术备受关注。微电网包含分布式微源(distributed generation,DG)、储能、变流器、负荷、保护及控制设备等,既可与主网连接并网运行,也可脱离主网孤岛运行。当微电网呈现孤岛运行状态时,其控制模式主要分为两种:主从控制和对等控制。主从控制结构简单,但系统稳定性差、运行成本高,不利于大规模推广应用。对等控制模式可实现不同DG之间彼此独立控制,能在无通讯状态下快速实现负荷扰动响应,极大的改善了系统供电可靠性和运行的经济性,故采用对等控制的分布式微电网成为研究热点之一。
当前基于对等控制模式的分布式微电网,各DG一般采用下垂控制,但随着其迅速发展,低惯量、欠阻尼的运行特性不容忽视。为提高微电网运行的安全性与稳定性,国内外学者提出了虚拟同步机(virtual synchronous generator,VSG)控制策略。通过模拟同步机组的机电暂态特性,在下垂控制的基础上增加了惯量和阻尼环节。当发生负荷扰动时,可及时提供惯量支撑,避免系统发生大规模振荡,已有实验和实际工程均验证了此项控制策略的有效性。然而,当不同分布式微源并联运行时,由于彼此之间的容量互异、位置分散,系统的输出线路阻抗及控制电压无法匹配。其功率输出存在耦合度高、分配精度低等问题,无法实现无功功率-电压的精确下垂控制。当功率输出存在偏差时,易产生过大的系统环流和损耗,恶化了系统的电能质量。
针对上述问题,国内外学者在传统VSG控制的基础上提出了多种解决方案,主要可归为三类。第一类方案是在分析功率耦合的基础上,引入虚拟阻抗控制来改善系统等效输出阻抗,从而实现阻抗匹配及功率解耦,优化系统无功功率分配精度。但虚拟阻抗的引入会造成公共交流母线电压的跌落过大,无法兼顾系统的电能质量。为改善等效输出电压,第二类方案主要提出了基于自适应虚拟阻抗的无功功率—电压控制,通过在虚拟阻抗上增加自适应无功扰动量,提高供电系统的电能质量。但其利用同步通信完成信息交互,对实时通信环节要求较高,信息精确性差。第三类方案是基于集中通讯方式的频率、电压二次调节控制,其通过补偿了一次调节的误差,提高了系统的频率、电压稳定性。但该方案对信息传输的准确性要求较高,且通信的延时会降低系统控制的灵活性与稳定性。
综上,目前线路阻抗差异引起的无功功率-电压精确控制的相关问题还并未得到充分解决。大部分控制方案关注于线路首端的无功功率分配及输出电压的精确控制,且过度依赖于通信环节的稳定性和信息的准确性,鲜有考虑线路末端(用户侧)的无功功率-电压精确下垂控制效果和本地信息控制量的作用。
发明内容
为满足不同分布式微源“即插即并”和无功功率精确分配以及用户侧电压精确下垂的综合控制目标,本发明在VSG控制的基础上提出一种考虑线路参数的无功功率-电压综合控制策略。具体技术方案如下。
一种计及线路阻抗的多虚拟同步机并联无功功率-电压精确下垂控制方法,其特征在于,所述方法通过结合本地信息控制量,补偿线路阻抗压降,将控制电压前移至公共连接点 (point of common coupling,PCC),完成无功功率的精确分配及UPCC的精确下垂控制。同时,通过引入虚拟负阻抗控制,实现功率解耦,改善系统动态性能。具体策略如下:
1)结合本地信息控制量,提出无功-电压改进控制方案。将无功电压控制环节中的VSG输出侧电压U0经线路参数压降ΔUline补偿,换算为公共连接点电压UPCC,补偿不同DG 因线路阻抗差异引起的电压偏差,确保控制电压的一致性,在完成无功功率的精确分配的同时实现了用户侧无功功率与UPCC的精确下垂控制,优化了公共连接点电压,进一步满足不同分布式微源“即插即并”的控制要求。2)为实现功率解耦及动态调节过程中的独立控制,引入“虚拟负阻抗”的控制,等效实现系统输出阻抗特性的改变,在负荷功率变化时降低系统环流。
附图说明
图1为多分布式微源并联运行结构示意图;
图2为双机并联VSG等效电路示意图;
图3为改进VSG无功-电压控制框图;
图4为综合控制策略框图;
图5(a)为传统VSG控制功率输出波形图;
图5(b)为动态虚拟阻抗控制功率输出波形图;
图5(c)为本发明所提综合控制功率输出波形图;
图6为采用不同控制策略时公共连接点电压UPCC的有效值;
图7为采用不同控制策略时无功-电压拟合下垂曲线;
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述。
本发明所提的多虚拟同步机并联无功功率-电压精确下垂控制方法其应用场景针对的是采用VSG控制的多机并联运行结构,其典型结构如图1所示。图中,各逆变器通过LC滤波器消除高次谐波后接入公共连接点,为公共负荷Zload供电。其中:im、um(m=1,2,…,n)分别为输出电流和输出电压,Lm、Cm分别为滤波电抗和滤波电容,Zlinem为线路阻抗,UPCC为公共连接点电压。
图2为图1中的双机并联系统等效电路示意图。图中,Ei和δi(i=1,2)为等效电压源输出的幅值和相角,δi通常很小,可近似看作sinδi=δi,cosδi=1,Zi为等效输出阻抗,
Figure RE-GDA0003444813400000033
为等效输出阻抗角,Ii、I0、Icc分别为VSG输出电流、负载电流、系统环流。
当系统等效输出阻抗呈现感性时,即Xi>>Ri时,可认为等效输出阻抗角
Figure RE-GDA0003444813400000034
此时VSG单相输出有功功率、无功功率表达式为:
Figure RE-GDA0003444813400000031
由上式可知,等效输出阻抗呈感性时,系统输出有功、无功分别和相角δi与电压偏差ΔUi有关。VSG输出有功功率可通过调节相角来实现,无功功率可通过调节电压偏差来改善,其满足VSG控制的基本原理。传统VSG控制方程如下式,式中:Pref、Qref分别为有功功率、无功功率给定值;Pe、Qe为经过低通滤波器的VSG瞬时输出有功和无功功率;Dp、 Dq分别为有功频率控制环路下垂系数、无功电压控制环路下垂系数;ω为VSG输出角频率;ωs为系统额定角频率;E0为额定输出电压幅值;U0为实际输出电压幅值;J为虚拟转动惯量; K为等效惯性系数。
Figure RE-GDA0003444813400000032
根据VSG控制方程分析可得,稳态运行时,系统频率为全局变量,有功功率分配仅与有功功率给定值Pref和下垂系数Dp有关,不受线路参数的影响;但系统的输出电压并非全局变量,其与线路参数息息相关。当不同DG的线路参数存在差异时,无功功率不能按照额定容量进行分配。在传统的VSG无功电压控制策略中,下垂系数Dq的设置与VSG输出无功功率、线路首段电压息息相关。但由于线路阻抗压降及功率损耗而引起的下垂系数偏差不容忽视,线路末端(用户侧)的无功功率-电压下垂控制效果更应得到关注。
本发明结合本地信息控制量,提出无功-电压改进控制方案。将无功电压控制环节中的VSG输出侧电压U0经线路参数压降ΔUline补偿,换算为公共连接点电压UPCC,补偿不同DG因线路阻抗差异引起的电压偏差,确保控制电压的一致性,在完成无功功率的精确分配的同时实现了用户侧无功功率与UPCC的精确下垂控制,优化了公共连接点电压,进一步满足不同分布式微源“即插即并”的控制要求。
改进VSG无功-电压控制框图如图3所示。改进后,系统处于稳态工作时的无功功率表达式如下式所示。
Figure RE-GDA0003444813400000041
由上式可知,将线路阻抗压降ΔUline增加到无功电压控制环路中时,无功功率分配仅与额定输出电压幅值E0和无功下垂系数Dq有关,可在稳态时实现无功功率的精确分配的同时控制线路末端PCC点电压,使其工作于额定工作点附近,避免线路阻抗及虚拟阻抗导致的 UPCC过低的问题。
传统的VSG控制是基于等效输出阻抗呈感性时设计的,然而,分布式微电网处于中低压运行状态,其线路参数往往呈现阻性或阻感性,在负荷功率变化时会造成较大的功率耦合,产生系统环流,影响各DG的动态控制性能及输出功率分配的精度。
为实现有功、无功功率的解耦及实现动态调节过程中的独立控制,有专家引入“虚拟负阻抗”的控制思想,应用虚拟负阻抗控制可等效实现系统输出阻抗特性的改变。典型虚拟负阻抗控制在dq坐标系下的表达式如下式所示。式中:Rv、Lv分别为加入的虚拟电阻及虚拟电感值;Eref_d、Eref_q分别为无功电压环输出参考电压d轴、q轴分量;i_od、i_oq分别为输出电流d轴、q轴分量。E* ref_d、E* ref_q分别为经过虚拟阻抗矫正后给定三相调制波发生器的参考。
综上所述,本发明所提出的综合控制策略框图如图4所示。
为验证本发明所提的综合控制策略的可行性和拓展性,在仿真软件平台上搭建了3 台VSG组成的系统仿真模型,仿真系统参数如表1和表2所示。设定3台VSG的额定容量为2:1:1,并列运行为公共线性负载供电。下面分别比较传统VSG控制策略、动态虚拟阻抗控制策略和本发明所提的综合控制策略在输出功率、电压、精确下垂控制方面的差异,其余仿真条件完全相同。
表1系统拓扑参数
Figure RE-GDA0003444813400000051
表2系统控制参数
Figure RE-GDA0003444813400000052
为验证所提综合控制策略在无功功率分配、电压精确控制方面的优异性,运行工况设置为:初始时3台VSG孤岛并列运行为(11kW+j6.7kVar)的公共负荷供电;3.5s时发生负荷突减,公共负荷变化为(6.3kW+j3.7kVar);7s时公共负荷恢复至初始运行状态;10s时VSG3 退出,VSG1和VSG2分担公共负荷。
采用不同控制策略的VSG功率输出波形图如图5所示。
分析可得:采用上述三种不同控制策略时,有功功率均可按各自容量实现精确分配,可见有功功率的分配与线路阻抗参数无关,与理论分析结果一致。然而从图5(a)的无功功率输出波形分析可得,由于线路参数不匹配,传统VSG控制策略无法实现无功功率的精确分配,而且当线路阻抗参数呈现阻感性时,无功功率输出会呈现与自身容量相反的运行状态。采用动态虚拟阻抗控制策略,将输出无功功率与虚拟电抗相结合,自适应调节虚拟感抗,可实现无功功率的精确分配,但当线路阻抗参数差异过大或呈现纯阻性时,动态虚拟感抗参数过大,无功功率无法实现精确分配。而应用本发明所提的综合控制策略时,可在线路阻抗参数不匹配的情况下,实现有功、无功功率的精确分配,无需通信环节支持,即可满足分布式微源“即插即用”的配置需求。但当VSG3退出运行时,会产生过大的功率波动,其原因仍有待后续探讨。
采用不同控制策略时公共连接点电压UPCC的有效值如图6所示。
分析图6可得:传统VSG控制无法补偿线路阻抗压降,PCC点电压严重偏离额定值110V。在发生负荷功率突增时,线路阻抗压降ΔUline也会随之增加,恶化了系统用户侧电能质量。动态虚拟阻抗控制策略,通过无功功率与虚拟感抗结合的动态调节系统输出电压,与传统VSG控制策略相比,PCC点压降偏小,但其并未考虑基准虚拟感抗的所引起的压降。本发明所提的综合控制策略,在VSG输出端电压的基础上补偿线路阻抗压降ΔUline,等效实现控制电压前移,避免了公共负荷变化及虚拟阻抗引入造成UPCC跌落加深的现象发生。不同控制策略下UPCC的稳态有效值如表3所示,对比分析可得,采用综合控制时,UPCC跌落最小,动态虚拟阻抗控制次之,传统VSG控制最大,与上述分析结果一致。本发明所提的综合控制策略可实现公共连接点电压的优化,提高系统电压控制的鲁棒性。
表3不同控制策略下UPCC的稳态有效值
Figure RE-GDA0003444813400000061
注:ΔUPCC=(UPCC-Uref)/Uref;Uref=110V。
为验证所提综合控制策略在实现用户侧无功-电压精确下垂控制的有效性,选取VSG3独立带负载运行,切换多组不同无功负荷,可得如图7所示的采用不同控制策略时无功-电压拟合下垂曲线。
分析图7可得,传统VSG控制策略并未考虑线路阻抗压降产生的下垂系数偏差,致使公共负荷端下垂特性严重偏离设定值175,无法实现用户侧精确下垂控制。动态虚拟阻抗控制策略相对于传统VSG控制策略虽有极大改善,但由于基准虚拟阻抗的存在,致使其产生下垂系数偏差。本发明所提综合控制策略可避免线路阻抗及虚拟阻抗差异引起的下垂系数偏差,实现了用户侧无功功率-电压的精确下垂控制。
如上所述,对本发明进行了详细的说明,显然,只要实质上没有脱离本发明的发明点及效果、对本领域的技术人员来说是显而易见的变形,也均包含在本发明的保护范围之内。

Claims (3)

1.一种计及线路阻抗的多虚拟同步机并联无功功率-电压精确下垂控制方法,其特征在于,所述方法结合本地信息控制量,改进无功功率-电压控制方案,将无功电压控制环节中的虚拟同步机(VSG)输出侧电压U0,经线路参数压降ΔUline补偿后,换算为公共连接点电压UPCC,确保控制电压的一致性,从而实现线路阻抗不匹配时用户侧无功功率的精确分配;具体步骤如下:
步骤1:在VSG输出端口,即线路阻抗首端,采集电流ioabc与电压Uoabc,经Park变换获取VSG输出侧电流、电压的dq分量,即io_d、io_q、Uo_d、U_oq
步骤2:依据VSG输出侧电流、电压的dq分量,应用瞬时功率理论获取VSG输出侧有功功率Pe及无功功率Qe,完成VSG控制;
步骤3:依据本地线路阻抗Lline、Rline的参数信息,补偿线路阻抗参数压降ΔUline,获取的公共连接点电压UPCC为:
Figure FDA0003223071770000011
步骤4:将无功-电压控制环节中的VSG输出侧电压U0换算为公共连接点电压UPCC,补偿不同DG因线路阻抗差异引起的电压偏差,确保控制电压的一致性,改进后,系统处于稳态工作时的无功功率表达式如下所示,可知,改进后无功功率分配仅与额定输出电压幅值E0和无功下垂系数Dq有关,能在稳态工作实现无功功率的精确分配的同时控制线路末端PCC点电压,使其工作于额定工作点附近,提高了系统电压的鲁棒性。
Qe=Qref+Dq(E0-(Uo-ΔUline))
=Qref+Dq(E0-UPCC)
2.根据权利要求1所述的一种计及线路阻抗的多虚拟同步机并联无功功率-电压精确下垂控制方法,其特征在于,所述模式确定原则为:基于等效输出阻抗呈感性时设计的,然而,分布式微电网的线路参数往往呈现阻性或阻感性,在负荷功率变化时会造成较大的功率耦合,产生系统环流;本发明应用dq坐标系下的虚拟负阻抗控制实现系统输出阻抗特性的改变,从而确保输出功率解耦,改善系统的动态性能,具体步骤如下:
步骤1:根据本地线路阻抗Lline、Rline的参数信息,选取虚拟负阻抗参数Rv、Lv
步骤2:结合VSG输出侧电流io_d、io_q,获取虚拟负阻抗控制矫正后的给定三相调制波输出电压参考E* ref_d、E* ref_q
Figure FDA0003223071770000021
3.根据权利要求1所述的一种计及线路阻抗的多虚拟同步机并联无功功率-电压精确下垂控制方法,其特征在于,所述方法通过控制环路的改进实现功率精确分配、解耦及无功功率-电压精确下垂控制的综合控制目标,无需通信系统支持,可快速灵活地应对负荷变化情况,简单、容易,成本更低,为多分布式微源“即插即并”控制提供理论参考依据。
CN202110964822.1A 2021-08-20 2021-08-20 一种计及线路阻抗的多虚拟同步机并联无功功率-电压精确下垂控制方法 Pending CN114142482A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110964822.1A CN114142482A (zh) 2021-08-20 2021-08-20 一种计及线路阻抗的多虚拟同步机并联无功功率-电压精确下垂控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110964822.1A CN114142482A (zh) 2021-08-20 2021-08-20 一种计及线路阻抗的多虚拟同步机并联无功功率-电压精确下垂控制方法

Publications (1)

Publication Number Publication Date
CN114142482A true CN114142482A (zh) 2022-03-04

Family

ID=80393589

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110964822.1A Pending CN114142482A (zh) 2021-08-20 2021-08-20 一种计及线路阻抗的多虚拟同步机并联无功功率-电压精确下垂控制方法

Country Status (1)

Country Link
CN (1) CN114142482A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114374206A (zh) * 2022-03-22 2022-04-19 西安热工研究院有限公司 火电熔融盐储能换流装置的并网点电压调节方法及系统

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112886647A (zh) * 2021-01-27 2021-06-01 国网江苏省电力有限公司泰州供电分公司 一种基于阻抗重塑的负荷虚拟同步机协调优化控制方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112886647A (zh) * 2021-01-27 2021-06-01 国网江苏省电力有限公司泰州供电分公司 一种基于阻抗重塑的负荷虚拟同步机协调优化控制方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
XIANGWU YAN 等: "Precise Reactive Power-Voltage Droop Control of Parallel Virtual Synchronous Generators That Considers Line Impedance", 《ELECTRONICS》, pages 1 - 19 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114374206A (zh) * 2022-03-22 2022-04-19 西安热工研究院有限公司 火电熔融盐储能换流装置的并网点电压调节方法及系统
CN114374206B (zh) * 2022-03-22 2022-06-17 西安热工研究院有限公司 火电熔融盐储能换流装置的并网点电压调节方法及系统
WO2023178873A1 (zh) * 2022-03-22 2023-09-28 西安热工研究院有限公司 火电熔融盐储能换流装置的并网点电压调节方法及系统

Similar Documents

Publication Publication Date Title
CN102623992A (zh) 基于旋转坐标虚拟阻抗的孤岛微电网控制及优化方法
CN102780226B (zh) 基于斩控均压的链式statcom直流侧电压控制方法及控制电路
CN112994098A (zh) 一种基于前馈控制的并联虚拟同步机功率解耦方法
CN112152263B (zh) 一种基于多储能变流器的微电网离网转并网的预同步装置及方法
Baimel Implementation of DQ0 control methods in high power electronics devices for renewable energy sources, energy storage and FACTS
CN103972899A (zh) 一种statcom接入点电压补偿方法
CN112332405B (zh) 考虑变压器负载率的三端口snop负荷转移调控方法
WO2024001201A1 (zh) 低压台区分相输出功率调节系统、调节方法及存储介质
CN110797902B (zh) 一种直流配电网改进主从控制方法
CN107612025A (zh) 微网中电流控制型逆变器改进控制方法
CN114142482A (zh) 一种计及线路阻抗的多虚拟同步机并联无功功率-电压精确下垂控制方法
Ghiasi et al. A hybrid controller with hierarchical architecture for microgrid to share power in an islanded mode
Ghiasi et al. A control scheme based on virtual impedance and droop control to share power in an island microgrid
CN109861284B (zh) 一种新能源微电网的线路阻抗矫正装置
CN111711198A (zh) 一种基于fms的配电网馈线互联控制方法
CN113241748A (zh) 电力电子变流器接入弱电网暂态过电压抑制方法及系统
CN110994692B (zh) 一种基于同步相量测量装置的孤岛同步并网方法
CN112769138A (zh) 交直流混合配电网枢纽变换器交直流互济控制装置和方法
CN112865160A (zh) 多端混合直流输电系统的自适应电压下垂控制系统及方法
CN112564167A (zh) 一种基于一致性算法的改进下垂控制方法
CN111555358A (zh) 一种基于自适应下垂控制的多分布式电源并联运行方法
CN111555295A (zh) 一种区域电网中多台无功补偿装置的在线协控方法
Feng et al. A Novel Embedded Muti-port Flexible Alternative Current Interconnector for Distribution Network
Almousawi et al. Design an accurate power control strategy of parallel connected inverters in Islanded microgrids
CN108539748B (zh) 双回线统一潮流控制器及其串联侧换流器控制方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20220304